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ABSTRACT
eBPF offers a lightweight method to extend the Linux kernel with-
out modifying the source code in existing modules. However, writ-
ing correct and efficient eBPF programs is hard due to its unique
verifier constraints and cumbersome debugging processes specific
to the kernel execution environment. To tackle such an obstacle,
we present a system, SimpleBPF, aiming at offloading the tedious
eBPF development task. Developers only need to express their
intent in a high-level domain-specific language, while the under-
lying eBPF code generation is handled automatically. SimpleBPF
integrates four key components: a concise DSL, an LLM-based gen-
erator, a semantic checker, and an LLM-based optimizer. We use
few-shot prompting to build both the code generator and optimizer
in SimpleBPF, and evaluate the system on programs written in a
representative DSL. The preliminary evaluation result shows that
SimpleBPF can generate valid eBPF programs that pass the ker-
nel verifier and exhibit competitive runtime performance. We also
outline future directions based on current findings.
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1 INTRODUCTION
Modern applications increasingly require customized kernel-level
functionalities to meet the demand of high-performance network-
ing [9, 14], security monitoring [10], and system observability [22,
23]. Due to strict security requirements from the operating sys-
tem kernel, developers are typically not granted access to modify
the kernel source code. The long development cycles and release
timelines of upstream kernel maintainers make it impractical for
users to wait for new features to be officially deployed/released.
As a response, extended Berkeley Packet Filter (eBPF) [1, 21] has
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emerged as a powerful mechanism for extending the operating
system’s kernel functionality.

eBPF provides a lightweight solution for kernel programmability
and dynamic extension. However, writing correct eBPF programs
that are allowed to run within the kernel is not an easy task. Specif-
ically, to ensure a safe and efficient execution, all eBPF programs
need to pass a verifier. Various strict constraints (e.g., avoid risky
memory access, no unbounded loop) in the verifier make eBPF
programs writing a complex and error-prone task. As a result, de-
velopers must understand the verifier’s implicit rules and iteratively
rewrite their eBPF programs to conform to the verifier’s safety re-
quirements, leading to a slow down of the development speed. To
make things more complex, different ways of writing semantically
equivalent eBPF programs can lead to varying JIT-compilation re-
sults and execution performance. A significant portion of time from
developers is spent in debugging and tuning their code—not just
to ensure semantic correctness, but also to target the best possible
execution performance from the JIT compiler.

Currently, many efforts in the eBPF ecosystem are centered
around exploring new application scenarios where eBPF programs
can play a role. Besides, works such as K2 [19] and Merlin [15]
optimize the generated bytecode for eBPF programs written in
high-level source languages (like C or Rust). Comparatively little
attention has been paid to reducing the development efforts to write
high-quality eBPF source programs. To the best of our knowledge,
Kgent [20] is among the few existing works that leverage large
language models (LLMs) for eBPF code generation from natural
language, but it compromises on accuracy, limiting its practical
usability. We believe that lowering the barrier to developing eBPF
programs can help expand the usage scenarios of eBPF. Therefore,
we propose to offload the task of writing eBPF programs to an
automatic code generation system, SimpleBPF, which abstracts out
all constraints and enables developers to only focus on correctly
expressing their algorithm in a much easier way.

Our goal is to ensure that SimpleBPF meets several key require-
ments. On the one hand, it should offer developers a more conve-
nient way to write the code; on the other hand, it needs to guarantee
the semantic equivalence and good execution performance. Accord-
ingly, we design 4 main components in SimpleBPF to achieve this
goal. First of all, SimpleBPF offers a domain-specific language (DSL)
for developers to express their customized functionalities in a sim-
pler way (e.g., fewer lines of code, predefined function libraries).
Secondly, an LLM-based code generator is used to generate the
eBPF expression that can pass the verifier. Thirdly, a Z3-based [11]
semantic checker exists to ensure the semantic equivalence be-
tween the output eBPF program and the specification. Finally, an
LLM-based optimizer further improves the eBPF program’s execu-
tion performance by transforming it into a format that uses fewer
instructions required by the JIT compiler. We use LLMs because of
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their strong generalization capabilities. Instead of designing rewrite
rules, users can simply provide training examples to guide the LLM
to do code generation.

We choose the few-shot prompting to build the code generator
and the optimizer, and do a preliminary evaluation(§6) over Sim-
pleBPF. Results show that SimpleBPF can generate eBPF programs
that are both semantically correct and verifier-accepted, from high-
level DSL specifications using, on average, about 55% fewer lines
of code. SimpleBPF’s optimizer further reduces the number of in-
structions for eBPF execution by 35% on average. We also outline
several future directions (§7) such as high-level DSL design for
more domains, effective feedback from semantic checker and eBPF
verifier, and automatic hook selection in code generation.

This work does not raise any ethical issues.

2 PROBLEM STATEMENT
Writing “good" eBPF programs is hard because of several reasons:

R1: Programming eBPF requires engineers to learn unfamiliar cod-
ing patterns. Even if we can regard eBPF as a C-like language,
it is not obvious for developers who are familiar with conven-
tional languages to switch to eBPF. Common tasks such as access-
ing a hash map require the use of special helper functions (e.g.,
bpf_map_lookup_elem) and explicit null checks in eBPF, rather
than simple indexing in languages such as C or Python. As a re-
sult, developers must learn a new programming discipline, which
includes writing code in a verifier-compliant style that might seem
unnatural.

R2: The verifier may falsely reject valid eBPF programs due to
overly strict constraints. To ensure the execution safety, the veri-
fier imposes numerous constraints, such as prohibiting unbounded
loops and requiring all memory accesses to be provably safe. Its con-
servative constraints force developers to not only ensure programs’
functional correctness, but also conform to a particular coding style
and structural pattern. We argue that such an additional burden,
optimizing programming style for verifier acceptability, introduces
unnecessary overhead and hampers developer productivity.

R3: Execution performance is dependent on the written style. Un-
like mature compilers that can optimize inefficient patterns, the JIT
compiler performs minimal transformations for eBPF bytecode. As
a result, two semantically equivalent eBPF programs can have vari-
ous execution performances, depending on how the JIT backend
interprets their structure. To achieve good execution performance
(one of the most important reasons for people to use eBPF), devel-
opers need to carefully craft their programs to be JIT-friendly.

R4: Debugging eBPF programs is slow.Given all these complexities
above, debugging eBPF programs to pass the verifier is quite com-
mon. Traditional software development environments (e.g., C and
Python) offer mature debugging tools like gdb, pdb, and integrated
step-by-step execution in IDEs (e.g., VSCode), but eBPF lacks such
interactive tooling. Developers must rely on runtime techniques
such as bpf_trace_printk() or custom tracepoints to infer pro-
gram behavior. Moreover, since the verifier rejects invalid programs
before execution, developers frequently engage in a trial-and-error
process to satisfy implicit constraints without clear guidance.

Concretely, we list several snippets of bad and good eBPF pro-
grams to illustrate these difficulties mentioned above.

2.1 Necessary rewrite to pass the verifier
2.1.1 Type conversion. eBPF program does not support oper-

ations over types such as floating points. In fact, floating-point
variables are commonly used in network functions. For example,
the fault injection network function compares a random value
against a threshold to decide whether to drop a packet. Figure 1(a)
shows an example of dropping a network packet with 50% probabil-
ity rate, which cannot be directly expressed by eBPF without any
type conversion. In order to represent this functionality, we need to
use integer variables to replace floating-point variables. Figure 1(b)
provides one option to replace floating-point variables by integer
variables. Specifically, it scales up the variable’s value by 10×, and
the corresponding literal’s value in the comparison condition is
also multiplied by 10.

float r = get_random(); // get a random
variable following uniform distribution
between 0 and 1
if (r > 0.5) {

return XDP_DROP;
}

u32 r_scaled =
bpf_get_prandom_u32()  % 10; 

if (r_scaled > 5) {
return XDP_DROP;

}
(a) Verifier reject (b) Verifier accept

Figure 1: Turn float operations to integer operations.

2.2 General optimization for faster verification
and better execution

2.2.1 Combine ITE branches. The number of condition branches
is an important factor to decide the complexity of an eBPF program.
Each additional condition would exponentially increase the execu-
tion path from the entry to the exit of a program. A program with
too many execution paths can degrade performance, increase verifi-
cation complexity, and in the worst case, cause the verifier to reject
it. Therefore, developers are encouraged to minimize the number
of conditional branches in their code to reduce verifier workload
and improve the likelihood of successful verification. Condition
merging is one way to realize this goal.

if (ip->field0 == 1) {
if (ip->field1 == 2) {

return XDP_DROP;
}

}

u8 merge = (ip->field0 << 4) | (ip->field1);
if (merge == 0b00010010) {

return XDP_DROP;
}

(a) JIT-unfriendly (b) JIT-friendly

Figure 2: Branch reduction via condition merging.

if (ip->field0 > 0) {
if (ip->field0 > 2 && ip->field1 == 2) {

return XDP_DROP;
}

}

if (ip->field0 > 2 && ip->field1 == 2) {
return XDP_DROP;

}

(a) JIT-unfriendly (b) JIT-friendly

Figure 3: Remove redundant ITE predicates.

Figure 2 and Figure 3 show 2 possible ways to merge multiple
conditions. One approach is to combine all variables that are used
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in predicates into a temporary variable and then comparing the
temporary variable against a constant. This offers the benefit of
putting all conditions into one. Another strategy involves checking
the logical relationships among predicates and removing redundant
ones due to being supersets of others. They both improve the code
execution performance without breaking the semantic equivalence.

Even though these optimizations are not that complex, the cur-
rent lightweight JIT-compiler performs only basic bytecode-to-
machine-code translation. Developers are responsible for manually
restructuring their eBPF code in exchange for better performance.

2.2.2 Declare variables only when necessary. Register is one of
the scarce resources in eBPF. Specifically, eBPF provides only 11
general-purpose 64-bit registers (r0 to r10) [2], and some of them are
reserved. For example, r0 is used to store the return value of eBPF
programs or helper functions, while r10 serves as the read-only
frame pointer for accessing stack memory. As a result, develop-
ers should be cautious for variable declaration because declaring
unused or long-lived variables can increase the number of live regis-
ters at any point in the program. This would unnecessarily increase
the state space that the verifier has to track.

int a = 0; int b = 0;
if (cond) { a = compute_a();
} else { b = compute_b();
}
return a + b;

(a) JIT-unfriendly

if (cond) {
int a = 0; a = compute_a();
return a;

}
int b = 0; b = compute_b();
return b;

(b) JIT-friendly

Figure 4: Do variable declaration when needed.

A good eBPF program should declare the variable only when
needed. For instance, as is shown in Figure 4, instead of declaring
variable a and b in the beginning, we declare them within
the branch because some declarations can be avoided if certain
conditions are not satisfied.

2.3 Domain-specific optimizations
2.3.1 Take into consideration the workload feature. These op-

timizations exist only when developers know beforehand some
features in a specific domain. Concretely, in eBPF, short-circuit
evaluation of logical && is preserved in the generated bytecode.
Therefore, if domain knowledge suggests that one condition is
more likely to fail, placing it before others can reduce the number
of instructions executed at runtime.

For instance, if the developers know that ip->field0 is more
likely to be less than or equal to 2 in Figure 5, checking this condition
earlier is preferable for execution.

if (ip->field0 > 2 && ip->field1 == 2) {
return XDP_DROP;

}

if (ip->field1 == 2 && ip->field0 > 2) {
return XDP_DROP;

}
(a) runtime suboptimal (b) runtime optimal

Figure 5: When we know from the domain knowledge that
ip->field0 > 2 is more likely to be false, it is better to check
this condition first.

3 ABSTRACTINGWITH TAILORED DSLS
In response to the difficulties of writing verifier-friendly and JIT-
optimal eBPF programs, we advocate tailoring the domain-specific
languages (DSLs) design paired with a code generator that auto-
matically translates high-level algorithm into an efficient eBPF
expression. Writing in a DSL allows developers to focus on express-
ing high-level intent without dealing with the low-level constraints
of the eBPF verifier or specific optimizations. Besides, we have the
freedom to make the DSL closely resemble the language commonly
used by domain experts, minimizing their learning curve.

eBPF Prog 
(C-like language) bytecodecompiler execution

codeverifier JIT

Specification
Prog (in DSL)

Codegen

OptimizerChecker
first time

Figure 6: Our proposal: developing a new DSL and an
LLM-based code generator to output the eBPF program.
After passing the semantic checker and verifier, an LLM-
based optimizer is used to continue optimizing the pro-
gram to improve execution performance. ✓ means passing
the semantic checking or verifier, while ✗ means failing
to pass. Blue components are related to our proposal while
yellow components have already existed in the current eBPF
compilation ecosystem.

Figure 6 shows a proposed workflow of SimpleBPF. Developers
express their customized algorithms in DSL programs. Afterwards,
these programs are fed into an LLM-based code generator to out-
put eBPF programs. A semantic checker validates the correctness
of the generated output. If the checker detects any violations, an-
other iteration of code generation is required. We rely on the code
generator and semantic checker to ensure that output eBPF pro-
grams are semantically equivalent to the DSL programs. Then, the
verifier checks whether or not these eBPF programs follow pre-
defined constraints. If the output program passes the verifier, an
LLM-based optimizer continues to optimize the eBPF program to
improve its execution performance. Otherwise, the code generator
outputs another candidate for the verifier.

SimpleBPF separates the code generator and optimizer into 2
parts instead of combining them because of 2 main benefits. (1)
Each LLM prompt can be specifically tailored for generation or opti-
mization, allowing the model to better respond to the relevant patterns.
(2) This avoids unnecessary work such as optimizing semantically
incorrect code output from the generator. SimpleBPF is retargetable
by supporting various DSLs as long as developers provide sufficient
training data and a corresponding semantic equivalence checker.
We believe that, for developers, writing semantically aligned pairs of
DSL and eBPF programs is often easier than designing a rule-based
translator with extensive, hand-crafted rewrite rules.

We also consider designing a general-purpose language (GPL)
for eBPF code generation, but doing so offers limited practical
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advantage. eBPF itself resembles a constrained general-purpose en-
vironment, so building another GPL layer on top does not offer too
many abstraction benefits. Moreover, GPLs are inherently harder
to learn, as learners must grasp a wide range of constructs that may
be irrelevant to their specific use cases. In contrast, domain experts
already possess deep knowledge of the particular problem space
(e.g., rpc requests in microservice, lookup query in database), and
hence can adopt the corresponding DSL with fewer efforts.

4 RESEARCH QUESTIONS
To generate valid and performant eBPF programs automatically,
we need to address a few following research questions.
Q1: What are the key features that a high-level language should pro-
vide? The goal of designing a new high-level language is to provide
eBPF developers with a more convenient tool. To realize this goal,
we should take into consideration several aspects of the DSL de-
sign. First of all, expressiveness. The designed language should cover
operations that are allowed by existing eBPF programs. Second, sim-
plicity. It can offer an easier way to express the same functionality.
Simplicity can be measured by the lines of code (loc). Third, flexi-
bility. Ideally, we want the language design to be flexible enough to
enable developers to provide hints (e.g., eBPF data structure choice)
to guide the code generator for better program output.
Q2:How to build the code generator? To evaluate different ways to de-
velop the code generator, we need to consider several metrics. First,
efficiency. It measures the speed at which this generator produces
code in deployment. Second, correctness. Whether the generated
code preserves the semantics of the specification. Third, develop-
ment effort. This refers to the difficulty in building and maintaining
the code generator. These metrics serve as guiding principles across
different approaches.
Q3: How to ensure the correctness of the code generator’s output? We
propose building a semantic checker that systematically verifies
whether the generated code faithfully implements the specification.
This is a challenging task because it requires formalizing the se-
mantics of both the source DSL and the target eBPF program. These
models should take into consideration the algorithm functional-
ity, low-level memory access, and nondeterministic behavior (e.g.,
random value generation). Whether through symbolic execution,
SMT-based equivalence checking, or test-based differential analysis,
this checker is an indispensable part of SimpleBPF.
Q4: How to integrate with existing eBPF ecosystem? The existing
eBPF ecosystem is widely adopted, supported by a large and active
community of developers. Instead of reinventing the ecosystem
from scratch, our goal is to complement and extend the existing
development workflows. For example, developers should have the
flexibility to either program directly in C-like eBPF syntax or start
from the newly developed DSL. Regardless of which path they
choose, developers benefit from SimpleBPF.

5 A POTENTIAL APPROACH
In this section, we want to partially answer questions in §4 through
a description of SimpleBPF design (shown in Figure 6). It consists
of 4 main parts: a DSL, an LLM-based code generator, a Z3-based
checker, and an LLM-based optimizer.

DSL offers developers a convenient way to express their algo-
rithms; the code generator and semantic checker work together to
ensure the semantic equivalence; finally, the optimizer optimizes
the eBPF code into a JIT-friendly format that is more performant
to execute.

5.1 DSL and code generator
To make eBPF programming more accessible to domain experts, we
design a domain-specific language (DSL) that is simple, expressive,
and closely aligned with existing domain terminology. We also
have the flexibility to predefine commonly used functions, allowing
developers to focus on high-level logic rather than writing low-level
eBPF operations from scratch. Additionally, the DSL design should
be extensible, providing room for incorporating new features and
abstractions as domain requirements evolve.

int x = ...
if (x > A) 

if (x < A + 2) 
do_sth();

return ...;

int x = ...
if (x > A && x < A + 2) 

do_sth();
return ...;

int x = ...
if (x <= A) return ...;
if (x >= A + 2) return ...;
do_sth();

int x = ...
if (x == A + 1) 

do_sth();
return ...;

int x = ...
if (x <= A) return ...;
if (x >= A + 2) return ...;
do_sth();

Apply rule A Apply rule B

Figure 7: Rule A→ is condition merging within an ITE while
Rule Bd is early return and if-condition optimization. For
the given example, applying Rule B first prevents us from
reaching the optimal result that is possible if Rule A were
applied before Rule B.

To translate DSL programs into verifier-compliant and JIT-friendly
eBPF code, we consider using the LLM-based code generation
approach by leveraging state-of-the-art LLM APIs [16] [12] [13].
The current development of language models brings LLM-based
code generation several unique advantages. Compared to synthesis-
based techniques, LLMs offer faster inference and broader appli-
cability, as not all translation tasks can be encoded into tractable
synthesis problems. Compared to the rigid rule-based program
rewriting, an LLM-based solution can offer more flexibility to ex-
plore outcomes with fewer manual efforts involved.

Take figure 7 as an example and suppose there are 2 rewrite
rules (A and B). Rule A merges adjacent if predicates using logical
conjunction, while Rule B reorders if-else branches to enable early
exits and simplify execution within an if-condition. Applying Rule
A before Rule B yields a more optimized result, as it enables further
simplification brought by Rule B. In contrast, applying Rule B first
may irreversibly restructure the control flow, eliminating the oppor-
tunity for Rule A to take effect. In general, it is not surprising that
a rule-based code generator might output suboptimal results [18],
often due to an incomplete set of rewrite rules or a suboptimal
application order. Moreover, humans are slow at encoding rewrite
rules into code, whereas LLMs can rapidly generalize from some
human-crafted examples to automate similar transformations for
new examples. LLMs might introduce extra challenges, such as
accuracy loss and high training cost. Addressing these issues is
essential for the system’s development.
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5.2 Semantic checker
A semantic checker is necessary to ensure the correctness of the
generated eBPF programs. This checker takes as input the DSL
program and the generated eBPF program and checks whether they
express the same functionality. There are multiple ways to compare
semantics between different programs. A heavyweight method
applies formal proof tools like Rocq [7] to offer strong guarantees,
but this requires significant manual proof effort and expertise. A
light-weight approach tests selected input/output pairs. This is
easier to implement but may miss subtle semantic discrepancies.

// Drop TCP packets on dport 80 and sport 80, 0=DROP, 1=PASS

def DSL_prog(sport, dport):

return If(And(sport == 80, dport == 80), DROP, PASS)

def eBPF_prog(sport, dport):

return If(Or(sport != 80, dport != 80), PASS, DROP)

s = Solver()

s.add(DSL_prog(sport, dport) != eBPF_prog(sport, dport))

if s.check() == sat --> NOT equivalent.

else: --> equivalent.

Figure 8: Semantic checker for equivalence.

These 2 main methods are not mutually exclusive. There could be
a hybrid approach: employing formal methods for critical parts of
the program, while relying on input-output test cases to cover other
parts. Here, we choose to turn input and output program into SMT
formula for equivalence checking. One concrete example is shown
in Figure 8. We use DSL_program and eBPF_program to represent
input and output programs’ functionality and use Z3 to search for
counterexamples that demonstrate behavioral differences. If there
are no such counterexamples, we conclude that they are equivalent.

5.3 The eBPF optimizer

Input
Program 1

Output
Program 1

Input
Program 2

Output
Program 2

Input
Program N

Output
Program N

Target Input
Program

Output
Program

(a) Prompt Construction (b) Model Inference

??

Figure 9: Developers provide input-output program pairs
together with the target input program as a prompt. Then,
the language model can output a target program.

We propose building an LLM-based optimizer. We also consider
other alternatives but rule-based optimizers require extensive man-
ual effort to design and maintain. Synthesis-based optimizers [19]
can be computationally expensive and slow to scale. Our method
mirrors the structure of our LLM-based code generator: instead of
DSL-to-eBPF examples, we now train themodel on pre-optimization
and post-optimization eBPF program pairs (e.g., examples in §2.2),
allowing the model to learn optimization patterns directly from
data. Both the LLM-based code generator and LLM-based opti-
mizer follow the pattern shown in Figure 9. This approach offers a

more scalable and automation-friendly way to produce optimized
eBPF code that improves the execution performance. For those
who choose to write an eBPF program directly, this optimizer is a
valuable addition by turning their written program into a format
that achieves better execution performance.

6 CASE STUDY
6.1 Experiment setup
We choose an existing DSL, AppNet [24], specifically designed for
application network functions, as the basis for our evaluation. At a
high level, AppNet is designed to express network functions that are
specific to particular applications. One concrete AppNet example
is presented in Figure 10: dropping an RPC request with some
probability. A typical AppNet program consists of multiple parts:
state lists all global variables, init() initializes all global variables,
and req(rpc) presents the service mesh function when receiving
one RPC request. More detailed language design is explained in the
AppNet paper [24].

state:

prob: float

init():

prob = 0.95

req(rpc):

match randomf(0, 1) < prob:

true => send(rpc, Pass)

false => send(err('fault_injected'), Drop)

Figure 10: An AppNet program that drops RPC requests with
5% probability.

We adopt in-context learning of prompt engineering to build the
LLM-based code generator and optimizer. We choose this approach
at this moment instead of other alternatives (e.g., fine-tuning) be-
cause in-context learning is a good option to start exploring a new
problem space [4]. After constructing training examples consisting
of AppNet–eBPF program pairs, as well as pre-optimized and post-
optimized eBPF program pairs, we pass these training data through
the ChatGPT 4o interface to guide its learning (e.g., floating point
→ integer, early exit). We evaluate the synthesized eBPF code and
assess the effectiveness of optimizations.

6.2 Preliminary results.
Benchmarks and baseline. We generate eBPF implementation for
AppNet programs that describe the application network functions
to deal with RPC requests in microservices. Previous AppNet com-
piler targets 3 RPC processing platforms: gRPC interceptors [5] and
EnvoyNative [6], EnvoyWasm [8]. We write 3 AppNet programs in
Table 1 for testing. To be specific, logging means the AppNet pro-
gram maintains and updates some global variables when receiving
one RPC request; fault injection conditionally drops requests based
on specified criteria. To increase complexity, we construct these pro-
grams using multiple global variables and compound conditional
expressions. Functionalities of all benchmarks [3] are independent
of the RPC payload. Deserializing payloads from gRPC packets is
orthogonal to the contributions of this paper.
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Table 1: Evaluate different components of SimpleBPF over benchmarks [3]. Green represents better results.

AppNet Program Rule-based code generator LLM-based code generator Post optimization eBPF
Name Loc Loc # eBPF instr. # JIT instr. Loc # eBPF instr. # JIT instr. Loc # eBPF instr. # JIT instr.

Logging (2 vars) 11 32 125 141 24 67 67 22 67 67
Logging + Fault injection 12 36 119 145 36 119 145 29 79 101

Fault injection (Optimizable condition) 9 26 59 76 26 59 76 20 43 56

We built a rule-based code generator by extending the App-
Net compiler to target the eBPF backend. This incorporates basic
program rewrite rules but does not apply any code-optimization al-
gorithms. We compare it with SimpleBPF and quantify the benefits
brought about by the LLM-based optimizer.
Assumptions. In this work, we target the XDP hook on the sender
side for all generated eBPF programs because the selected AppNet
programs are designed for sender-side network functions as well.
Besides, we assume each RPC request fits within a single network
packet to bridge the semantic gap between AppNet, which oper-
ates at the granularity of RPC requests, and eBPF, which processes
data at the granularity of individual packets. In cases where an
RPC request spans multiple packets, we extend the eBPF program
with stateful variables (e.g., using BPF maps) to buffer partial infor-
mation across packets. Once sufficient information is collected to
reconstruct the RPC semantics, the program applies the appropriate
action, such as making a forwarding decision. Generating code for
multi-packet RPC requests is left for future work.
Preliminary results. We measure the performance of code genera-
tors and the LLM-based optimizer over 3 main metrics: loc, # eBPF
instructions for eBPF bytecode, and # JIT instructions for execution.
Loc measures the easiness to write the program while others deter-
mine the actual performance of the eBPF program. Rule-based code
generator only applies several rewrite rules without implementing
any optimizations. We provide program pairs for the LLM-based
code generator to learn rewrite patterns.

According to the results in Table 1, SimpleBPF reduces the loc by
45.5% on average; the quality of post-optimization eBPF programs
is better, meaning that both LLM-based code generator and LLM-
based optimizer contributes to eBPF code optimizing, by reducing
# eBPF instructions and JIT instructions by around 64% on average.
We want to share 2 extra findings. (1) writing an LLM-based code
generator significantly reduces development effort, as crafting a
few-shot prompt for in-context learning requires far fewer loc
than implementing a full rule-based system (several hundreds loc
vs several thousands loc). (2) even though LLM-based optimizer
further optimizes the output code from LLM-based code generator,
such improvement may not continue reduce the instructions since
some of the optimization rules are already applied during LLVM
bytecode generation. We confirm that generated eBPF programs
can pass the verifier and verify their semantic equivalence in Z3.

7 FUTUREWORK
We list directions for further improvements beyond SimpleBPF.
Optimal hook selection. Hook selection [17] is essential in eBPF
code generation because different hooks lead to different perfor-
mance (e.g., latency). SimpleBPF assumes that eBPF hooks are pres-
elected by developers. In the future, we want to continue offloading

developers’ burden by automatically choosing the suitable hook
that gives the best performance.
DSL design for other domains. The case study focuses on generat-
ing eBPF programs for service mesh functions. SimpleBPF can be
extended to new domains (e.g., database query and system mon-
itoring). DSL for these domains can bring unique challenges and
opportunities for building domain-specific semantic checking, code
generation, and optimization models.
Effective feedback from semantic checker and verifier. We use a
checker to verify the semantic correctness of eBPF code. When
mismatches are detected, SimpleBPF simply restarts the genera-
tion process, which misses the opportunity to provide targeted and
constructive feedback to guide the model. An intriguing direction
is to design effective mechanisms for generating meaningful feed-
back signals from the checker, enabling the LLM to refine its code
generation and optimization decisions in an interactive manner.

8 RELATEDWORKS
Recent efforts on generating and optimizing eBPF programs fall into
2 main categories: natural-language–driven source code generation
and bytecode-level optimization.

Kgent [20] leverages large language models to translate informal,
English descriptions into eBPF, dramatically reducing the manual
development effort. However, Kgent does not provide checker to as-
sure the semantic equivalence. K2 [19] and Merlin [15], by contrast,
focus on optimizing eBPF bytecode by introducing an additional
optimization pass that produces semantically equivalent but more
performant programs for the verifier. Our work is complementary
to them by addressing the problem of generating high-quality eBPF
code from high-level DSLs.

9 CONCLUSION
We propose a system, SimpleBPF, that contains a high-level DSL and
an affiliated LLM-based code generator to offer a more convenient
way for eBPF development. Preliminary results show that people
can write simpler code in DSL, and eBPF programs generated by
few-shot prompt engineering outperform those generated by the
rule-based program translator in terms of # instructions required
for execution. We hope our proposal can encourage more research
on easier eBPF development.
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