
Can You Fool Me?
Towards Automatically Checking Protocol Gullibility

Milan Stanojevic Ratul Mahajan Todd Millstein Madanlal Musuvathi
UCLA Microsoft Research UCLA Microsoft Research

Abstract –We consider the task of automatically eval-
uating protocol gullibility, that is, the ability of some of
the participants to subvert the protocol without the knowl-
edge of the others. We explain how this problem can be
formalized as a game between honest and manipulative
participants. We identify the challenges underlying this
problem and outline several techniques to address them.
Finally, we describe the design of a preliminary prototype
for checking protocol gullibility and show that it can un-
cover vulnerabilities in the ECN protocol.

1. INTRODUCTION
Modern communication protocols are regularly used

among entities that should not trust each other to faith-
fully follow the protocol. Sometimes trust is unwarranted
because a participant may not know the identity of the
other entities. Even with known identities, there is still
the possibility that others have been hijacked by malicious
agents. Further, an entity can inadvertently violate the
protocol due to bugs in the implementation.

Whatever the cause, protocol violations can break im-
portant protocol invariants, leading to a variety of attacks.
For example, Savage et al. show that a TCP receiver can
fool the sender into sending faster than the intended con-
gestion controlled rate [19]. In fact, they point out three
different ways to accomplish this task. Spring et al. show
that an ECN (Explicit Congestion Notification) receiver
can fool the sender into ignoring congestion by simply
flipping a bit [21], undermining the central purpose of the
protocol. Researchers have reported similar kinds of vul-
nerabilities in peer-to-peer protocols, multi-hop wireless
networks, and routing protocols as well [4, 14, 1].

Thus, it is strongly desirable that communication pro-
tocols be robust against accidental or intentional manipu-
lation by participants. We say that a protocol isgullible
if a subset of the participants can violate desirable prop-
erties of the protocol by disobeying the protocol in some
fashion. Today, protocol gullibility is determined through
manual inspection; for example, all vulnerabilities above
were discovered manually. While significant progress has
been made recently in identifying bugs in protocol imple-
mentations [7, 17, 11], bug-free honest participants may
still be fooled by manipulative participants, as the exam-
ples above illustrate.

In this paper, we pose the problem of automatically
evaluating a protocol’s gullibility. To our knowledge, prior

work has either detected gullibility manually or has auto-
matically checked for specific vulnerabilities in security
protocol specifications [13, 15, 20, 18, 5]. We define the
general problem of protocol gullibility detection, discuss
the challenges involved, and propose techniques that can
help to address these challenges. Finally, we report on
the design of a preliminary prototype gullibility checker
along with some initial results on a very simple protocol.

We formalize the problem of automatic gullibility de-
tection in Section 3 as a game between an angelic compo-
nent that consists of honest players and a demonic com-
ponent that consists of manipulative players. The angelic
component follows the protocol, while the demonic com-
ponent can take any action, including sending or not send-
ing any particular packet. A protocol is considered gullible
if there exists a strategy for the demonic component such
that a desirable property of the protocol is violated.

Automatically determining protocol gullibility is chal-
lenging. The key challenge is the enormity of demonic
strategy space. At any step, any particular bit pattern can
be sent, and complicated strategies may involve a long se-
quence of particular packets. A second difficulty is the
need to search the space of network conditions, because
some strategies succeed only under certain network con-
ditions. Finally, even determining when a strategy has
succeeded may be difficult, requiring comparison with a
reference run where all participants are honest. Section 4
describes these challenges in detail and proposes several
techniques to address them.

To begin exploring the problem and our approach, we
have developed a preliminary gullibility checker that in-
corporates a subset of the techniques we propose. We
present initial results from using our checker to analyze
an implementation of the ECN protocol. The checker can
successfully discover the attack that was previously man-
ually discovered [21] as well as some variations on this
attack. Our results for ECN, a very simple protocol, are
encouraging and so we are excited to continue exploring
our approach on more complex protocols.

2. EXAMPLE MANIPULATIONS
We describe below some example vulnerabilities found

in existing protocols, to provide insight into the kinds of
manipulations that we are interested in uncovering.
ACK division in TCP [19]: TCP increases its conges-
tion window in units of entire packets whenever a packet
that acknowledges previously unacknowledged bytes ar-

1

rives. A manipulative receiver can speed transfers by ac-
knowledging individual bytes rather than entire packets
(as an honest receiver would).
Duplicate ACKing in TCP [19]: A TCP sender sends
more data in response to any acknowledgment, since the
acknowledgment signals that some data left the network.
A manipulative receiver can speed transfers by generating
multiple, duplicate acknowledgments for the last received
sequence number.
Optimistic ACKing in TCP [19]: TCP assumes that
the time between a data segment being sent and an ac-
knowledgment being received is a round trip time, and its
congestion window increases as a function of that time.
A manipulative receiver can speed transfers by optimisti-
cally sending acknowledgments for packet sequence num-
bers that have not arrived yet.
Hiding congestion in ECN [21]: In the ECN proto-
col, routers set a bit in the header to signal congestion.
The receivers then reflect this bit when sending packets to
the sender, at which point the senders reduce their trans-
fer rate. A manipulative receiver can speed transfers by
setting the congestion bit to zero instead of reflecting it.
Dropping packets in multi-hop wireless networks [14]:
Multi-hop wireless networks enable connectivity by hav-
ing nodes relay for one another. Manipulative nodes can
simply drop all packets that they are asked to relay while
reaping the benefits by having others relay for them.
Lying about connectivity in routing protocols [1]: Rout-
ing protocols such as OSPF and BGP rely on nodes accu-
rately reporting their connectivity, i.e., who they connect
to and the connection cost. Manipulative nodes can sig-
nificantly distort routing paths by lying.
Attacks in DHTs [4]: Castroet al. present a variety of
ways in which a manipulative node can hurt the overlay.
The set of possible manipulations is large. It includes how
the node identifiers are generated, how routing messages
are propagated, and how messages are forwarded.

All the vulnerabilities above were discovered manually.
We want to automate the search for these kinds of vulner-
abilities. Researchers have proposed fixes to these vulner-
abilities. Automated tools can also help determine if the
fixes are themselves robust.

3. PROBLEM STATEMENT

Consider a communication protocol that two or more
parties use in order to achieve a common goal. The honest
participants execute the protocol correctly. The manipu-
lators have complete freedom in what they choose to send
(or not send) and when. Multiple manipulators may also
collude. We seek to determine if the protocol is gullible,
that is, the manipulators can prevent the honest partici-
pants from achieving the goals of the protocol.

We formalize this problem as a two-player game be-
tweenA and D, the angelic and demoniccomponents.

A consists of honest players. These players communi-
cate with each other and withD by exchanging messages.
D consists of manipulative players, possibly colluding
through out-of-band mechanisms. Finally, assume that
there is a propertyP over the state ofA andD that repre-
sents an invariant that the protocol should never violate.

The game proceeds by alternating moves of the two
components. On its turn,A chooses one of the possible
actions allowed by the protocol, such as a packet receive
or a timer event. The choices available toA represent the
nondeterminism that is outsideD’s control. In particular,
actions of the network, e.g., packet losses, are considered
moves ofA. D responds by consulting its attack strategy.
Its move involves either sending an arbitrary packet toA

or choosing not to respond. The protocol under study is
gullible if there exists a strategy forD with which D can
eventually drive the system to a state that violatesP .

Our problem formulation has two notable features. First,
we distinguish between angelic and demonic nondeter-
minism, because different methods are required to sys-
tematically search over them. Given a state, the angelic
component usually has a handful of moves that obey the
rules of the protocol. The demonic component can, how-
ever, send an arbitrary packet, representing an astronom-
ically huge search space at each step. Moreover, the de-
monic component might use a stateful strategy, whereby
the choices made at one step depend on the preceding
choices. In contrast to our formulation, the current work
on model checking system implementations [7, 17, 11]
has either no demonic component or a very restricted one.

Second, the propertyP that identifies when manipula-
tion has happened depends on the protocol under test. As
a simple example,P can state that the connection queue
should not be able to remain full forever, which represents
a denial-of-service attack. A more complicated example
property would limit the throughput that can be obtained
by the demonic component. Checking for violations of
this kind of property is important, since many discovered
manipulations concern resource allocation attacks [19, 21,
14, 4]. For such cases, we propose thatP be specified
in terms of a comparison to a “reference” behavior that
occurs if the demonic component were to honestly fol-
low the protocol. For example, congestion control pro-
tocols could require that no receiver gets more data than
what it would get by following the protocol; DHTs and
wireless relaying protocols could require that the ratio of
packets relayed and generated not change; and routing
protocols could require that forwarding table pointers not
change. More generally, we could specify that important
state variables for a protocol not change.

4. CHALLENGES AND TECHNIQUES
We now describe the challenges in building a practical

tool to test protocol gullibility and propose techniques to
address these challenges.

2

4.1 Challenge: Practical Strategy Search
The primary challenge that we face is that the space

of possible demonic strategies is huge. There are212000

possibilities for a 1500-byte packet that the manipulator
can send. Further, that is just the size of the search space
for a single message; complicated attacks may depend on
sending a particular sequence of packets.

We propose a variety of techniques to reduce the search
space size. These techniques leverage the structure in-
herent in network protocols as well as some properties
that are common across large classes of protocols. While
these search-space reduction techniques can potentially
cause our tool to miss some attacks, we believe that many
vulnerabilities of interest, including most of the ones de-
scribed in Section 2, can still be found. Systematically
discovering such vulnerabilities would be a significant im-
provement in the current state of art and is a first step to-
wards automatically discovering other kinds of attacks.
• Consider only the header part of the packet The
control flow of most protocols is based on the contents of
the header and not on the payload. Hence, instead of con-
sidering the entire packet, we focus on headers. Within a
packet, what is header versus payload depends on the pro-
tocol being tested. For instance, for IP everything other
than the IP header constitutes the payload even though
that payload may contain TCP headers. This technique
enormously reduces the search space. If the header size
is 40 bytes, for 1500-bytes packets, the single-step search
space goes from212000 to 2320.
• Consider only syntactically correct packetsProtocol
packets are not random bit strings but have specific for-
mats. For instance, the checksum field occurs in a cer-
tain location and is computed over specific bits. Hon-
est participants typically discard incoming packets that
are not in the requisite format. Accordingly, rather than
searching the space of all bit patterns, we focus on pack-
ets that comply with that format. The packet format can
be provided by the user or automatically inferred [6] from
traces. While there may be some attacks that involve non-
compliant packets, these are very likely to be due to im-
plementation bugs, such as buffer overflows. We are not
interested in finding such bugs; other methods, such as
fuzzing [16, 8], are more apt for finding them.
• Exploit header-field independence To further reduce
the search space, we assume that most header fields are
independent of one another with respect to possible vul-
nerabilities. That is, most vulnerabilities can be discov-
ered through a systematic search within the possible val-
ues for groups of fields, keeping the values of other fields
unchanged. For instance, for TCP one might assume that
the sequence number and acknowledgment number fields
are independent, allowing us to independently search the
fields for possible attacks. Since each field is 32 bits,
searching them together would yield a space of264 possi-

ble values, which searching them independently yields a
much smaller space of2 × 232 = 233 values. We rely on
the user to provide information about which fields should
be considered independent of one another.

• Consider only limited-history strategies We expect
that many interesting attacks require the manipulator to
take only a small number of basic steps. The attack is then
carried out by repeated application of this small sequence
of steps. For instance, the ECN vulnerability mentioned
earlier is a single-step strategy: the manipulator needs to
send a specific bit pattern in order to get more bandwidth.
Therefore, our tool can bound the length of strategies that
it will consider to a small constant.

• Leverage program analysis techniques As men-
tioned above, we consider only syntactically correct pack-
ets, since other packets are typically ignored. However,
many syntactically correct packets may also be ignored
by an honest participant. For instance, if IPv4 is the pro-
tocol being checked, packets with anything but the value
of 4 in the version field are ignored. As another example,
TCP senders ignore acknowledgments for sequence num-
bers below the last acknowledged sequence number. We
propose to identify the legal values of header fields using
program analysis of protocol source code; our search can
then ignore other values for these fields.

Program analysis can also help direct the strategy search
itself by identifying conditions under which an honest par-
ticipant’s state can change in ways that are beneficial to a
manipulator. For instance, program analysis of a TCP im-
plementation can determine values of header fields in a
received packet that cause the honest participant to send
more bytes. We intend to allow the tool user to provide a
set of variables in the honest participants’ state, and pro-
gram analysis will direct the search to strategies that cause
these variables’ values to change.

For both types of analyses above, we hope to leverage
recent work ondirected random testing[9], which com-
binessymbolic execution[12] with program testing.

4.2 Challenge: Variable network conditions

Some protocol vulnerabilities are exploitable only un-
der certain network conditions. For instance, the ECN
bit-flipping vulnerability comes to light only if the net-
work is congested and thus marks congestion bits in some
packets. If we simulate only uncongested paths, we will
not be able to uncover this ECN vulnerability.

Therefore, for each strategy considered during strategy
search, we must search the space of possible network path
behaviors. We make the simplifying assumption that the
paths between each pair of participants are independent
of one another. We can then separately characterize each
such path, for instance, by its loss rate and latency. The
behavior of each path defines a space of network condi-
tions, which our tool searches for each demonic strategy.

3

Type Description Default strategies
Fixed Fields that should not be modified None

Checksum Fields that represent a checksum over certain bits in the header None
Enum Fields that take on specific bit patterns. E.g., Protocol field in IP header Pick a value deterministically; pick one at random

SeqNum Fields that represent sequence numbers Subtract or add a constant value; multiply or di-
vide by a constant value

Range Fields that take on a range of value. E.g., Addresses and portnumbers Pick a value deterministically; pick one at random
Id Fields that contain identifiers. E.g., IP identifier in IP header, or node

identifier in peer-to-peer protocols
Pick one at random

Other All other fields User-specified

Table 1: Fields types and default strategies in our system.

4.3 Challenge: Determining when a strategy has
been successful

As mentioned earlier, for complex properties, particu-
larly those related to resource allocation, a strategy’s suc-
cess cannot be determined simply by running the strategy;
instead we must compare against reference behavior when
all participants are honest. However, two individual runs
of the protocol cannot be meaningfully compared directly,
due to the nondeterminism in the angelic component (e.g.,
network conditions). For example, under a given network
condition of 20% loss rate, the behavior of TCP is not
unique but depends on which specific packets are lost.

Therefore, to compare a manipulated protocol against
reference behavior, we run each version of the protocol
multiple times under a given network condition, obtaining
a distribution for each over some set of metrics (e.g., num-
ber of messages sent in a given amount of time). We can
then use statistical tests (e.g., the Kolmogorov-Smirnov
test or Student’st-Tests) to determine if the two distribu-
tions are statistically different.

5. PROTOTYPE CHECKER
To study the feasibility of automatically checking pro-

tocols for gullibility, we are implementing a prototype
checker. Our current implementation uses all of the tech-
niques described above except for program analysis. Fur-
ther, rather than asking the user for information about field
independence, we simply assume that all fields are inde-
pendent of one another. Finally, we use network simula-
tion to explore angelic nondeterminism.

Our system works directly with protocol implementa-
tions written in the Mace language for distributed sys-
tems [10]. We create the manipulators as modifications
of an “honest” implementation of the protocol. At a high
level, the manipulator has three types of actions that cover
the space of possible strategies:i) drop packets that hon-
est players would have sent;ii) modify the contents of
packets that honest players would have sent; andiii) send
packets when honest players would not have sent a packet.

We have created a simple API for dropping and modi-
fying packets, along with a default implementation of the
API (a C++ class). Wherever the protocol source code
calls the function to send a packet, we insert a call into our
API’s modify or drop function, passing the packet to

be sent. Our function returns the modified packet and in-
dicates whether it should be dropped.

We have not yet implemented packet insertions at arbi-
trary times, the third action above. Our plan is to add a
timer to the protocol implementation. An arbitrary packet
can be sent when this timer fires.

The protocol tester provides three required inputs and
one optional input to our system:

1. Network configuration This includes the num-
ber of participants, and the fraction of participants that are
honest. If the protocol is asymmetric, such as TCP sender
vs. receiver, the tester also specifies which aspect to test.
This setup information is distinct from network path con-
ditions (e.g., loss rate) for which we automatically explore
the various possibilities. In the future we plan to automat-
ically generate and test a range of possible setups as well.

2. Variables of interest The tester specifies the prop-
erty to be tested indirectly by providing a set of variables
of interest within the protocol implementation. The intent
is that the tester is interested in ways in which a manipu-
lator can cause deviations in the values of these variables.
If the implementation does not already have the necessary
variables, we expect the testers to implement them. For
instance, while the current congestion window is an ex-
isting state variable in a TCP implementation, total traffic
sent may not be, but it can be easily implemented.

3. Protocol header format The format is specified in
terms of the header fields and their types. The types that
we currently use are listed in Table 1. This list is based
on an informal survey of several common protocols and
it may grow as we experiment with more protocols. For
some of the types, e.g.,EnumandRange, the format must
specify the possible values of their fields.

4. A packet modifier class The packet modifica-
tion operation produces a modified version of the input
packet. Each header field is modified independently, de-
pending on its type. The default modification strategies
are shown in Table 1. All default modification strategies
are memoryless: they do not depend on what was sent be-
fore. Users can optionally provide their own packet mod-
ifier class implementing our API, in order to specify their
own strategies for these and other field types.

Given these inputs, we use the simulation engine pro-
vided by the MACE framework [11] to evaluate protocols.

4

0.0 0.2 0.4 0.6 0.8 1.0

congestion probability

0

100

200

300

#

t
i
m
e
r

e
v
e
n
t
s

honest receiver

manipulator

(a) Set bit to 0

0.0 0.2 0.4 0.6 0.8 1.0

congestion probability

0

100

200

300

#

t
i
m
e
r

e
v
e
n
t
s

honest receiver

manipulator

(b) Set bit to 1

0.0 0.2 0.4 0.6 0.8 1.0

congestion probability

0

100

200

300

#

t
i
m
e
r

e
v
e
n
t
s

honest receiver

manipulator

(c) Set bit randomly

Figure 1: Results of using our prototype to check the gullibility of the ECN protocol. Each graph corresponds to
a different cheating strategy by the receiver. Thex-axis indicates the fraction of packets on which the congestion
bit was set. They-axis is the number of timer events to deliver 300 packets to the receiver.

In each run of the simulator, we fix a particular set of net-
work path conditions as well as a particular modification
strategy for each header field. The cross product of net-
work path conditions and possible modification strategies
thereby forms the state space that our engine explores.

For each pair of a set of network conditions and a mod-
ification strategy, we simulate the protocol multiple times.
We also simulate multiple runs of a completely honest
version of the protocol for each possible set of network
conditions. If there are statistically significant differences
in the values of variables of interest between the honest
and manipulated runs for a given strategy and set of net-
work conditions, we deem the protocol to be gullible.

6. CASE STUDY: ECN
We now present results from using the preliminary ver-

sion of our tool to test the ECN protocol. We chose to
start with ECN because of its simplicity. Nonetheless, a
study of even this simple protocol reveals many relevant
insights and provides initial evidence for the feasibilityof
automatic gullibility checking.

We implemented a version of the ECN protocol in the
Mace framework. Its header has only one field, of type
Enum with 0 and 1 as the possible values. The field value
is initially 0, and it is set to 1 by the network to indicate
congestion. The sender starts by sending one packet to
the receiver. The receiver acknowledges each received
packet. The honest receiver’s acknowledgment reflects
the value of the congestion bit in the packet it received.
Dishonest receivers are free to do anything. In response to
receiving an acknowledgment that does not indicate con-
gestion, the receiver sends two new packets. If congestion
is indicated, the sender does not send any new data. In ad-
dition, the sender has a timer that fires periodically. If no
packet has been sent since the last firing, the sender sends
a new packet, to keep the information flow going.

We specify the network setup as having two nodes, one
sender and one receiver, and we tell our tool to investigate
manipulation by receivers. We also specify that protocol
behavior should be measured in terms of the number of
timer events. This measure indirectly captures the total

time needed to send a particular number of packets. Be-
cause we do not explicitly simulate time, we cannot di-
rectly measure throughput. Finally, we emulate different
network conditions by configuring different probabilities
of setting the congestion bit.

The graphs in Figure 1 show the protocol behavior as
a function of the network conditions. They show this be-
havior with both the honest receiver as well as with dif-
ferent cheating strategies. The set of cheating strategies
in this case involve setting the congestion bit to 0, 1, or
randomly. We conduct 200 trials for each combination of
receiver strategy and network conditions, with each trial
simulating the sending of 300 packets. We show all data
points thus obtained, to demonstrate the variance with net-
work conditions.

The figure shows how our tool can automatically deter-
mine which strategies work and quantify their impact. It
shows that a misbehaving receiver can speed transfers by
always setting the bit to zero and it can slow transfers by
always setting the bit to one. Further, the misbehaving re-
ceiver can speed transfers even by setting the congestion
bit randomly.

The graphs show that the impact of a cheating strat-
egy is visible only under certain network conditions. For
instance, the impact of setting the congestion bit to zero
does not show until 40% of the packets have the conges-
tion bit set and that of setting the bit randomly does not
show until 60% of the packets have the congestion bit set.
This behavior points to the importance of simulating dif-
ferent network conditions along with cheating strategies.
Without simulating different network conditions, a gulli-
bility checker might incorrectly infer that certain strate-
gies are unsuccessful.

7. RELATED WORK
We are directly inspired by the recent success [7, 17,

22, 11] of systematic search techniques, as implemented
by a model checker, in finding safety and liveness errors
in system implementations. This class of research focuses
on scaling to large systems and on nondeterminism arising
from the timing of various events in the system. The de-

5

monic nondeterminism considered is fairly restricted and
is limited to the network dropping packets or a system re-
boot occurring at an arbitrary instant. A straightforward
extension of these techniques to include actions of an all-
powerful malicious attacker does not scale.

Another related class of prior research applies formal
verification techniques to validate abstract models of se-
curity protocols against malicious attacks [13, 15, 20, 18,
5]. Our work is most closely related to the use of model
checking [20, 5] to systematically enumerate the behavior
of the protocol in the presence of an attacker aiming to
acquire a secret only known to honest participants. The
attacker models considered are powerful and can gener-
ate arbitrary packets by combining parts of previously ex-
changed messages and publicly known encryption keys.
However, due to the inherent state-space explosion prob-
lem, the problem instances considered are small hand-
abstracted models of security protocols with very few mes-
sage exchanges. In contrast, our work targets larger general-
purpose network protocol implementations. We also check
more complex properties, in particular those that compare
the attacker against an honest version under the same net-
work conditions. The price for these generalizations is
that our approach is appropriate for finding attacks but not
for producing a formal proof of correctness.

Automated fuzzing techniques [16, 2], which subject
a system to random sequences of inputs, can find many
errors in systems, some of which can lead to malicious
attacks. As an extension, directed random testing [9, 3,
8] generates inputs based on symbolic execution of the
program. These techniques have been used to find imple-
mentation errors, particularly errors in validating inputs.
Our focus is on finding vulnerabilities in the protocol de-
sign itself. Therefore we restrict ourselves to well-formed
input packets. However, as mentioned earlier we are in-
terested in adapting fuzzing and testing techniques to our
setting, in order to reduce the search space.

8. CONCLUSIONS
We have proposed and defined the problem of auto-

matically checking protocols for gullibility, i.e., theirvul-
nerability to manipulation by some of the participants.
We identified the challenges in building a practical tool
for this task and proposed several techniques to address
them. We are currently developing a prototype checker
using these techniques. Early results from using our tool
to check the ECN protocol are promising, automatically
identifying vulnerabilities and the network conditions un-
der which they are exploitable. We are excited to improve
our tool and apply it to new classes of protocols.

Acknowledgments We thank Stefan Savage, Amin
Vahdat, and David Wetherall for feedback on this paper.
This work was supported in part by NSF Grants CCF-
0427202, CCF-0545850, and CNS-0725354.

9. REFERENCES
[1] A. Barbir, S. Murphy, and Y. Yang. Generic threats to routing

protocols. Technical Report RFC-4593, IETF, Oct. 2006.
[2] Browser Fuzzing for Fun and Profit. http://blog.metasploit.com/

2006/03/browser-fuzzing-for-fun-and-profit.html.
[3] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.

Engler. Exe: automatically generating inputs of death. InACM
Conference on Computer and Communications Security, pages
322–335, 2006.

[4] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure routing for structured peer-to-peer overlay
networks. InOSDI, Dec. 2002.

[5] E. M. Clarke, S. Jha, and W. Marrero. Verifying security protocols
with brutus.ACM Trans. Softw. Eng. Methodol., 9(4):443–487,
2000.

[6] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz.
Tupni: Automatic reverse engineering of input formats. InThe
15th ACM Conference on Computer and Communications
Security (CCS), 2008.

[7] P. Godefroid. Model checking for programming languages using
verisoft. InPrinciples of Programming Languages (POPL), Jan.
1997.

[8] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based
whitebox fuzzing. InPLDI, pages 206–215, 2008.

[9] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated
random testing. InPLDI ’05: Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 213–223, New York, NY, USA, 2005.
ACM.

[10] C. Killian, J. W. Anderson, R. Baud, R. Jhala, and A. Vahdat.
Mace: Language support for building distributed systems. In
PLDI, June 2007.

[11] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, death,
and the critical transition: Finding liveness bugs in system code.
In NSDI, Apr. 2007.

[12] J. C. King. Symbolic execution and program testing.Commun.
ACM, 19(7), 1976.

[13] G. Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. InTools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 1055, pages 147–166.
Springer-Verlag, Berlin Germany, 1996.

[14] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Encouraging cooperation in multi-hop wireless networks. In
NSDI, May 2005.

[15] C. Meadows. The NRL protocol analyzer: An overview.Journal
of Logic Programming, 26(2):113–131, 1996.

[16] B. P. Miller, L. Fredriksen, and B. So. An empirical studyof the
reliability of unix utilities.Commun. ACM, 33(12):32–44, 1990.

[17] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC: A
pragmatic approach to model checking real code. InOSDI, Dec.
2002.

[18] L. C. Paulson. Proving properties of security protocols by
induction. InCSFW ’97: Proceedings of the 10th IEEE workshop
on Computer Security Foundations, page 70, Washington, DC,
USA, 1997. IEEE Computer Society.

[19] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP
congestion control with a misbehaving receiver.Computer
Communication Review, 29(5), 1999.

[20] V. Shmatikov and U. Stern. Efficient finite-state analysis for large
security protocols. InCSFW, pages 106–115, 1998.

[21] D. Wetherall, D. Ely, N. Spring, S. Savage, and T. Anderson.
Robust congestion signaling. InICNP, Nov. 2001.

[22] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi. Usingmodel
checking to find serious file system errors. InOSDI, pages
273–288, 2004.

6

