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Abstract —We consider the task of automatically evalwork has either detected gullibility manually or has auto-
uating protocol gullibility, that is, the ability of some ofmatically checked for specific vulnerabilities in security
the participants to subvert the protocol without the knowprotocol specifications [13, 15, 20, 18, 5]. We define the
edge of the others. We explain how this problem can lgeneral problem of protocol gullibility detection, dissus
formalized as a game between honest and manipulatitie challenges involved, and propose techniques that can
participants. We identify the challenges underlying thiselp to address these challenges. Finally, we report on
problem and outline several techniques to address thehe design of a preliminary prototype gullibility checker
Finally, we describe the design of a preliminary prototypaong with some initial results on a very simple protocol.
for checking protocol gullibility and show that it can un- We formalize the problem of automatic gullibility de-
cover vulnerabilities in the ECN protocol. tection in Section 3 as a game between an angelic compo-

nent that consists of honest players and a demonic com-
ponent that consists of manipulative players. The angelic
1. INTRODUCTION component follows the protocol, while the demonic com-

Modern communication protocols are regularly usgebnent can take any action, including sending or not send-
among entities that should not trust each other to faitimg any particular packet. A protocol is considered gudibl
fully follow the protocol. Sometimes trust is unwarrantei there exists a strategy for the demonic component such
because a participant may not know the identity of ttibat a desirable property of the protocol is violated.
other entities. Even with known identities, there is still Automatically determining protocol gullibility is chal-
the possibility that others have been hijacked by maliciolenging. The key challenge is the enormity of demonic
agents. Further, an entity can inadvertently violate tisérategy space. At any step, any particular bit pattern can
protocol due to bugs in the implementation. be sent, and complicated strategies may involve a long se-

Whatever the cause, protocol violations can break irjuence of particular packets. A second difficulty is the
portant protocol invariants, leading to a variety of ateackneed to search the space of network conditions, because
For example, Savage et al. show that a TCP receiver caime strategies succeed only under certain network con-
fool the sender into sending faster than the intended calitions. Finally, even determining when a strategy has
gestion controlled rate [19]. In fact, they point out thresucceeded may be difficult, requiring comparison with a
different ways to accomplish this task. Spring et al. shokgference run where all participants are honest. Section 4
that an ECN (Explicit Congestion Notification) receivedescribes these challenges in detail and proposes several
can fool the sender into ignoring congestion by simplgchniques to address them.
flipping a bit [21], undermining the central purpose of the To begin exploring the problem and our approach, we
protocol. Researchers have reported similar kinds of vilave developed a preliminary gullibility checker that in-
nerabilities in peer-to-peer protocols, multi-hop wisse corporates a subset of the techniques we propose. We
networks, and routing protocols as well [4, 14, 1]. present initial results from using our checker to analyze

Thus, it is strongly desirable that communication pran implementation of the ECN protocol. The checker can
tocols be robust against accidental or intentional manipsiiccessfully discover the attack that was previously man-
lation by participants. We say that a protocobigllible ually discovered [21] as well as some variations on this
if a subset of the participants can violate desirable progttack. Our results for ECN, a very simple protocol, are
erties of the protocol by disobeying the protocol in son@ncouraging and so we are excited to continue exploring
fashion. Today, protocol gullibility is determined thrdug our approach on more complex protocols.
manual inspection; for example, all vulnerabilities above
were discovered manually. While significant progress hds EXAMPLE MANIPULATIONS
been made recently in identifying bugs in protocol imple- We describe below some example vulnerabilities found
mentations [7, 17, 11], bug-free honest participants mayexisting protocols, to provide insight into the kinds of
still be fooled by manipulative participants, as the exanmanipulations that we are interested in uncovering.
ples above illustrate. ACK division in TCP [19]:  TCP increases its conges-

In this paper, we pose the problem of automaticalljon window in units of entire packets whenever a packet
evaluating a protocol’s gullibility. To our knowledge, pri that acknowledges previously unacknowledged bytes ar-



rives. A manipulative receiver can speed transfers by ad-consists of honest players. These players communi-
knowledging individual bytes rather than entire packetsate with each other and with by exchanging messages.
(as an honest receiver would). D consists of manipulative players, possibly colluding
Duplicate ACKing in TCP [19]: A TCP sender sendsthrough out-of-band mechanisms. Finally, assume that
more data in response to any acknowledgment, since there is a property’ over the state oft and D that repre-
acknowledgment signals that some data left the netwosents an invariant that the protocol should never violate.
A manipulative receiver can speed transfers by generatingrhe game proceeds by alternating moves of the two
multiple, duplicate acknowledgments for the last receivedmponents. On its turmd chooses one of the possible
sequence number. actions allowed by the protocol, such as a packet receive
Optimistic ACKing in TCP [19]: TCP assumes thator a timer event. The choices availableAaepresent the
the time between a data segment being sent and an ramadeterminism that is outside’s control. In particular,
knowledgment being received is a round trip time, and iggtions of the network, e.g., packet losses, are considered
congestion window increases as a function of that timmoves ofA. D responds by consulting its attack strategy.
A manipulative receiver can speed transfers by optimistis move involves either sending an arbitrary packetito
cally sending acknowledgments for packet sequence nuon-choosing not to respond. The protocol under study is
bers that have not arrived yet. gullible if there exists a strategy fdp with which D can
Hiding congestion in ECN [21]:  In the ECN proto- eventually drive the system to a state that violdtes
col, routers set a bit in the header to signal congestion.Our problem formulation has two notable features. First,
The receivers then reflect this bit when sending packetste distinguish between angelic and demonic nondeter-
the sender, at which point the senders reduce their tramsnism, because different methods are required to sys-
fer rate. A manipulative receiver can speed transfers tgmatically search over them. Given a state, the angelic
setting the congestion bit to zero instead of reflecting itcomponent usually has a handful of moves that obey the
Dropping packets in multi-hop wireless networks [14]:  rules of the protocol. The demonic component can, how-
Multi-hop wireless networks enable connectivity by hawever, send an arbitrary packet, representing an astronom-
ing nodes relay for one another. Manipulative nodes carally huge search space at each step. Moreover, the de-
simply drop all packets that they are asked to relay whileonic component might use a stateful strategy, whereby
reaping the benefits by having others relay for them. the choices made at one step depend on the preceding
Lying about connectivity in routing protocols [1]:  Rout-choices. In contrast to our formulation, the current work
ing protocols such as OSPF and BGP rely on nodes acon- model checking system implementations [7, 17, 11]
rately reporting their connectivity, i.e., who they conhedtas either no demonic component or a very restricted one.
to and the connection cost. Manipulative nodes can sig-Second, the propert§ that identifies when manipula-
nificantly distort routing paths by lying. tion has happened depends on the protocol under test. As
Attacks in DHTs [4]:  Castroet al. present a variety of a simple examplel’ can state that the connection queue
ways in which a manipulative node can hurt the overlaghould not be able to remain full forever, which represents
The set of possible manipulations is large. It includes haavdenial-of-service attack. A more complicated example
the node identifiers are generated, how routing messagesperty would limit the throughput that can be obtained
are propagated, and how messages are forwarded. by the demonic component. Checking for violations of
All the vulnerabilities above were discovered manuallyhis kind of property is important, since many discovered
We want to automate the search for these kinds of vulnenanipulations concern resource allocation attacks [19, 21
abilities. Researchers have proposed fixes to these vulrig!; 4]. For such cases, we propose tRabe specified
abilities. Automated tools can also help determine if thie terms of a comparison to a “reference” behavior that

fixes are themselves robust. occurs if the demonic component were to honestly fol-
low the protocol. For example, congestion control pro-
3. PROBLEM STATEMENT tocols could require that no receiver gets more data than

what it would get by following the protocol; DHTs and
Consider a communication protocol that two or morgireless relaying protocols could require that the ratio of
parties use in order to achieve a common goal. The hongstkets relayed and generated not change; and routing
participants execute the protocol correctly. The manipgrotocols could require that forwarding table pointers not
lators have complete freedom in what they choose to sefithnge. More generally, we could specify that important
(Ol' not Send) and when. Multlple manipulators may a|%tate variables for a protoco] not Change_
collude. We seek to determine if the protocol is gullible,
that is, the manipulators can prevent the honest partiéi- CHALLENGES AND TECHNIQUES
pants from achieving the goals of the protocol. We now describe the challenges in building a practical
We formalize this problem as a two-player game beool to test protocol gullibility and propose techniques to
tween A and D, the angelic and demoniccomponents. address these challenges.



4.1 Challenge: Practical Strategy Search ble values, which searching them independently yields a

The primary challenge that we face is that the spaf¥/Ch smaller space afx 2°2 = 2% values. We rely on
of possible demonic strategies is huge. There2A?e’ the user_to pr0\_/|de information about which fields should
possibilities for a 1500-byte packet that the manipulat§f considered independent of one another.
can send. Further, that is just the size of the search spadeonsider only limited-history strategies We expect
for a single message; complicated attacks may dependtoat many interesting attacks require the manipulator to
sending a particular sequence of packets. take only a small number of basic steps. The attack is then
We propose a variety of techniques to reduce the seaferied out by repeated application of this small sequence
space size. These techniques leverage the structureoinsteps. For instance, the ECN vulnerability mentioned
herent in network protocols as well as some propertiegrlier is a single-step strategy: the manipulator needs to
that are common across large classes of protocols. WHigNnd a specific bit pattern in order to get more bandwidth.
these search-space reduction techniques can potenti&ingrefore, our tool can bound the length of strategies that
cause our tool to miss some attacks, we believe that makhyyill consider to a small constant.
vulnerabilities of interest, including most of the ones de- Leverage program analysis techniques As men-
scribed in Section 2, can still be found. Systematicaltjoned above, we consider only syntactically correct pack-
discovering such vulnerabilities would be a significant inets, since other packets are typically ignored. However,
provement in the current state of art and is a first step torany syntactically correct packets may also be ignored
wards automatically discovering other kinds of attacks. by an honest participant. For instance, if IPv4 is the pro-
e Consider only the header part of the packet The tocol being checked, packets with anything but the value
control flow of most protocols is based on the contents 6f 4 in the version field are ignored. As another example,
the header and not on the payload. Hence, instead of cd&P senders ignore acknowledgments for sequence num-
sidering the entire packet, we focus on headers. Withirbars below the last acknowledged sequence number. We
packet, what is header versus payload depends on the pi@pose to identify the legal values of header fields using
tocol being tested. For instance, for IP everything othgfogram analysis of protocol source code; our search can
than the IP header constitutes the payload even thoubRn ignore other values for these fields.
that payload may contain TCP headers. This techniqueProgram analysis can also help direct the strategy search
enormously reduces the search space. If the header #igelf by identifying conditions under which an honest par-

is 40 bytes, for 1500-bytes packets, the single-step seafigipant’s state can change in ways that are beneficial to a
space goes from!2000 tg 2320, manipulator. For instance, program analysis of a TCP im-

« Consider only syntactically correct packets Protocol plem_entatlon can determine values of heaglgr fields in a
packets are not random bit strings but have specific f§ceived packet that cause the honest participant to send
mats. For instance, the checksum field occurs in a c8Ore bytes. We intend to allow the tool user to provide a
tain location and is computed over specific bits. Hors€t Of variables in the honest participants’ state, and pro-
est participants typically discard incoming packets th&fam ana]yss will direct the search to strategies thateaus
are not in the requisite format. Accordingly, rather thatfi€Se variables’ values to change.

searching the space of all bit patterns, we focus on pack{0r both types of analyses above, we hope to leverage
ets that comply with that format. The packet format caigcent work ordirected random testinfp], which com-

be provided by the user or automatically inferred [6] frorfin€ssymbolic executiofl.2] with program testing.

traces. While there may be some attacks that involve nop; . . "

compliant packets, these are very likely to be due to irrJr12 Challenge: Variable network conditions
plementation bugs, such as buffer overflows. We are notSome protocol vulnerabilities are exploitable only un-
interested in finding such bugs; other methods, such@a certain network conditions. For instance, the ECN
fuzzing [16, 8], are more apt for finding them. bit-flipping vulnerability comes to light only if the net-

« Exploit header-field independence To further reduce Work is congested and thus marks congestion bits in some
the search space, we assume that most header fieldsPagkets. If we simulate only uncongested paths, we will
independent of one another with respect to possible viiot be able to uncover this ECN vulnerability.

nerabilities. That is, most vulnerabilities can be discov- Therefore, for each strategy considered during strategy
ered through a systematic search within the possible va@arch, we must search the space of possible network path
ues for groups of fields, keeping the values of other fiel@ghaviors. We make the simplifying assumption that the
unchanged. For instance, for TCP one might assume tRaths between each pair of participants are independent
the sequence number and acknowledgment number figdf@ne another. We can then separately characterize each
are independent, allowing us to independently search ch path, for instance, by its loss rate and latency. The
fields for possible attacks. Since each field is 32 bitg¢havior of each path defines a space of network condi-
searching them together would yield a space®fpossi- tions, which our tool searches for each demonic strategy.



Type Description Default strategies

Fixed Fields that should not be modified None

Checksum| Fields that represent a checksum over certain bits in theédnea None
Enum Fields that take on specific bit patterns. E.g., Protocd fiellP header | Pick a value deterministically; pick one at random
SegNum | Fields that represent sequence numbers Subtract or add a constant value; multiply or dli-

vide by a constant value
Range Fields that take on a range of value. E.g., Addresses anchporbers Pick a value deterministically; pick one at randgm

Id Fields that contain identifiers. E.g., IP identifier in IP deg or node| Pick one at random
identifier in peer-to-peer protocols
Other All other fields User-specified

Table 1: Fields types and default strategies in our system.

4.3 Challenge: Determining when a strategy hasbe sent. Our function returns the modified packet and in-
been successful dicates whether it should be dropped.

As mentioned earlier, for complex properties, particu- e have not yet implemented packet insertions at arbi-
larly those related to resource allocation, a strategycs sirary times, the third action above. Our plan is to add a
cess cannot be determined simply by running the strate§j?€r to the protocol implementation. An arbitrary packet
instead we must compare against reference behavior wi8f be sent when this timer fires.
all participants are honest. However, two individual runs The protocol tester provides three required inputs and
of the protocol cannot be meaningfully compared directign€ optional input to our system:
due to the nondeterminism in the angelic component (e.g.1- Network configuration  This includes the num-
network conditions). For example, under a given netwoRer of participants, and the fraction of participants that a
condition of 20% loss rate, the behavior of TCP is ndtonest. If the protocol is asymmetric, such as TCP sender
unique but depends on which specific packets are lost. VS: receiver, the tester also specifies which aspect to test.

Therefore, to compare a manipulated protocol agaiﬁlg@is setup information is distinct from network path con-
reference behavior, we run each version of the protoc#fions (€.g., loss rate) for which we automatically explor
multiple times under a given network condition, obtaininf€ various possibilities. In the future we plan to automat-
a distribution for each over some set of metrics (e.g., nutg@lly generate and test a range of possible setups as well.
ber of messages sent in a given amount of time). We car?- Variables of interest  The tester specifies the prop-
then use statistical tests (e.g., the Kolmogorov-Smirn&ty to be tested indirectly by providing a set of variables
test or Student'¢-Tests) to determine if the two distriby-Of interest within the protocol implementation. The intent

lator can cause deviations in the values of these variables.
5. PROTOTYPE CHECKER If the implementation does not already have the necessary

variables, we expect the testers to implement them. For
To study the feasibility of automatically checking promstance, while the current congestion window is an ex-
tocols for gullibility, we are implementing a prototypesting state variable in a TCP implementation, total traffic
checker. Our current implementation uses all of the teclspt may not be, but it can be easily implemented.
niques described above except for program analysis. Furg_ protocol header format The format s specified in
_ther, rather than aski_ng the user for informati_on about _fieﬂgrms of the header fields and their types. The types that
independence, we simply assume that all fields are inggs currently use are listed in Table 1. This list is based
pendent of one another. Finally, we use network simulgn an informal survey of several common protocols and
tion to explore angelic nondeterminism. it may grow as we experiment with more protocols. For
Our system works directly with protocol implementagome of the types, e.gEnumandRange the format must
tions written in the Mace language for distributed SYSpecify the possible values of their fields.
tems [10]. We create the manipulators as modificationsg_ a packet modifier class  The packet modifica-
of an “honest” implementation of the protocol. At a highion operation produces a modified version of the input
level, the manipulator has three types of actions that coyf{cket. Each header field is modified independently, de-
the space of possible strategiesdrop packets that hon-pending on its type. The default modification strategies
est players would have sent;) modify the contents of are shown in Table 1. All default modification strategies
packets that honest players would have sentiandend are memoryless: they do not depend on what was sent be-
packets when honest players would not have senta packge. Users can optionally provide their own packet mod-
We have created a simple API for dropping and modfier class implementing our API, in order to specify their
fying packets, along with a default implementation of thgyyp, strategies for these and other field types.
API (a C++ class). Wherever the protocol source codegiven these inputs, we use the simulation engine pro-

calls the function to send a packet, we insert a call into o4ged by the MACE framework [11] to evaluate protocols.
API's nodi fy_or _dr op function, passing the packet to

4
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Figure 1: Results of using our prototype to check the gulliblity of the ECN protocol. Each graph corresponds to
a different cheating strategy by the receiver. Thez-axis indicates the fraction of packets on which the congeisin
bit was set. They-axis is the number of timer events to deliver 300 packets tdie receiver.

In each run of the simulator, we fix a particular set of netime needed to send a particular number of packets. Be-
work path conditions as well as a particular modificatiocause we do not explicitly simulate time, we cannot di-
strategy for each header field. The cross product of netctly measure throughput. Finally, we emulate different
work path conditions and possible modification strategiegtwork conditions by configuring different probabilities
thereby forms the state space that our engine exploresof setting the congestion bit.

For each pair of a set of network conditions and a mod- The graphs in Figure 1 show the protocol behavior as
ification strategy, we simulate the protocol multiple times function of the network conditions. They show this be-
We also simulate multiple runs of a completely honebfavior with both the honest receiver as well as with dif-
version of the protocol for each possible set of netwofkrent cheating strategies. The set of cheating strategies
conditions. If there are statistically significant diffaces in this case involve setting the congestion bit to 0, 1, or
in the values of variables of interest between the honeahdomly. We conduct 200 trials for each combination of
and manipulated runs for a given strategy and set of neteceiver strategy and network conditions, with each trial
work conditions, we deem the protocol to be gullible. simulating the sending of 300 packets. We show all data

points thus obtained, to demonstrate the variance with net-
6. CASE STUDY ECN work conditions.

We now present results from using the preliminary ver- The figure shows how our tool can automatically deter-
sion of our tool to test the ECN protocol. We chose tmine which strategies work and quantify their impact. It
start with ECN because of its simplicity. Nonetheless,shows that a misbehaving receiver can speed transfers by
study of even this simple protocol reveals many relevaalivays setting the bit to zero and it can slow transfers by
insights and provides initial evidence for the feasibibfy always setting the bit to one. Further, the misbehaving re-
automatic gullibility checking. ceiver can speed transfers even by setting the congestion

We implemented a version of the ECN protocol in thkit randomly.

Mace framework. Its header has only one field, of type The graphs show that the impact of a cheating strat-
Enum with 0 and 1 as the possible values. The field valagy is visible only under certain network conditions. For
is initially 0, and it is set to 1 by the network to indicaténstance, the impact of setting the congestion bit to zero
congestion. The sender starts by sending one packetltees not show until 40% of the packets have the conges-
the receiver. The receiver acknowledges each receitah bit set and that of setting the bit randomly does not
packet. The honest receiver's acknowledgment reflestsow until 60% of the packets have the congestion bit set.
the value of the congestion bit in the packet it received@his behavior points to the importance of simulating dif-
Dishonest receivers are free to do anything. In responsdéoent network conditions along with cheating strategies.
receiving an acknowledgment that does not indicate cdiithout simulating different network conditions, a gulli-
gestion, the receiver sends two new packets. If congestlality checker might incorrectly infer that certain strate
is indicated, the sender does not send any new data. In@iés are unsuccessful.

dition, the sender has a timer that fires periodically. If no

packet has been sent since the last firing, the sender sefids RELATED WORK

a new packet, to keep the information flow going. We are directly inspired by the recent success [7, 17,

We specify the network setup as having two nodes, o8&, 11] of systematic search techniques, as implemented
sender and one receiver, and we tell our tool to investigditg a model checker, in finding safety and liveness errors
manipulation by receivers. We also specify that protociml system implementations. This class of research focuses
behavior should be measured in terms of the numberaf scaling to large systems and on nondeterminism arising
timer events. This measure indirectly captures the tofabm the timing of various events in the system. The de-
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