
A General Framework for Compositional Network Modeling
Ryan Beckett

Microsoft Research
Ratul Mahajan

University of Washington, Intentionet

ABSTRACT
We advocate for an approach to network modeling and analysis
based on a common intermediate language. Unlike today, where
each tool builds a custom model and analysis engine for its target
network functionality, we argue that network functionality should
be expressed in a common language. This approach makes it eas-
ier to expand formal analysis to new functionality and analyze
interactions between dependent functionalities (e.g., routing and
packet filtering). We demonstrate the feasibility of this approach by
developing an intermediate language called Zen and three different
analyses for programs in that language. For representative data
plane and control plane functionalities, we find that Zen reduces
the modeling effort by an order of magnitude, while providing
analysis performance that matches custom tools.

CCS CONCEPTS
• Networks→ Network reliability; • Theory of computation→

Program verification; • Software and its engineering → Model
checking; Functional languages.

KEYWORDS
network verification, intermediate verification language
ACM Reference Format:
Ryan Beckett and Ratul Mahajan. 2020. A General Framework for Composi-
tional Network Modeling. In Proceedings of the 19th ACM Workshop on Hot
Topics in Networks (HotNets ’20), November 4–6, 2020, Virtual Event, USA.
ACM,NewYork, NY, USA, 8 pages. https://doi.org/10.1145/3422604.3425930

1 INTRODUCTION
As more devices and services connect to the Internet, computer
networks continue to increase in scale and complexity. Formal
modeling and analysis of network behavior has emerged as a key
approach to managing such complexity, by finding problems before
they cause an outage.

Researchers have developed systems andmodels to verify a range
of network functionalities such as packet filtering (access control
lists) [31], packet forwarding [22], routing [11], network address
translation, and other types of packet transformations [42]. This
development is also not limited to academia. Large cloud providers,
such as Alibaba [36], Amazon [2], andMicrosoft [20], are developing
and deploying network verification systems.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotNets ’20, November 4–6, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8145-1/20/11. . . $15.00
https://doi.org/10.1145/3422604.3425930

HSA
Stateless forwarding

Custom
model

Ternary
simulation

Custom
solver

Batfish
Distributed routing

Custom
model

Concrete
simulation

BDDs,
custom

Minesweeper
Distributed routing

Custom
model

Stable path
constraints

SMT
solver

Figure 1: Network verification today. Each tool has its own
model of target functionality and its own analysis approach.

Modeling
language

(Zen)Distributed
routing

Middleboxes

Encapsulation

Stateless
forwarding

Virtual Networks

Ternary
simulation

Concrete
simulation

Stable path
constraints

BDDs

SMT
solver

…

Datalog
Model

checking

Figure 2: Network verification with model composition.

However, as shown in Figure 1, each such tool today is a mono-
lith, with its own model of the target functionality and its own
analysis engine. The engine typically includes a front end that en-
codes the domain and a back-end solver that may be custom or
standard solvers such as an SMT solver or BDDs (binary decision
diagram). Any sharing between tools that exists is surface-level.
For instance, Minesweeper [3] and ARC [12] use Batfish [11] to
obtain a structured representation of network configuration files,
but then build their own models and their own analysis engines. If
Batfish is later extended to new functionality, these tools will not
support that functionality unless they are updated as well.

This state of affairs makes it hard to expand verification to new
network functionality because that expansion requires developing
the full pipeline from scratch, a significant endeavor. Consequently,
there is a substantial amount of network functionality that is not
covered by any tool today, from the link layer (e.g., multiple access
protocols) to the network layer (e.g., EIGRP routing protocol) to the
application layer (e.g., HTTP firewalls and URL-based forwarding).
The extent of unverified network functionality will only increase
as cloud network providers continue to roll out new features and as
engineers rapidly innovate atop programmable NICs and switches.

Making matters worse, it is not enough to have some tool to
verify each piece of network functionality in isolation because the
ultimate network behavior depends on the interactions of these
pieces. When an individual piece is verified, it assumes that the
pieces it depends upon are correct. If tools use disparate models,
such assumptions can go unchecked, and bugs can lurk at the
boundary of independently verified pieces.

We call for a compositional approach to network modeling and
analysis. Illustrated in Figure 2, here, network functionality is mod-
eled in a common language, and analysis engines target the lan-
guage instead of a specific network functionality. This approach
enables rapid expansion of verification to new functionality by sep-
arating concerns. Users need only encode domain-specific function-
ality in the modeling language, while authors of analysis engines
need only target the modeling language and not a particular do-
main. It also enables holistic analysis across functional pieces. One
can combine the models of multiple pieces to obtain a model of the
joint behavior that can then help uncover bugs at the boundaries.
These capabilities will put us on the path to fully verified networks,
where all critical functionalities and interactions can be verified.

Our approach is inspired by the software analysis domain. There
is a vibrant ecosystem around intermediate languages such as
LLVM [25] and Boogie [27] that can encode the semantics of pro-
grams in multiple other source languages. A variety of analysis and
optimization tools are available for these languages, which benefit
all source languages. Boogie also became the basis for writing prov-
ably correct programs [26] and full-system verification [18] where
each instruction was formally verified. Our intent is to similarly
accelerate innovation for network modeling and analysis.

The success of our proposal depends on designing the right
intermediate modeling language. It must be expressive enough
to encode diverse and complex network functionality, restricted
enough to permit efficient automated analysis, and simple enough
to reduce the burden of implementing analyses.

We present the preliminary design of such an expressive yet com-
pact modeling language called Zen. At its core, Zen is an expression-
oriented language with basic types including booleans, integers,
tuples, objects/structs, lists, and maps. To make it easier to both
encode network functionality and author analysis tools, we embed
Zen in the C# language. Users write functions that process Zen
objects as they would write any C# code. We then use reflection
to automatically analyze and translate objects into logic or a novel
state set abstraction that we have developed.

We built several analysis engines for Zen including a simulator,
bounded model checker, unbounded model checker, and test input
generator. We further encoded the functionality of a number of
network components such as route policies, IP GRE tunnels, and
ACLs, and compare their expressiveness and performance with
state-of-the-art tools. We find that Zen can often implement com-
plex functionality in an order of magnitude less code and that its
analysis is efficient.

2 MOTIVATION
To realize our vision of rapid development of network analyses,
we need an intermediate verification language (IVL) that is: (1)
compositional, and (2) general.
Objective #1: Compositional. Consider a setting where multiple
virtual networks, called overlays, run atop a shared physical net-
work, called the underlay. Such virtualized networks are the norm
in modern data centers because they provide isolation and easy
migration for overlays. Figure 3 shows one such network. Va and
Vb (virtual machines or containers) are overlay endpoints with a
(virtual) link between them, and the underlay has three nodes.

U1 U3U2

Va Vb

Encapsulation

Underlay traversal

Decapsulation

payload Va→Vb

payload Va→Vb U1→U3

payload Va→Vb

payload Va→Vb U1→U3

Figure 3: An example virtualized network with an illustra-
tion of how packets flow across it.

There are many ways to virtualize a network, but independent
of the technique used, overlay packets tend to be tunneled. So, as
shown in the figure, whenVa sends a packet toVb , this packet is en-
capsulated byU1 within another header withU3 as the destination.
Then, the packet reachesU3 via the underlay, and it is decapsulated
and passed toVb . The overlay and underlay have their own control
and data plane systems. That is, the overlay has its own routing,
forwarding, and packet filtering rules, and the underlay has its own
version, though the underlay processing may be based on overlay
headers as well. The two systems may be completely different, e.g.,
the overlay may use an SDN-style control plane and the underlay
may use distributed routing protocols.

When verifying a virtualized network, it is desirable to verify the
combined impact of overlay and underlay processing. Using today’s
approach, of building monolithic analysis tools that do not decouple
network behavior modeling from solvers, a virtualized networkmay
be verified using one of twoways. The first is to separately verify the
overlay and the underlay, using tools appropriate for each network
type. Here, overlay verification must assume that the underlay
provides perfect connectivity, and the underlay verification will be
agnostic to overlays that run atop it. The second method is to build
and validate the a combined model of the overlay and underlay.

Both methods are problematic. The first cannot find problems
that manifest when the two networks interact. For instance, the
underlay may have a buggy packet filter that drops some types
of overlay packets. This bug will not be found if we verify the
underlay and the overlay separately. The second method has high
engineering complexity, as it will have to model multiple types of
overlay and underlay combinations.

Both methods are also hard to evolve because the solvers are
intimately tied to the network model. Assume that a user intro-
duces new functionality into the overlay (which is easy because
developers can roll their own using a software update) or the un-
derlay (which is also easy given the advent of programmable NICs,
switches, and P4). Now, we will have to painstakingly update the
models as well as the solvers.

Contrast the current approach with a compositional modeling
approach. Here, the overlay and the underlay will be modeled
separately. Once that is done, a range of solvers become available to
verify the underlay and the overlay. It will also enable the creation
of different types of combined models, which can then be verified
using any available solver.

Our approach will find bugs at the intersection of the overlay
and the underlay and will find overlay-only and underlay-only
bugs faster. It will also be easier to evolve. Supporting new overlay

Analysis Rosette Kaplan Boogie NV Zen

HSA [22] ✗ ✗ ✗ ✓ ✓

AP [41, 42] ✗ ✗ ✗ ✗ ✓

Anteater [29] ✓ ✓ ✓ ✗ ✓

Minesweeper [3] ✓ ✓ ✓ ✓ ✓

Bonsai [4] ✗ ✗ ✗ ✗ ✓

Shapeshifter [5] ✗ ✗ ✗ ✓ ✓

Table 1: Whether different intermediate verification lan-
guages (IVLs) can express example network analyses.

functionality only requires changing the overlay model, and the
rest of the system stays as is.

While we considered virtualized networks above, the essential
characteristics we discussed are universal. The full network be-
havior is a result of the interaction between multiple pieces (e.g.,
BGP plus OSPF plus access control lists), different networks have
different combinations of these pieces, and existing pieces evolve
and new pieces appear constantly.
Objective #2: General. Our IVL must be able to express a wide
range of network analyses. This is where other IVLs for general-
purpose software such as Kaplan, Boogie, and Rosette [24, 27, 37]
fall short. They cannot express many verification analyses that
have been highly effective for networks. A key reason is that net-
work verification analyses often manipulate sets of objects (e.g.,
packets) whereas these IVLs work via compilation to logical con-
straints (which help find a counter example). There is a recent IVL
for networks, called NV [13]. It too cannot express a wide range of
analyses. Instead, NV bundles a few types of analyses, and modifi-
cations are needed to support more types. Table 1 shows examples
of network analyses and whether different IVLs can support them.
Zen achieves generality via i) a new state set abstraction for rea-
soning about sets of objects; and ii) its embedding as a library in a
general purpose language, which allows users to express analyses
by manipulating sets of objects using arbitrarily complex code.

3 MODELING NETWORKS WITH ZEN
We now describe how to model networks in Zen using the virtual
network example above and then demonstrate how to analyze such
models in the next section.
Encoding a domain. Assume that we want to build a data plane
model for a network with longest-prefix match based forwarding
and access control (ACLs) in both the overlay and underlay, and IP
GRE [17] for tunneling. This task can be split into two parts. We first
create ordinary classes in the host language (C#) that model objects
such as packets, forwarding tables, and GRE tunnels. Figure 4 shows
examples for IPv4 packets (line 1) and for packets with two headers,
an overlay header and an optional underlay header (line 9).

After defining the objects tomodel, we encode the domain seman-
tics by writing functions that process these objects. For example, to
encode packet forwarding, one might write the Forward function
(line 12) that takes three parameters. The first is the forwarding
table in which the entries are in descending order of prefix length.
The second is a Zen<Header>, which is an IP header. More generally,

1 public class Header {
2 public Ip DstIp;
3 public Ip SrcIp;
4
5 }
6

7 public class Packet {
8 public Header OverlayHeader;
9 public Option<Header> UnderlayHeader;
10 }
11

12 Zen<byte> Forward(FwdTbl t, Zen<Header> h, int i) {
13 if (i >= t.Rules.Length)
14 return 0; // null interface
15 var r = t.Rules[i];
16 return If(Matches(r, h), r.Port, Forward(h, i+1));
17 }
18

19 Zen<bool> Matches(FwdRule r, Zen<Header> h) {
20 var mask = 0xFFFFFFFF << (32 - r.Prefix.Length);
21 return (h.GetDstIp() & mask) == r.Prefix.Address;
22 }

Figure 4: Encoding packet forwarding in Zen

the wrapper type Zen<T> represents a value of type T that is handled
by the Zen library and can be either symbolic or concrete. The third
parameter is the line number to start matching from.

The function evaluates the header against the forwarding table
and returns a Zen<byte> representing the output port. It first checks
if the line number is beyond the last rule in the forwarding table.
If so, no rule applied to the header so it returns 0 (null interface).
Otherwise, it gets the current rule and makes a call through Zen to
either return the rule’s port number if the rule matches the header,
otherwise to continue on to rule i + 1. Note that the recursive call
takes place through C# and not the Zen library.

Matching the header against the rule is similarly implemented
as a simple function that checks if the header’s destination IP is
matched by the forwarding rule prefix. The library overloads oper-
ators such as == and & to work seamlessly over Zen values. We can
encode ACLs in a similar manner as forwarding tables since they
too are a list of prioritized rules.

A final step is to encode the semantics of tunneling, whose imple-
mentation is shown in Figure 5. There are two additional functions
to define the effect of encapsulating and decapsulating a packet
given a GRE tunnel. The first function Encap adds an underlay
header using the tunnel’s source and destination IP addresses while
copying over all other fields. The second function Decap simply
strips off the top header by replacing it with Null<Header>().
Composing network models. Composing models of network el-
ements with Zen is as simple as writing new functions that call
functions defined in earlier models. Suppose we want to model com-
bined (overlay and underlay) treatment of packets at a switch, ac-
counting for forwarding, ACLs, and tunneling. We might write the
functions in Figure 6. The two functions take a packet as input along
with an interface, and return a value of type Zen<Option<Packet>>

23 Zen<Packet> Encap(GreTunnel t, Zen<Packet> pkt) {
24 if (t == null) return pkt;
25 var oheader = pkt.OverlayHeader;
26 var uheader = Create<Header>(
27 Create<Ip>(t.SrcIp), Create<Ip>(t.DstIp),
28 oheader.GetDstPort(), oheader.GetSrcPort(),
29 oheader.GetProtocol());
30 return Create<Packet>(oheader, Some(uheader));
31 }
32

33 Zen<Packet> Decap(GreTunnel t, Zen<Packet> pkt) {
34 if (t == null) return pkt;
35 return Create<Packet>(
36 pkt.OverlayHeader, Null<Header>());
37 }

Figure 5: Encoding IP GRE tunnels in Zen

38 Zen<Option<Packet>> FwdIn(Intf i, Zen<Packet> p) {
39 var allow = Allow(i.AclIn, p);
40 var decap = Decap(i.GreEnd, p);
41 return If(allow, decap, Null<Packet>())
42 }
43

44 Zen<Option<Packet>> FwdOut(Intf i, Zen<Packet> p) {
45 var port = Forward(i.Device, p, 0);
46 var allow = Allow(i.AclOut, p);
47 var encap = Encap(i.GreStart, p);
48 var pktOut = If(allow, encap, Null<Packet>());
49 return If(port == i.Id, pktOut, Null<Packet>());
50 }

Figure 6: Modeling the combined (overlay and underlay)
treatment of packets being processed at a device.

as output, which is either null if the packet is dropped, or otherwise
a new (possibly modified) packet. The first function applies any
inbound policy including the ACL and decapsulation, while the
second applies outbound policy, including the forwarding table,
outbound acl, and any encapsulation.

4 ANALYZING MODELS WITH ZEN
Zen provides a number of ways to analyze network models.
Simulation. Since Zen models are executable–they are simply C#
code–simulations performed by tools like Batfish [11] are straight-
forward. In particular Zen allows users to pass concrete values of
type T to arguments expecting a value of type Zen<T>. For example,
to simulate what happens to a given packet entering the network at
a given interface, starting with that packet and interface as concrete
inputs, we will repeatedly call FwdIn and FwdOut functions until the
packet is dropped or exits the network (along all paths).
Finding (counter) example inputs.Many verification tasks are
based on finding an input that leads to an undesirable behavior. Zen
enables this primitive using its Find method. Suppose we wanted
to know if a flow will be delivered along a path. We can write a

51 Zen<Option<Packet>> Fwd(Intf[] path, Zen<Packet> p) {
52 Zen<Option<Packet>> x = Some(p);
53 for (int i = 0; i < path.Length; i++) {
54 var intfIn = path[i];
55 var intfOut = path[i + 1];
56 x = If(x.HasValue, FwdIn(intfIn, x.Value), x);
57 x = If(x.HasValue, FwdOut(intfOut, x.Value), x);
58 }
59 }

Figure 7: Modeling forwarding along a given path.

60 IEnumerable<PathSet>
61 HSA(Intf i, StateSet<Packet> set) {
62 var q = new Queue<PathSet>();
63 q.Enqueue(new PathSet(i, set));
64 while (!q.IsEmpty()) {
65 var path = q.Dequeue();
66 var intfIn = path.Current; // last interface
67 var tin = InboundTransformer(intfIn);
68 var inSet = tin.TransformForward(path.Set);
69 var forwarded = false;
70 foreach (var intfOut in intfIn.Device.Nbrs) {
71 var tout = OutboundTransformer(intfOut);
72 var outSet = tout.TransformForward(inSet);
73 if (outSet.IsEmpty()) continue;
74 forwarded = true;
75 q.Enqueue(path.Extend(intfOut, outSet));
76 }
77 if (!forwarded) yield return path;
78 } }

Figure 8: Implementing HSA using Transformers.

function such as the one in Figure 7 to capture how a flow traverses
a path through the network. Zen can then reason about it:
79 var f = Function(pkt => Fwd(path, pkt));
80 f.Find((pkt, result) => result.HasValue);

The first line creates a ZenFunction that the library can manipulate,
and the second line asks for a packet that is delivered along the
path. Packet delivery is indicated by checking that the result of f
should have a value. Under the covers, Zen can leverage various
forms of symbolic reasoning to find an example (if any) input.

To find if a packet can reach node A to B, along any path, we
can iterate over all possible paths between those two nodes. If
the execution of Find uses SMT-based reasoning, we would have
implemented a verifier akin to Anteater [29], though Zen is not
limited to just that reasoning method alone.
Computing with sets. Many network analyses reason about sets
of objects [4, 5, 22, 41] instead of finding examples. Zen enables
such reasoning via transformers that can manipulate large sets of
objects. For example, we can construct a transformer for the FwdOut
function for an interface i:
81 var f = Function(pkt => FwdOut(i, pkt).HasValue);
82 StateSetTransformer<Packet,bool> t = f.Transformer();

e ::= c | e1 < e2 | e1 + e2 | e1 - e2 | e1 * e2 | e1 & e2 | (e1 | e2) |

not e | e1 or e2 | e1 and e2 | create[τ](e, . . . ,e) |

e.f | e1[f:=e2] | if e1 then e2 else e3 | [] | e1::e2 |

case e1 of e2 e3 | adapt[τ1, τ2](e)
τ ::= bool | byte | short | ushort | int | uint | long | ulong

(τ1, τ2) | {f=τ1, . . . , f=τn} | List[τ] | Option[τ]

Figure 9: Zen abstract language syntax.

Once a user creates a transformer, Zen can automatically compute
the TransformForward set that represents the set of output objects
that correspond to the given input objects and TransformReverse
set that represents the set of input objects that correspond to the
given output objects. These capabilities enable users to build effi-
cient analyses without worrying about the implementation.

Figure 8 shows an implementation of HSA [22], which computes
sets of reachable packets from an interface along all paths. It uses
the inbound and outbound transformers for network interfaces
(built using FwdIn and FwdOut functions respectively; not shown in
the figure) and pushes packet sets through the network to explore
all paths. TransformForward computes the packet sets at each step.

5 LANGUAGE
The Zen language is designed to be as simple as possible without
a priori limiting what users can encode. At its core it is a simple
expression language, whose abstract syntax (e) is shown in Figure 9.
It supports most logical, arithmetic, and bitwise operations, as
well as ways to create objects, get and update their fields (e.f,
e1[f:=e2]), perform conditional logic (if), and add to (e1::e2)
and match on lists (case). The types supported by Zen are given by
τ . These include primitive types such as an unsigned 32-bit integer
(uint) as well as composite types such as tuples, objects, and lists.

To make Zen extensible, we include a special expression type:
adapt[τ1, τ2](e) that allows for implementing operations over
new types by converting them to types that Zen knows how to
handle. For instance, Zen currently implements dictionaries by
representing them as lists of tuples with the most recent elements
at the head of the list, and it implements options by representing
them as a class with flag and value fields.

6 IMPLEMENTATION
The Zen framework is implemented in over 15K lines of C# code and
available as open source software1. Zen currently supports several
backends. One is for bounded model checking that can use either
an SMT (via Z3 [8]) solver or a high-performance binary decision
diagram (BDD) solver. For the SMT backend, Zen encodes all primi-
tive operations using the theory of bitvectors before bitblasting [16]
the formulas to SAT. Another backend uses the transformer API to
perform unbounded model checking and also leverages the BDD
backend. Transform operations such as TransformForward are
implemented using standard pre/post image computation via exis-
tential quantification [7]. All the backends in Zen use the reflection
capabilities of C# to introspect the types of objects at runtime, and
thus build efficient symbolic representations.

1https://github.com/microsoft/zen

Variable ordering heuristics. For the BDD backend, Zen uses a
custom analysis, similar to alias analyses in traditional program-
ming languages, to find a strategy for ordering variables. BDDs can
often perform very well but are highly sensitive to the order of their
variables [33]. For example, when two variables are compared for
(in)equality, Zen ensures their orderings will be interleaved, as any
other ordering will result in an exponential memory blowup [1].
For instance, in the following function:
83 Function<(int,int),int,bool>((x,y) => x.Item2 == y)

the second component for x must be interleaved with y.
If Zen detects that different transformers have different variable

ordering requirements, it performs a second optimization whereby
it allocates a new set of unique variables for the second transformer
rather than reusing those for the first. Instead, it converts between
the sets of variables dynamically at runtime using a BDD substitu-
tion operation. When possible to efficiently order the variables, it
avoids this runtime conversion. Moving this translation to runtime
in many cases allows for implementing transformers that would
otherwise be impossible due to state space explosion.
Composite data structures. To implement complex data struc-
tures like lists, Zen uses a variable to represent the list length and
another collection of variables to represent the list elements for
different sized lengths. It then employs a type-driven merging op-
eration similar to that employed by Rosette [38]. The maximum list
length is controlled via an optional parameter to the Find function.

7 PRELIMINARY EVALUATION
We present results from preliminary experiments that show the
feasibility and promise of our language-based approach. They show
that expressing a range of network functionality is easy and the
performance overhead of a general solver that is not functionality
specific is acceptable.
Expressiveness. To demonstrate Zen’s expressiveness, we write
implementations for several networking components such as router
ACLs and longest-prefix-based forwarding, as well as control plane
route policies offered from commercial vendors and more. For each
implementation, we report on the number of lines of code required
to model the component using Zen. Table 2 shows the results. In
general, we find that the implementations are straightforward and
easy to express. Moreover, they compare favorably with existing
implementations. For example, Minesweeper [3] implements a sim-
ilar conversion of route-maps to SMT using 1K lines of code, and
Bonsai [4] implements a similar conversion with BDDs using over
1K lines. We do note that our implementation is not 1:1 feature
compatible with Minesweeper: we implement certain features such
as the full AS path, which Minesweeper does not, and do not imple-
ment certain features such as OSPF areas that Minesweeper does.
However, the Zen encoding gives both a BDD and SMT backend in
the same 75 lines of code.
Performance. We evaluate Zen’s performance on two verification
tasks. The first is the time to verify an ACL (a data plane analysis),
and the second is the time to verify a route map (a control plane
analysis). In both cases, the verifier’s task is to find inputs (data
packets or routingmessages) that match the last line, which requires
analyzing the complete ACL or route map. We generated ACLs and

Network Component Zen Lines Existing systems

Access Control Lists 28 >500 [11]
LPM-based Forwarding 18 >900 [22]
Route Map Filters 75 >1000 [3, 4]
IP GRE tunnels 21

Table 2: Lines of code to express common network function-
alities in Zen. The third column shows lines of code for en-
coding similar functionality in current tools.

0 5000 10000 15000
Number of ACL lines

0
500

1000
1500
2000
2500

Ti
m

e
(m

s)

Zen BDD
Zen SMT
Batfish

20 40 60 80 100
Number of route map lines

0
250
500
750

1000
1250
1500

Ti
m

e
(m

s)

Zen BDD
Zen SMT

Figure 10: Zen microbenchmarks for random ACLs and
route maps with line tracking and different solvers.

route maps of different sizes randomly, and we ran both BDD and
SMT backends. For the ACL analysis, we also ran Batfish, which
performs the same analysis using a hand-optimized, BDD-based
encoding. Batfish currently does not support verification of route
maps. All experiments were performed on a 8-core Intel i7 machine
with 16GB of RAM, and each data point in the graphs is the mean
value across 100 runs.

Figure 10 shows the results. For the ACL analysis, we see that
Zen’s BDD backend is more efficient than the SMT backend.We also
see that this backend performs comparably to the hand-optimized
Batfish implementation despite having its encoding generated au-
tomatically. Thus, general solvers have the potential to match the
performance of custom ones.

For the route map analysis, unlike ACL analysis, we see that the
SMT backend performs better than the BDD backend. In general,
we have found the SMT backend better for reasoning about data
structures such as lists. These results show the value of having
access to multiple backends, so users can pick the one that is best
for their domain and network. This goal would be almost impossible
to achieve with custom encodings as one would have to develop
multiple different backends for each functionality.

8 BEYOND MODEL ANALYSIS
While our initial focus with Zen is analyzing network models, it has
other important use cases. We briefly discuss two such use cases
which we have already prototyped.
Testing implementations. Zen models can become the basis for
testing the implementations that they model. Given a Zen function
f, f.GenerateInputs() produces test inputs with a high-degree of
coverage based on symbolic execution [14]. We can test that these
inputs are handled by the implementation as expected. For instance,
if we have a model for an ACL, we can generate test packets that
match on every single rule in the ACL, and then validate that the

implementation processes each packet as expected. This model-
based testing approach has been successfully used before [30, 39].
Zen enables a more modular and systematic way to expand such
testing to a broad set of network functionalities.
Synthesizing implementations. Zen models are executable, al-
lowing us to directly generate implementations from them. We
can compile any Zen function to a real implementation by simply
writing: f.Compile(). This instructs Zen to generate C# IL instruc-
tions, using the System.Reflection.Emit API, which will then
be just-in-time compiled to assembly at runtime. The resulting im-
plementation runs efficiently. An implementation extracted in this
manner will be in sync with the verified model. This property then
becomes the foundation for networks whose implementations are
provably correct (modulo compiler bugs).

9 RELATEDWORK
Zen builds on two prior threads of research:
Network verification. There has been a long line of research
on network verification. These works differ in terms of verifi-
cation algorithms used as well as the network functionality tar-
geted: stateless dataplanes [19, 21–23, 29, 40, 41], stateful dataplanes
(e.g., middleboxes) [32, 43], programmable dataplanes (e.g., Click,
P4) [9, 28, 35], distributed routing protocols (e.g., BGP, OSPF) [3–
5, 10–12], and centralized control planes [6, 15]. While different
domains come with their own challenges, they commonly employ
translations to standard verification technologies. Zen aims to ab-
stract away this translation. Even tools that use non-standard or
domain-optimized solvers (e.g., HSA [22]) can incorporate such
solvers as new backends in Zen, allowing for many models to reap
their benefits. Beyond simplifying tool development, Zen also al-
lows for easy composition of network models which is challenging
or impossible when different tools are implemented using disparate
technologies and APIs.
Intermediate verification languages. Zen draws on prior work
on IVLs [24, 27, 34, 37] that aim to simplify verification tasks. It
shares many common technologies with these languages. For exam-
ple, its bounded model checker uses a type-aware merging strategy
pioneered by Rosette [37]. However, as shown in Table 1, prior IVLs
cannot express many common network analyses. To address this
limitation, Zen introduces a new state set abstraction that allows
for directly manipulating sets of values in user code.

Zen shares the linguistic modeling approach of NV [13]. While
NV provides high level abstractions for encoding certain network
functionalities (e.g., distributed routing) and analyses, Zen’s abstrac-
tions are lower-level and more general. Consequently, it can be used
to model a wide range of network functionalities and analyses.

10 CONCLUSION
Verification tools today are implemented as monoliths, mixing to-
gether domain semantics, analysis engines and solver technologies.
We argue for a compositional approach to network modeling and
analysis based on a common intermediate language for expressing
domain functionality. This approach can enable rapid construction,
composition, and verification of domain-specific models for new
network functionality and pave the way for fully-verified networks.

REFERENCES
[1] A. Aziz, S. Taşiran, and R. K. Brayton. Bdd variable ordering for interacting finite

state machines. In Proceedings of the 31st Annual Design Automation Conference,
DAC ’94, page 283–288, New York, NY, USA, 1994. Association for Computing
Machinery.

[2] J. Backes, S. Bayless, B. Cook, C. Dodge, A. Gacek, A. J. Hu, T. Kahsai, B. Ko-
cik, E. Kotelnikov, J. Kukovec, S. McLaughlin, J. Reed, N. Rungta, J. Sizemore,
M. Stalzer, P. Srinivasan, P. Subotić, C. Varming, and B. Whaley. Reachability
analysis for aws-based networks. In I. Dillig and S. Tasiran, editors, Computer
Aided Verification, pages 231–241, Cham, 2019. Springer International Publishing.

[3] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach to network
configuration verification. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, pages 155–168, New York,
NY, USA, 2017. ACM.

[4] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. Control plane compression. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’18, page 476–489, New York, NY, USA, 2018. Association
for Computing Machinery.

[5] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. Abstract interpretation of dis-
tributed network control planes. Proc. ACM Program. Lang., 4(POPL), December
2019.

[6] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford. A NICE way to
test openflow applications. In Presented as part of the 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12), pages 127–140, San
Jose, CA, 2012. USENIX.

[7] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Handbook of Model Checking.
Springer Publishing Company, Incorporated, 1st edition, 2018.

[8] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08,
page 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[9] M. Dobrescu and K. Argyraki. Software dataplane verification. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14), pages
101–114, Seattle, WA, 2014. USENIX Association.

[10] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and G. Varghese.
Efficient network reachability analysis using a succinct control plane representa-
tion. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 217–232, Savannah, GA, November 2016. USENIX Association.

[11] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan,
and T. Millstein. A general approach to network configuration analysis. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15),
pages 469–483, Oakland, CA, May 2015. USENIX Association.

[12] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast control
plane analysis using an abstract representation. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, pages 300–313, New York, NY, USA, 2016.
ACM.

[13] N. Giannarakis, D. Loehr, R. Beckett, and D.Walker. Nv: An intermediate language
for verification of network control planes. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2020,
page 958–973, New York, NY, USA, 2020. Association for Computing Machinery.

[14] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random testing.
PLDI ’05, page 213–223, New York, NY, USA, 2005. Association for Computing
Machinery.

[15] A. B. M. Gomes, F. A. M. Alves, R. S. Ferreira, and J. A. M. Nacif. Vericonn: a tool
to generate efficient interconnection networks for post-silicon debug. In 2015
16th Latin-American Test Symposium (LATS), pages 1–6, March 2015.

[16] L. Hadarean, K. Bansal, D. Jovanović, C. Barrett, and C. Tinelli. A tale of two
solvers: Eager and lazy approaches to bit-vectors. pages 680–695, 07 2014.

[17] S. Hanks, T. Li, D. Farinacci, and P. Traina. Generic Routing Encapsulation over
IPv4 networks, 1994 (accessed June, 2020).

[18] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts, S. Setty,
and B. Zill. Ironfleet: Proving practical distributed systems correct. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP ’15, page 1–17, New
York, NY, USA, 2015. Association for Computing Machinery.

[19] A. Horn, A. Kheradmand, and M. Prasad. Delta-net: Real-time network verifi-
cation using atoms. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 735–749, Boston, MA, March 2017. USENIX
Association.

[20] K. Jayaraman, N. Bjørner, J. Padhye, A. Agrawal, A. Bhargava, P.-A. C. Bisson-
nette, S. Foster, A. Helwer, M. Kasten, I. Lee, A. Namdhari, H. Niaz, A. Parkhi,
H. Pinnamraju, A. Power, N. M. Raje, and P. Sharma. Validating datacenters
at scale. In Proceedings of the ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’19, page 200–213, New York, NY, USA, 2019. Association for
Computing Machinery.

[21] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte. Real
time network policy checking using header space analysis. In Presented as part
of the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13), pages 99–111, Lombard, IL, 2013. USENIX.

[22] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static
checking for networks. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12, pages 9–9, Berkeley, CA, USA, 2012.
USENIX Association.

[23] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow: Verifying
network-wide invariants in real time. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13), pages
15–27, Lombard, IL, 2013. USENIX.

[24] A. S. Köksal, V. Kuncak, and P. Suter. Constraints as control. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’12, page 151–164, New York, NY, USA, 2012. Association for
Computing Machinery.

[25] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program
analysis and transformation. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimization,
CGO ’04, page 75, USA, 2004. IEEE Computer Society.

[26] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.
In Proceedings of the 16th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, LPAR’10, page 348–370, Berlin, Heidelberg,
2010. Springer-Verlag.

[27] K. R. M. Leino and P. Rümmer. A polymorphic intermediate verification language:
Design and logical encoding. In J. Esparza and R. Majumdar, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 312–327, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[28] J. Liu,W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H.Wang, C. Caşcaval,
N. McKeown, and N. Foster. P4v: Practical verification for programmable data
planes. In Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, pages 490–503, New York, NY, USA, 2018.
ACM.

[29] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King. De-
bugging the data plane with anteater. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, pages 290–301, New York, NY, USA, 2011. ACM.

[30] K. L. McMillan and L. D. Zuck. Formal specification and testing of quic. In Proceed-
ings of the ACM Special Interest Group on Data Communication, SIGCOMM ’19,
page 227–240, New York, NY, USA, 2019. Association for Computing Machinery.

[31] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi. The
margrave tool for firewall analysis. In Proceedings of the 24th International
Conference on Large Installation System Administration, LISA’10, page 1–8, USA,
2010. USENIX Association.

[32] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker. Verifying reachability in
networks withmutable datapaths. In Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation, NSDI’17, pages 699–718, Berkeley,
CA, USA, 2017. USENIX Association.

[33] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In
Proceedings of the 1993 IEEE/ACM International Conference on Computer-Aided
Design, ICCAD ’93, page 42–47, Washington, DC, USA, 1993. IEEE Computer
Society Press.

[34] S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V. Marianiello, J. G. Edenhofner,
M. B. Dwyer, and M. S. Rogers. Civl: the concurrency intermediate verifica-
tion language. In SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–12, 2015.

[35] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu. Debugging
p4 programs with vera. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, pages 518–532, New York,
NY, USA, 2018. ACM.

[36] B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu, Z. Ji, Y. Sang,
M. Zhang, D. Yu, C. Tian, H. Zheng, and B. Y. Zhao. Safely and automatically
updating in-network acl configurations with intent language. In Proceedings of
the ACM Special Interest Group on Data Communication, SIGCOMM ’19, page
214–226, New York, NY, USA, 2019. Association for Computing Machinery.

[37] E. Torlak and R. Bodik. Growing solver-aided languages with rosette. In Proceed-
ings of the 2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, Onward! 2013, page 135–152, New York,
NY, USA, 2013. Association for Computing Machinery.

[38] E. Torlak and R. Bodik. A lightweight symbolic virtual machine for solver-
aided host languages. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, page 530–541, New
York, NY, USA, 2014. Association for Computing Machinery.

[39] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[40] G. G. Xie, Jibin Zhan, D. A. Maltz, Hui Zhang, A. Greenberg, G. Hjalmtysson, and
J. Rexford. On static reachability analysis of ip networks. In Proceedings IEEE
24th Annual Joint Conference of the IEEE Computer and Communications Societies.,
volume 3, pages 2170–2183 vol. 3, March 2005.

[41] H. Yang and S. S. Lam. Real-time verification of network properties using atomic
predicates. IEEE/ACM Trans. Netw., 24(2):887–900, April 2016.

[42] H. Yang and S. S. Lam. Scalable verification of networks with packet transformers
using atomic predicates. IEEE/ACM Transactions on Networking, 25(5):2900–2915,

2017.
[43] Y. Yuan, S.-J. Moon, S. Uppal, L. Jia, and V. Sekar. Netsmc: A custom symbolic

model checker for stateful network verification. In 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 20), pages 181–200, Santa
Clara, CA, February 2020. USENIX Association.

