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Abstract. Network Verification is emerging as a critical enabler to man-
age large complex networks. In order to scale to data-center networks
found in Microsoft Azure we developed a new data structure called ddNF,
disjoint difference Normal Form, that serves as an efficient container for
a small set of equivalence classes over header spaces. Our experiments
show that ddNFs outperform representations proposed in previous work,
in particular representations based on BDDs, and is especially suited for
incremental verification. The advantage is observed empirically; in the
worst case ddNFs are exponentially inferior than using BDDs to repre-
sent equivalence classes. We analyze main characteristics of ddNFs to
explain the advantages we are observing.

1 Introduction

Just as design rule checkers statically verify hardware circuits and type checkers
flag type violations in a program before execution, the emerging field of network
verification seeks to proactively catch network bugs before they occur in practice
by reading router tables and configuration files and checking for properties such
as reachability, isolation, and loops. When compared to hardware design au-
tomation and software analysis, formal tooling around networks, is at an infant
state. Networks are commonly managed using tools developed by network ven-
dors using proprietary formats. Bare bones network tools, such as traceroute,
may be the only and best option for debugging networks. Modern large scale
public cloud services crave more powerful tools, including static analysis tools
that can answer reachability properties in large networks.

This challenge has been recognized relatively recently: The seminal work of
Xie [16] focused on reachability in IP networks and Anteater [10] provided a
more abstract framework using a SAT solver to compute reachability bugs, and
Header Space Analysis (HSA) [7] used a compact representation to compute
all reachable headers. Later, Veriflow [8] and NetPlumber [6] found a way to do
faster, incremental verification, and Network Optimized Datalog [9] implemented
efficient header space verification in an expressive Datalog framework, thereby
allowing higher level properties called beliefs [9] to be expressed. Properties
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verified include more complex path predicates (e.g., traffic between two hosts
flows through a middlebox) and differential reachability (e.g., is reachability
same in all load balanced paths).

Yang and Lam [17] made a crucial observation that most headers are treated
the same when analyzing any given network. It is therefore much more efficient
to find the relatively small set of equivalence classes of headers and then per-
form reachability queries based on these classes instead of integrating header
computation while checking reachability. Yang and Lam base their equivalence
class computation on BDDs, which succinctly represent sets of headers. Each
equivalence class is a BDD (covering a disjoint set). Whenever inserting a new
set, their algorithm requires examining all previous sets and performing BDD
operations. While elegant and easy to implement, the overall quadratic number
of BDD calls and the fact that BDDs require an overhead per bit struck us as
an over fit for the networking domain.

In this paper we introduce the ddNF (disjoint difference Normal Form) data-
structure and algorithms that handles the partition of headers in a particularly
efficient way. In essence, our new ddNF data structure pre-computes a com-
pressed representation of the relevant header spaces instead of the “run-time”
compression employed by say HSA [7] while answering reachability queries. This
transformation turns large graphs into small tractable sizes for quantitative anal-
yses and allows faster incremental verification than the BDD based approach
used in [17].

2 An overview of ddNFs

We first provide a quick overview of ddNFs. Consider a very tiny network as
an example with 3 data centers A, B, and C in Fig. 1. Assume that the set of
prefixes represented by B is 0? and the set of prefixes of C is 1?. There are two
routers: the leftmost router forwards every packet to its rightmost port p1, and
the rightmost router splits traffic to B and C via the ports p2 and p3 respectively.

To compute the reachability from data center A, regular header space meth-
ods such as HSA [7] will start with the wild-card expression ?? (which represents
all packets with two bits) which flows to the second router. This set of packets
”splits” into two pieces. The first piece is the packets representing 1? which flow
down to C. The upper piece is the set of packets covered by the rule ?. But
since the router does longest match semantics, this rule only applies to packets
that do not match 1?, in other words to ?? − 1?. While this is indeed 0? in
this simple example, Header Space methods [7] keep headers in this difference of
cubes representation and (to avoid state explosion) only lazily extract solutions
when a symbolic packet reaches a destination.

While lazy differencing keeps the size of the header space representation
manageable, it does require an intersection of an incoming header space with
each set of matching rules at a router, an expensive operation that grows with
the number of bits in each header and the number of matching rules. Yang and
Lam [17] suggest a different technique that we refer to as pre-computed compres-
sion that has some analogies with first computing labels for each set of headers
as in MPLS [13]. The idea (shown at the bottom of Fig. 1 is to rewrite each



header expression in a matching rule as a union of disjoint header expressions
(called ”atomic predicates” in [17]) which are then replaced by integers.
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Fig. 1: Run-time vs. pre-computed Header Space Compression

For example, ?? is the union of 1? and 0?, which we represent by the integers
2 and 3 respectively (we avoided integer 1 to avoid confusion with the bit value
1) and the forwarding table is rewritten as shown. Now the same process is used
to compute reachability, but this time we use lists of integers instead of wild-
card matching and intersection. While it is unclear that this method works for
all reachability queries, it does work very fast for basic reachability, yielding 1-2
orders of speedup compared to even the fastest run-time methods [7].

Yang and Lam [17] calculate the pre-computed set of forward equivalence
classes (atomic predicates on headers) using BDDs. We use a dedicated data
structure called a ddNF that we found experimentally outperforms BDDs on our
benchmarks. Similar to BDDs, ddNFs are also generalized tries, but in contrast
to BDDs that branch on one bit at a time, ddNFs branch based on a subsumption
relation between entire wild-card expressions. Our approach comes with another
twist: the ddNF data-structure simply indexes a partition all wild-card expres-
sions and does not rely on aggregating these expressions for output ports as
in [17].

3 Firewalls, Routers and Ternary Bit-vectors

We model an IP router as a set of rules. Firewalls are modeled as special routers
that route packets either onward or to a sink that drops packets.



Each router contains a forwarding table that describes how IP packets are
forwarded to another router or end-point. For example, Fig. 2 shows a snippet
of a forwarding table from an Arista network switch: It says that by default

1 0.0.0.0/0 via 100.91.176.0, n1

2 via 100.91.176.2, n2

3

4 10.91.114.0/25 via 100.91.176.125, n3

5 via 100.91.176.127, n4

6 via 100.91.176.129, n5

7 via 100.91.176.131, n6

8 10.91.114.128/25 via 100.91.176.125, n3

9 via 100.91.176.131, n6

10 via 100.91.176.133, n7

11 ...

Fig. 2: A forwarding table snippet.

addresses are routed to either neighbor n1 (with address 100.91.176.0) or to n2,
unless the destination address matches one of the rules below. For example, if
the first 25 bits of the address match the same 25 bits of 10.91.114.0, then the
packet is forwarded to either n3, n4, n5 or n6.

Ternary bit-vectors (TBVs)4 succinctly encode matching conditions using 1,
0 and ? (the latter denoting “don’t care”). A TBV models a range of IP ad-
dresses by concatenating the bytes corresponding to each integer separated by
dots, and then adding don’t-cares for the last 32−n bits if the prefix is of the form
A/n. Thus, 10.91.114.0/25 corresponds to the TBV 00001010 01011011 01110010
0??????? and 10.91.114.128/25 corresponds to the TBV 00001010 01011011
01110010 1???????; note that these TBVs are incompatible in that there is a
bit position where one has a 1 while the other has a 0. We use tbv , tbv1, . . . to
denote ternary bit-vectors in {1, 0, ?}k of the same fixed length k. For example
10??00 is a TBV of length k = 6.

Ternary bit-vectors denote a set of (concrete) bit-vectors. For example 10??00
denotes the set {100000, 100100, 101000, 101100}. We use ternary bit-vectors and
the sets they denote interchangeably. For example, we write 1 ? 0 ⊂ ??0.

Definition 1 (Routers). A router, R, is an ordered list of rules ρ1, ρ2, ρ3, . . . , ρn
where ρj = 〈tbv j , pj〉 is a pair comprising a ternary bit-vector tbv j and an output
port pj. The rules have the following semantics: a packet header h, which is a
bit-vector, matches rule ρj = 〈tbv j , pj〉 (and is forwarded to ports pj) if each of
the vectors tbv1, . . . , tbv j−1 contain a conflicting bit (a 0 where h has a 1, or
vice versa), whereas tbv j has no such conflicting bit.

The matching condition for rule ρj = 〈tbv j , pj〉 is the Boolean function represent-
ing the set of bit-vectors tbv j\{tbv1, tbv2, . . . , tbv j−1}. We denote this Boolean

4 Also called “cubes” in the VLSI CAD literature.



function by MC j . Note that our definition of a router does not let the router
rewrite headers.

We note that router matching conditions have a special syntactic form, which
we formally define below.

Definition 2 (Difference of Cubes). A difference of cubes (DOC) is an ex-
pression of the form tbv\{tbv1, tbv2, . . . , tbvm} for ternary bit-vectors tbv , tbv1,
tbv2, . . . , tbvm.

For example, the DOC 1??\{110, 101} encodes the set {111, 100}.
A network consists of a set of connected routers. That is, a network, Nw, is

a set of routers {R1,R2, . . . ,Rn} along with, for each router Ri, a map Li from
output ports of Ri to adjacent (“next hop”) routers. In real networks, routers
send traffic to non-routers that are end-points of traffic flow. It is a bit simpler,
though, to pretend that end-points are routers that either have no incoming or
no outgoing links.

A predicate is a Boolean function over the header bits. We adapt the definition
of atomic predicate from Yang and Lam [17] as below.

Definition 3 (Atomic Predicates). Given a network, a set of predicates P1,
. . . , Pn are atomic if they are mutually disjoint, their union is equivalent to true,
and in a given network Nw, every matching condition in any router rule for is
equivalent to a union of predicates from {P1, . . . , Pn}.

Note that for every set of routers there is a coarsest set of atomic predicates.

4 Pre-computed Compression via ddNFs

We wish to perform pre-computed compression by rewriting each router rule (as
in [17]) using a set of integers that represent the disjoint matching conditions
in order to speed up reachability checking. Instead of using BDDs to enumerate
mutually disjoint matching conditions, we propose a new data structure called
a ddNF that we show is more efficient for the networking domain.

As recognized in Veriflow [8] and NetPlumber [6] efficiency is important to
enable real-time incremental analysis as router rule changes occur at high speed
(for instance, to accommodate rapid virtual machine migration). For these envi-
ronments, ddNFs reduce the phase of creating disjoint matching conditions from
tens of seconds to a few milliseconds. Further, if rules change, but reuse exist-
ing prefixes (for example, a route change), then the ddNF requires no updates.
However, in [17] because rules are aggregated on ports before computing disjoint
reasons, a routing change that switches a prefixes to a new port can cause label
changes.

4.1 Representing Disjoint Sets of Bit-vectors as ddNFs

Given a set of routers and rules from each router, we seek to enumerate all
overlapping segments, such that each rule can be written as a set of mutually
disjoint matching conditions potentially shared with other rules. For example,



if one rule matches on 10?? and a different rule matches on 1?0?, then the
first set is decomposed into two disjoint sets: 100?, 10??\{100?}, and the second
set is decomposed into 100?, 1?0?\{100?}. The three sets are mutually disjoint.
Any member of the set 100? (the members are 1001, 1000) matches both rules,
whereas members of 1?0?\{100?} (the members are 1101, 1100) match only the
second rule.

The disjoint decomposed normal form, ddNF, data structure is used to create
and maintain a disjoint decomposition from DOCs. Recall that DOCs such as
100?, 1?0?\{100?} are differences of (sets of) ternary bit vectors.

Definition 4 (ddNF). A ddNF is a directed acyclic graph (DAG) data struc-
ture, represented as a four-tuple

〈N , E, `, root〉

where N is a set of nodes, E ⊆ N × N are edges, and ` is a labeling function
mapping every node to a ternary bit-vector, and root ∈ N is a designated root
node such that all nodes are reachable from it and `(root) = ????︸︷︷︸

k

. In addition,

the ddNF data structure must satisfy the following properties:

• Whenever E(n,m) for two nodes n,m ∈ N , then `(m) ⊂ `(n).
• Conversely, if n,m ∈ N and `(m) ⊂ `(n), then either E(n,m) or there is a

node, m′ ∈ N , such that `(m) ⊂ `(m′) ⊂ `(n).
• No two nodes are labeled by the same ternary bit-vector.
• The range of ` (i.e., the set of ternary bit-vectors labeling all nodes in N ) is

closed under intersection.
ut

Figure 3 shows an example ddNF.

???

1?? ?1?

11?

Fig. 3: Example ddNF. The root (top most node) denotes the DOC ???\{1??, ?1?}, the
left-most node 1??\{11?}, right-most node ?1?\{11?}, and the bottom node denotes
11?.

The conditions for a ddNF ensure that the data structure is canonical up to
isomorphism. Thus, we have

Proposition 1 (ddNFs are unique up to isomorphism). Given a set S
of ternary bit-vectors closed under intersection and containing the ternary bit-
vector comprising of all ? there is a unique ddNF labeled by S.



Proof Sketch: Take the bit-vectors from S, then create the root node from the
all-? bit-vector and for each of the other TBVs create an associated node. Two
nodes are connected if their labels are strict subsets and there is no intermediary
node labeled by a TBV that is subset-wise between them. ut

We can reconstruct a DOC from a ddNF node n in the following way:

doc(n) = `(n)\{`(m) | m ∈ children(n)}

In this way, each node represents a set disjoint from all other nodes. Conversely,
we can retrieve the set of nodes that denote a difference of cube
tbv0\{tbv1, . . . , tbvm} expression by taking

DC(n0) \ (DC(n1) ∪ . . . ∪DC(nm))

assuming the ddNF has nodes labeled `(n0) = tbv0, . . . , `(nm) = tbvm, and the
downward closure DC(n) is defined recursively as

DC(n) = {n} ∪
⋃
{DC(m) | m ∈ N , (n,m) ∈ E}

Note that not all nodes are necessarily representing non-empty sets. This is
the case when the set of TBVs labeling children covers the TBV of the par-
ent. Checking non-emptiness of a node amounts to checking satisfiability of the
formula

fml(tbv) ∧
∧
i

¬fml(tbv i)

where

fml(tbv) =
∧

i|tbv [i]=1

pi ∧
∧

i|tbv [i]=0

¬pi

It is however often easy to quickly determine non-emptiness in a greedy way by
creating a sample bit-vector that is contained in the positive component, but
different from negative components by swapping the first bit where the positive
has a ? and the negative has a non-? value.

4.2 Inserting into and using ddNFs

We will now describe how to update and query the ddNF data structure de-
scribed in the previous section. The main operation is insertion of ternary bit-
vectors. Insertion of a ternary bit-vector t can be described as follows: First
of all, we insert a node n labeled by new ternary bit-vector t above the nodes
closest to the root node that are strict subsets of t. In these positions, the new
node n inherits the parents the less general node. Second, if t has a non-empty
intersection with a node n′, that is neither a subset or a super-set of t, then we
have to create a node corresponding to `(n′)∩ t and insert this to the ddNF and
ensure that t is inserted above this new node. Algorithm 1 shows pseudo-code
that implements the informally described insertion algorithm. Fig. 4 and 5 show
two main uses of the algorithm.

The effect of inserting ternary bit-vectors into a ddNF is characterized by
the following proposition:



Algorithm 1: Insert(n,r): Insertion of node n labeled by ternary bit-vector
t under a ddNF node r
Input: n - node labeled by ternary bit-vector t
Input: r - node in ddNF
Output: a node in the ddNF labeled by t

1 if `(r) = t then
2 return r;
3 end if
4 inserted ← ⊥;
5 foreach (r, child) ∈ E do
6 if t ⊆ `(child) then
7 inserted ← >;
8 n← Insert(n, child);

9 end if

10 end foreach
11 if inserted then
12 return n;
13 end if
14 foreach (r, child) ∈ E do
15 if `(child) ⊂ t then
16 E ← {(n, child)} ∪ E \ {(r, child)}
17 end if

18 end foreach
19 E ← E ∪ {(r, n)};
20 foreach (r, child) ∈ E, t′ = `(child) do
21 if t 6⊆ t′ ∧ t ∩ t′ 6= ∅ then
22 m← fresh node labeled by t ∩ t′;
23 Insert(m, r); // Ensure child and n share m as common descendant

24 end if

25 end foreach
26 return n

insert(n : ?10, r : ???)

n1 : ?1? n2 : ??0 n3 : ?01

r : ???

insert(n : ?10, n1 : ?1?) insert(n : ?10, n2 : ??0) n3 : ?01

r : ???

n1 : ?1? n2 : ??0 n3 : ?01

n : ?10

Fig. 4: Insertion below children. In the top left we insert node n labeled by ?10 into a
root r, which is labeled by ???. Both nodes n1 and n2 generalize n, while n3 is disjoint
from n. Insertion therefore proceeds as in the bottom of the figure by recursively
inserting n into n1 and n2. After insertion completes, we obtain the ddNF given top
right.



insert(n : ?1?, r : ???)

n1 : ?10 n2 : 1??

r : ???

n : ?1? n2 : 1??

n1 : ?10 n3 : ?11

Fig. 5: Insertion with subsumption. When inserting n : ?1? into r we detect that n
is more general than n1, so n is inserted above n1. On the other hand, n and n2 are
compatible, but neither generalize the other, so we create a fresh node n3 labeled by
the intersection ?11 and it is inserted in a way that is illustrated in Fig. 4.

Proposition 2 (Disjoint Decomposition). The resulting ddNF obtained af-
ter inserting the ternary bit-vectors tbv1, tbv2, . . . , tbvn has one node correspond-
ing to every possible distinct non-empty set obtained by intersecting some k of
the n TBVs while excluding the remaining n− k.

Another way of viewing the above result is that the ddNF has precisely one node
for every disjoint region in the Venn-diagram of the sets denoted by the inserted
TBVs. This property follows from the conditions in Definition 4.

Algorithm 2 shows the extraction of a ddNF from a set of routers. It also
extracts a map from TBVs to labels in the extracted ddNF.

Algorithm 2: Extract a ddNF for a set of routers

Input: Routers a set of routers with routing rules from TBVs to ports
Output: A ddNF representing the TBVs used in Routers
Output: tbv2node a map from TBVs to labels

1 ddNF ← a ddNF with a single root node;
2 tbv2node ← [? · · · ? 7→ root ];
3 foreach R ∈ Routers do
4 foreach 〈tbv , p〉 ∈ R do
5 n← Fresh node labeled by tbv ;
6 n← Insert(n, root);
7 tbv2node[tbv ]← n;

8 end foreach

9 end foreach
10 return ddNF, tbv2node

Algorithm 3 shows how we reach our goal for pre-computed header space
compression to convert each router to a small lookup table from labels to output
ports. The algorithm uses the ddNF extracted from Algorithm 2. It traverses
the rules, using the ddNF to extract a set of labels corresponding to each rule.
It assumes that the rules are prioritized on a first-applicable basis, such that
earlier rules have precedence over later rules. Thus, labels used for earlier rules
cannot be used for later rules. The algorithm subtracts previously used labels



by computing DC(tbv2node(tbv)) \ seen, where seen are the nodes that have
been used so far. To compute DC(tbv2node(tbv)) \ seen efficiently we maintain
a tag on each node. The tag is initially clear and gets set when the node is first
traversed. This has the side-effect of inserting it into seen and also ensures that
each node is traversed at most once because one can skip all nodes below an
already marked node.

Algorithm 3: Convert each router R into a map R′ from labels to output
ports.

Input: Routers a set of routers with routing rules from TBVs to ports
Input: a ddNF for the TBVs used in Routers
Input: a map tbv2node from TBVs to nodes in the ddNF
Output: Routers ′ a set of routers whose routing rules map labels to ports

1 Routers ′ ← ∅;
2 foreach R ∈ Routers do
3 R′ ← the empty map from ddNF nodes to ports;
4 foreach 〈tbv , p〉 ∈ R in order of appearance do
5 seen ← ∅
6 labels ← DC(tbv2node[tbv ]) \ seen
7 foreach ` ∈ labels do
8 R′[`]← p
9 end foreach

10 seen ← seen ∪DC(tbv2node[tbv ])

11 end foreach
12 Routers ′ ← Routers ′ ∪ {R′}
13 end foreach
14 return Routers ′

We can further optimize the labeling obtained from Algorithm 3 by using
a post-processing pruning step. Define the equivalence relation ' between two
labels as follows:

` ' `′ :=
∧

R′∈Routers′

R′[`] = R′[`′]

That is, two labels are equivalent if the forwarding behavior is the same for each
router. We can then remove all but one equivalence class representative from
each ' class and still compute reachability. In [14], we extended this reduction
by taking a transitive congruence closure. We describe this approach in more
detail in Section 5.

Finally, when we check reachability for a set of headers (given by a DOC),
we compute the set of labels associated with the DOC and check reachability
for each of the labels.

4.3 Comparing ddNFs with BDDs

First of all let us notice that the conversion of a set of TBVs into ddNF can be
exponential.



Example 1. Suppose we have a routing table with the following rules:

1 1.*.* via port1

2 *.1.* via port2

3 *.*.1 via port3

The rules use the ternary bit-vectors 1??, ?1?, ??1. They decompose into 8
disjoint subsets and the corresponding ddNF is shown in Figure 6.

???

1?? ?1? ??1

11? 1?1 ?11

111

Fig. 6: Maximal ddNF

As we will later observe, the structure of real routing tables makes this worst
case very unlikely; ddNFs perform very well in practice.

Yang and Lam [17] use BDDs [4] to represent header spaces and leverage
BDD operations to compute a coarsest partition refinement, such that every set
in the resulting partition has the same forwarding behavior across all routers.
Algorithm 4 sketches how the approach from [17] creates one predicate per out-
put port that summarizes the set of headers that are forwarded to the given
port. Recall that we assume that a router is an ordered list of rules of the form
〈tbv , p〉, where tbv is a matching condition and p is the name of an output port.
The result of Algorithm 4 is a disjoint partition of sets over the header space of
a router.

Algorithm 4: Extracting predicates for a router

1 Ps ← [p 7→ ∅ | p ∈ Ports]
2 seen ← ∅
3 foreach 〈tbv , p〉 ∈ Router in order of appearance do
4 Ps[p]← Ps[p] ∪ (tbv \ seen)
5 seen ← tbv ∪ seen

6 end foreach
7 Ps[sink ]← Ps[sink ] ∪ seen

The partitions created for each router are then combined into a maximally
coarse partition as follows: Let Ps1, . . . ,Psn be the partitions extracted from
routers 1, . . . , n. Then the final partition can be computed using Algorithm 5.



Algorithm 5: Partition refinement

1 R← {>}
2 foreach i = 1, . . . , n; p ∈ Ports do
3 R← {P ∩R,P ∩R | P = Psi[p], R ∈ R} \ {∅}
4 end foreach
5 return R

This algorithm requires an asymptotically quadratic number of BDD opera-
tions during partition refinement, a cost that is avoided with ddNFs.

First, note that each union or intersection operation (line 4 in Algorithm 4,
line 5 in Algorithm 5) creates a result of size that is potentially the sum of the
size of the arguments. When iterated a linear number of times, this may produce
potentially quadratic space overhead. Furthermore, the number of operations in
Algorithm 5 is also quadratic in the size of the result. The ddNF data-structure
may likewise increase in size during an insertion. However, the overall space
overhead of the ddNF structure is bounded by the number of disjoint partitions,
and the number of operations for an insertion is bounded by the bit-width of
the header space multiplied by the number of resulting classes (the longest path
of a ddNF is at most the bit-width of the header space). There is an important
constant factor that differentiates BDDs and ddNFs as well: The ternary bit-
vectors in the ddNF tree can be represented using machine words. A ternary bit
can be represented using two bits in the usual way: 01 for true, 10 for false, 11
for ? and 00 for undefined. The intersection of two TBVs is defined if it does not
contain a sequence of 00s. Then if a machine has word size w (which is typically
64 these days) one can represent a k-bit ternary bit using d2 ·k/we words. BDDs,
in contrast allocate a separate node per bit, each node has a field for the current
variable and pointers to left and right children. Typical implementations use also
fields for reference counts. As we show in the next section, the evaluation also
shows that the ddNFs behave very well on our benchmark sets.

Atomic predicates always correspond to a union of nodes in the ddNF built
from routers. This is because each atomic predicate is an intersection of DOCs
corresponding to rules and each such intersection corresponds to a union of nodes
in a ddNF. Thus, the number of ddNF nodes is always at least the number of
atomic predicates. Our experiments show that in practice this number is pretty
small, even though the worst case is prohibitive. The ddNFs originating from
rules from example 1 grow exponentially. The ddNF for that example contained 8
nodes, while there are only three atomic predicates: 1??, 01?, 001, but the ddNF
grows exponentially with the bit-width. More generally, rules for a single router
create only one atomic predicate per output port, while the number of nodes
in a ddNF is potentially exponential for a fixed router. The number of atomic
predicates collected for a set of routers can of course be exponential for the same
reasons that ddNFs can be of exponential size.



4.4 ddNFs and DOCs and multi-dimensional prefix tries

The HSA [7] tool uses linear search over DOCs to process symbolic headers rep-
resented as TBVs and figure out the forwarding behavior for a set of packets. It
does not use any specific indexing techniques to speed up matching. The Veri-
flow tool [8] integrates some indexing. It uses multi-dimensional prefix tries to
represent rules. It is inspired by traditional packet classification data structures.
Each dimension corresponds to a header field, and each trie branches on one
bit at a time. The approach suggested with ddNF here would correspond to a
single dimension of such a trie, or a collapsed multi-dimensional trie. One can of
course create multi-dimensional structures from ddNFs, but we have not found
a use for it yet. On the other hand, Veriflow uses the tries to compute the set of
ports based on symbolic headers represented as TBVs. It does not pre-compute
labels.

4.5 Handling rules that update packets

Let us briefly describe one way to extend using ddNFs for analysis of networks
where rules can update packet headers. We limit the discussion to header trans-
formations that have match-action rules of the form 〈pin, tbv , upd , pout〉, where
tbv is the matching condition and upd is a ternary bit-vector, and pin, pout are
input and output ports. A packet header t matches the rule if t∩tbv = t, and it is
transformed to a header t ↓ upd , such that (t ↓ upd)[i] = (upd [i] = ?)?t[i] : upd [i],
for each bit-position i in t. The relevant question is how to efficiently compute
updates for sets of headers given by a difference of cube. If we attempt to ap-
ply rewrites on difference of cubes we quickly realize that the operations re-
quire in general to eliminate existential variables: since symbolic execution of
a set of states (regardless of their representation) corresponds to working with
strongest post-conditions. On the other hand, pre-conditions of guarded assign-
ments correspond to basic substitutions with the assignment and intersections
with the guard. It is therefore more convenient to close ddNFs under pre-images.
The procedure for closing ddNFs under pre-images over a set of configurations
〈doc1, p1〉, . . . , 〈docn, pn〉 of DOCs and ports p1, . . . , pn is obtained by computing
the fixedpoint under

wpc(〈pin, tbv , upd , pout〉, 〈docout, pout〉) := 〈docin ∪ tbv ∩ (docout ↓ upd), pin〉

Note that the operations on the resulting DOCs can be performed directly over
ddNFs.

5 Experiments

We measured the efficiency of the ddNF data structure in comparison with [17]
using benchmarks from the Stanford Campus Network [7] and IP forwarding
tables provided from selected Azure data-centers. We used a modest laptop run-
ning Intel Core i5-3317U 1.70 GHz, 8GB Ram, running 64 bit Windows 8.1. Our
implementation of [17] uses the BuDDy BDD library [15] and otherwise follows
almost verbatim the presentation of [17] with one minor change. The algorithm



suggested in [17] for inserting a set P into an existing set of partitions R1, . . . , Rn

is to compute {P ∩ Ri, P ∩ Ri | i = 1, . . . , n} and remove empty sets from the
result. Our approach is, for each i, to first compute P ∩Ri. If the result is empty
then we produce Ri, otherwise compute also P ∩ Ri and set P to P ∩ Ri. We
found this approach to be crucial to make the BDD based approach work.

Table 1 summarizes the comparison. We note that the ddNF-based imple-
mentation runs at least one order of magnitude faster, with the runtime being
a fraction of a second even for the largest benchmark. This makes the ddNF-
based approach well-suited for use with real-time updates of router rules. We
also noticed that (perhaps unsurprisingly) the BDD based approach is sensitive
to the initial variable order. For instance, for the Stanford benchmark set, the
BDD approach is 10x faster if the initial variable order is reversed from least to
most significant digit (this remains slower than ddNF, nonetheless).

# Rules BDD ddNF
sec. #labels sec. #labels

Stanford 8137 3.4 178 0.19 5149/17
DC 1 9060 2.0 829 0.05 1005
DC 2 7446 2.3 979 0.04 1157
DC 3 89871 17.7 2627 0.49 3058
DC 4 113131 29.8 3272 0.66 4077

Table 1: Measurements from five different network topologies. The Stanford benchmark
is obtained from [7] and is used as a standard benchmark. We extracted only the
forwarding rules from these benchmarks for our measurements. The networks DC 1-4
represent different snapshots from Azure data-centers of different size from around the
globe. The numbers in the BDD and ddNF columns are time in seconds and number
of generated labels. The ddNF for the Stanford network contains 5149 labels before
compression and only 17 labels after line 11 of Algorithm 3. For the other networks,
compression has no effect.

We also applied the ddNF data-structure in [14] as an integral part of a set
of network surgeries aimed to speed up reachability queries on networks. Let
us here recall main elements of our experiments there. Our experimental setup
there used a Microsoft production data center located in Singapore, similar to
DC 4. In more detail, the it is a fairly large switching network, with 52 core
routers, each with about 800 forwarding rules (but no ACLs), and with 90 ToRs
with about 800 rules and 100 ACLs each. In total, this network has about 820K
forwarding and ACL rules and is a reasonable example of a complex data center.

After reducing the network with respect to the header equivalences we split
forwaring rules so that each rule operates on a single header equivalence class.
Then, for each such class h we compute a forwarding equivalence relation as
a congruence closure relation: it is computed bottom up from reachable nodes:
two nodes are equivalent with respect to a header equivalence class h if they
forward h the same way. In particular, two nodes that have no forwarding rules
for h are equivalent. Then, inductively, two nodes become equivalent with re-



spect to h, if the successors are pairwise equivalent. We could have opted for
a stronger equivalence relation that considers two nodes forwarding equivalent
with respect to h using a (co-inductive) bisimulation relation, but in the case of
packet forwarding, we may expect most forwarding paths to be acyclic. Luckily,
in the acyclic case, there is no difference between inductive congruence closure
and co-inductive bi-simulation relations. In this way, we transformed a network
with nearly a million rules to a new network with just over 10,000 rules and
obtained a corresponding two-orders of magnitude speedup over analyzing the
original network.

6 Conclusions

This paper developed ddNFs to quickly and incrementally decompose the header
space into a much smaller set of equivalence classes. We found ddNFs an order
of magnitude faster than previous approaches [17] on our benchmarks, making
ddNFs especially suitable for incremental verification when router rules change
rapidly.
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