
Inferring Link Weights using End-to-End Measurements
Ratul Mahajan Neil Spring David Wetherall Tom Anderson

University of Washington

Abstract—We describe a novel constraint-based approach
to approximate ISP link weights using only end-to-end mea-
surements. Common routing protocols such as OSPF and
IS-IS choose least-cost paths using link weights, so inferred
weights provide a simple, concise, and useful model of intra-
domain routing. Our approach extends router-level ISP
maps, which include only connectivity, with link weights
that are consistent with routing. Our inferred weights agree
well with observed routing: while our inferred weights fully
characterize the set of shortest paths between 84-99% of the
router-pairs, alternative models based on hop count and la-
tency do so for only 47-81% of the pairs.

I. I NTRODUCTION

Over the past several years, Internet mapping technol-
ogy based on end-to-end measurements has matured to the
point where realistic router-level maps are now becoming
available [3, 6, 11, 19]. These maps are in turn being used
to study the structure of the Internet (e.g., node outdegree
distribution [7, 21]). However, we note that the current
maps do not support studies based on Internet paths. This
is because topology alone does not determine which paths
will be selected. Rather, the routing model, along with the
topology, determines the paths that are taken in practice.

In this paper, we study the problem of determining a
routing model that characterizes the intra-domain forward-
ing paths used within an ISP. Our model is based on link
weights, since commonly used intra-domain routing proto-
cols such as OSPF and IS-IS use link weights to compute
least cost or shortest paths. Somewhat surprisingly, we
find that we are able to use a constraint-based method to
approximate ISP link weights based solely on end-to-end
measurements. The key observation behind the solution is
that the weight of the path taken by a packet is at most the
weight of any other path between the same nodes; other-
wise another path would have been taken. We represent
this rule for all observed paths as a set of constraints on
link weight values, and solve the resulting constraint sys-
tem to infer the weights. Simple extensions to the con-

Email: {ratul,nspring,djw,tom}@cs.washington.edu

straint system deal with noise in the data, such as longer
paths being taken due to transient failures.

We applied our approach to six diverse ISP maps col-
lected by Rocketfuel [19], including Ebone (Europe),
Sprint (USA) and Telstra (Australia), using the traceroute
data collected as part of topology measurement itself. We
find that the inferred weights are an excellent model for
observed routing: across the six ISPs, the sets of paths
between 84-99% of the router-pairs were fully character-
ized by our weights. We also find that simpler alternatives
such as minimum hop count or latency are poor models of
intra-domain routing: they described paths between only
47-81% of the router-pairs.

To our knowledge, our technique is the first presented
method for approximating ISP link weights. It comple-
ments inter-domain routing policy inference based on ob-
served BGP paths [10, 20]. Since link weights are the
simplest mechanism currently available to ISPs for imple-
menting traffic engineering [9], our technique provides a
starting point for an external study of traffic engineering
practices.

In our ongoing work, we are focusing on understanding
the correspondence between the inferred and actual link
weights. The inferred weights are valuable in that they
characterize the observed routing. Yet they may not be an
exact match for the actual ISP link weights because the set
of weights that achieves a given set of routes is not unique.
The weights may differ by a scaling factor, and, more im-
portantly, each weight may vary within a small range. This
does not affect the observed paths but may reduce the abil-
ity to correctly predict the paths selected during failures.
Ideally, we hope to be able to predict the paths used dur-
ing failures, and so are investigating the “realism” of our
inferred weights.

The rest of the paper is organized as follows. Section II
explains our approach in detail, and Section III evaluates
the effectiveness of the inferred link weights in modeling
intra-domain routing. We discuss related work in Sec-
tion IV, and conclude in Section V.

II. CONSTRAINT-BASED APPROACH

In this section, we explain our approach to infer link
weights. As input we use a network map and a set of ob-
served paths through it, both of which are obtained by var-



ious mapping efforts using traceroutes. We start with the
abstract problem we are trying to solve.

A. Abstract Problem

Consider a network with vertices (nodes) and directed
edges (links). Each edge has a positive weight, and the
weight of a path is the sum of the weights of its edges.
Assume that weighted shortest path routing is used in the
network, so the least weight path, or paths in case of a
tie, between two vertices are chosen. All common intra-
domain routing protocols such as OSPF, IS-IS, and RIP
compute weighted shortest paths.

Given the routing as a set of chosen paths, our goal is
to assign weights to the edges such that the least weight
paths between all vertex-pairs match the paths that are cho-
sen. There is not a unique solution to this problem for
two reasons. First, scaling all weights by the same factor
does not affect routing. Second, changing the weight of a
link within bounds may have no impact on routing. Our
method below thus produces one of the possible solutions.

Section II-B describes the basic solution to the problem,
and Section II-C modifies it to reduce the number of con-
straints. In both these sections, we assume that all chosen
paths between all vertex-pairs are known. Later in Sec-
tion II-D we describe extensions to deal with shortcomings
in the routing collected using traceroute.

B. Basic Solution

The key observations in our solution are:i) the weight
of the chosen path(s) is less that than of other possible
paths between the same vertices; andii) if multiple chosen
paths exist between two vertices, they have equal weight.
These observations can be translated into a constraint sys-
tem that can be solved to obtain the weights.

For example, consider the network in Figure 1. Assume
that the chosen paths betweenA and G are ADG and
ABEG, which means that they have equal weight, and are
shorter than the alternate pathsACG, ACFG, ABDG,
ADEG andABDEG. We represent these facts using the
constraints shown below.

1. wad + wdg = wab + wbe + weg

2. wad + wdg < wac + wcg

3. wad + wdg < wac + wcf + wfg

4. wad + wdg < wab + wbd + wdg

5. wad + wdg < wad + wde + weg

6. wad + wdg < wab + wbd + wde + weg

We consider only simple (non-circular) alternate paths
as every circular path has a shorter simple path. This
makes it sufficient to constrain the chosen path to be
shorter than the corresponding simple path.

Similar constraints are set up for chosen paths between
all vertex-pairs. Because the number of both vertex pairs

Wac

Wad

Wbd
Weg

Wbe

Wfg

Wdg

Wcf

Wcg

WdeWab

A

B

C

D

E

F

G

Fig. 1. The chosen paths,ADG andABEG, are shown with
solid lines, and the alternate paths with dashed lines.

and simple paths is finite, there are a finite number of con-
straints. We solve the constraint system using linear pro-
gramming [15] to obtain a set of weights consistent with
the given routing. As long as the given routing is short-
est path with (unknown) positive link weights, we obtain a
consistent (solvable) constraint system.

C. Reducing the Number of Constraints

The basic solution leads to an exponential number of
constraints because a constraint is set up for every simple
alternate path. This makes it intractable for large networks.
To address this problem, we use a simple criterion to iden-
tify and remove redundant constraints.

Let SPsd be a chosen path betweenvs and vd, and
APsi·APid be an alternate path with an intermediate vertex
vi. Let W (P ) denote the weight of pathP . The constraint
W (SPsd) < W (APsi·APid) is redundant if at least one of
the two conditions is true for any intermediate vertexvi in
the alternate path:i) APsi is not a chosen path betweenvs

andvi; or ii) APid is not a chosen path betweenvi andvd.
It is easy to see why this criterion, which is similar to

path relaxation in Dijkstra’s algorithm, identifies redun-
dancy. LetSPsi andSPid be chosen paths between their
respective endpoints. The concatenation of these two leads
to a valid alternate pathSPsi·SPid. So there exists the con-
straintW (SPsd) < W (SPsi·SPid). If one of the above
conditions is true,W (SPsi·SPid) < W (APsi·APid) so
the constraintW (SPsd) < W (APsi·APid) is redundant.

Based on this criterion, Constraints 3 through 6 in the
example above are redundant if the chosen paths between
directly connected vertices is the edge connecting them,
and the shortest path betweenB andG is BEG.

A simple analysis shows that we are now left with a
number of constraints that is polynomial inn, the num-
ber of nodes. The maximum number of alternate paths for
a vertex pair (vs,vd) isn, because each vertexvi can appear
in at most one alternate path – the concatenation of chosen
pathsSPsi andSPid. Even if there are multiple chosen
paths betweenvs (or vd) andvi, only one constraint needs
to be set up as all of them have equal weight. Withn2 ver-



tex pairs, each with at mostn alternate paths, the number
of constraints isO(n3). The actual number of constraints
is much lower thann3 since most non-redundant alternate
paths would contain multiple intermediate vertices.

Our implementation does not enumerate all alternate
paths before pruning out the redundant paths. Instead, we
use a dynamic path growing algorithm that produces only
non-redundant alternate paths.

D. Dealing with Shortcomings in Measurement Data

When the chosen path information is collected using
traceroute measurements, it is likely to have two problems:
i) some paths may be longer than the stable shortest paths
due to transient events such as failures; andii) not all cho-
sen paths may be observed. We now extend our solution to
address both these problems.

If every observed path is considered a chosen (shortest)
path, it may lead to an inconsistent constraint system. Our
extension to deal with thisnoiseis based on constraint hi-
erarchies, which provide an innovative way to set up con-
straints such that all of them may not be satisfied [2]. The
main idea is to associate error variables with constraints,
and minimize the weighted sum of errors. In our approach,
we use an error variable per observed path.

In Figure 1, assume that two paths,ADG andABEG,
from A to G were observed. It is not necessary that both
(or any) of these paths are shortest. We associate with them
the error variableseadg andeabeg, which represent the ex-
cess weight (beyond that of the true shortest path) of the
path. The modified constraints are:

1. wad + wdg − eadg= wab + wbe + weg − eabeg

2. wad + wdg − eadg< wac + wcg

Similar constraints are set up for all vertex-pairs. We
use the simplex algorithm [15] to solve the constraint sys-
tem and minimize the weighted sum of the error variables,
using the number of times the path was observed as the
weight. The error variables of non-shortest paths have a
non-zero value in the solution.

Traceroute data may not contain chosen paths between
all vertex-pairs. We definepair-wise completenessas the
fraction of vertex-pairs between which at least one path
was observed. Poor pair-wise completeness blunts the con-
straint reduction criterion in Section II-C: when chosen
path information betweenvs (or vd) andvi is not available,
some alternate paths betweenvs andvd with vi as interme-
diate vertex cannot be eliminated (some can still be elimi-
nated based on other intermediate vertices in the path). In
principle, this means that our solution is no longer polyno-
mial in the number of nodes, but if pair-wise completeness
is high, the constraint system should still be tractable. The
measurement methodology of our data source (Section III-
A) helps in achieving high pair-wise completeness.

Pair-wise completeness can be improved using two
techniques. First, due toreverse path symmetry, a conse-
quence of both directions of a link having equal weight, the
reverse path of a shortest path is shortest. We confirmed
reverse symmetry for all the ISPs: the most common path
from A to B is the reverse of the most common path from
B to A.1 Second, theoptimal substructureproperty – any
subset of a shortest path is shortest – gives us shortest paths
between any pair of vertices in a given shortest path.2

Another measurement artifact is that while we may have
a path between two vertices, we are not guaranteed to have
seen all the chosen paths between them. This means that
the weight of the chosen path is not more than, as against
strictly less than, the alternate paths in the network. We
reflect this by changing the strict inequalities (’<’) in our
constraints to ’≤’.

E. Applicability

Our approach is applicable for any network with
weighted shortest path routing with a single setting of link
weights: the preferred path between two nodes is depen-
dent only on the weights, and not on, for instance, the des-
tination address of the packet (beyond the destination ad-
dress determining the destination node).

Most ISP networks fit the above model, but there are
some exceptions. BGP confederations can lead to non-
shortest-path routing. With OSPF, some paths may not
be least weight when using area aggregates [17], or when
a lower weight external path exists between nodes in the
same area (since paths between nodes in the same area are
restricted to that area). The latter would happen only when
intra-area weights are high, making it unlikely in practice
since intra-area weights are usually low. If a network uses
circuit technologies such as MPLS, the routing policy is
not visible at the IP layer. Our approach would yield little
insight into the routing policy of such networks.

Even in a network that does not use weighted shortest
path routing exclusively, there may be a set of link weights
that achieve the same routing. Our analysis will infer such
weights, even though they are not used.

III. E VALUATION

In this section we evaluate the link weights inferred us-
ing our approach. Our input data is described in Sec-
tion III-A. We describe several alternate link cost models
in Section III-B for comparison with our inferred weights
in Section III-C, where we show that these these alternate
models are inadequate to describe ISP routing.

1In contrast, inter-domain routes are frequently asymmetric.
2Our current implementation uses these derived paths for both setting

up shortest path constraints and eliminating redundant constraints (Sec-
tion II-C), but we have since realized that using them only for reduction
would increase robustness to noise.



AS Name Rtrs Links Paths Pairs
1221 Telstra (au) 115 153 20K 88%
1239 Sprint (us) 323 972 214K 54%
1755 Ebone (eu) 88 161 15K 57%
3257 Tiscali (eu) 164 328 9K 66%
3967 Exodus (us) 80 147 27K 68%
6461 Abovenet (us) 145 376 88K 63%

Fig. 2. ISPs with the number of backbone routers and links, the
number of traceroutes, and pair-wise completeness.

We use three criteria to evaluate how well a particular
cost model characterizes observed routing.
1. The fraction of observed paths that had least cost.With
an accurate routing model, most observed paths should be
least cost. This is a metric for overall data fit; each path is
weighted by the number of times it was seen.
2. The fraction of dominant paths that had least cost.A
dominant path is the most commonly seen path between
two nodes, and thus is most likely to be the stable path be-
tween them. Uncommon paths, such as those taken during
failures, are weeded out. With a good model, most dom-
inant paths should be least cost. All dominant paths are
weighted equally, so unlike the previous evaluation, the
results are not biased by a few common paths.
3. The fraction of node-pairs between which the routing
was fully characterized.If a model predicts multiple least
cost paths between two nodes, they should all be ob-
served due to load balancing across equal cost paths. Thus,
complete characterization of routing between node-pairs
means that not only must most paths taken between them
be least cost, but also that paths not seen must be costlier.
A coarse model that assigns the same cost to many paths
would fare well in the first two evaluations by overstating
the number of least cost paths, but not in this one unless
all those paths were actually used.

In Section III-D we study the predictive power of the
routing model – how much data is needed to derive weights
that predict ISP paths that were not directly observed.

Paths that are longer than the least-cost paths predicted
by the inferred weights can be present in the measurement
data due to:i) transient events such as failures;ii) the net-
work’s routing model not being weighted shortest path; or
iii) link weight or topology changes while measurements
are being taken. In the future, we intend to distinguish be-
tween the three causes behind long paths based on a life-
time based analysis of the observed paths.

A. Data Source

The six ISPs we study are listed in Figure 2. The maps
were collected by Rocketfuel [19]. The pair-wise com-
pleteness in the table has been computed after application
of the two techniques described in Section II-D. We infer

weights of the links that connect backbone routers. Rock-
etfuel extracts the backbone using the information present
in the DNS names and connectivity structure of the routers.
Traceroute data obtained as part of topology measurement
itself were used as input. Rocketfuel is very good at col-
lapsing the interfaces on the same router (alias resolution),
leading to more accurate maps. It also uses many (over
600 in our data set) public traceroute servers as vantage
points, thus providing a fair view of an ISP’s routing.

B. Alternate Metrics

We compare the inferred weights with three other met-
rics – latency, hops, and hoplat. Latencyuses the link
propagation delay rounded up to the nearest millisecond
as cost. We used DNS-based heuristics to map routers to
cities [16]. Link delay is approximated as the time to tra-
verse the distance between those cities at the speed of light
in fiber.3 The actual fiber path may not be direct and cir-
cuit switching may create a link between cities that does
not physically exist. However, we believe geographic dis-
tance is a reasonable approximation, since fiber paths are
likely to be close to the direct path and circuit switching is
not used extensively in the ISPs we studied [19].

Hopsassigns the same cost to all the links, making min-
imum hop count the routing criteria. ISP backbones are
highly meshed [19], so there are many paths with equal
hop count but vastly different latencies. Network adminis-
trators may prefer to distinguish between such paths.Ho-
plat models this preference by choosing the least latency
path(s) among minimum hop count paths.

While other measures such as capacity may describe
routing more accurately, such information is not currently
available in ISP maps derived using traceroute. Of course,
if routing is dependent on an unknown topology property
(such as link capacities), our methodology may help to in-
fer that characteristic.

C. Routing Characterization

We now evaluate how well each metric – latency, hops,
hoplat, and inferred weights – models observed routing.
1. All Observed Paths
Figure 3 shows the fraction of observed paths that were
least cost using each metric. Observed paths agree best
with inferred weights: while weights fit 87-100% of the
paths across the six ISPs, the next best metric (hops) fits
only 67-92%.
2. Dominant Paths
Figure 4 shows the fraction of dominant paths that were
least cost. As before, inferred weights are significantly
more successful compared to the other metrics. While the
inferred weights fit 76-98% of the dominant paths, the best

3In the future, we intend to extract link latencies from traceroutes.



1221 1239 1755 3257 3967 6461
AS number

0

20

40

60

80

100
w

ei
gh

te
d 

%
 o

f 
pa

th
s

la
te

nc
ie

s
ho

pl
at

ho
ps

w
ei

gh
ts

Fig. 3. Percentage of observed paths that were least cost.

1221 1239 1755 3257 3967 6461
AS number

0

20

40

60

80

100

%
 o

f 
do

m
in

an
t 

pa
th

s

la
te

nc
ie

s
ho

pl
at

ho
ps

w
ei

gh
ts

Fig. 4. Percentage of dominant paths that were least cost.

alternate metric (hops) fits only 49-82%. Nine out of ten
dominant paths that were not fitted by weights were seen
five or fewer times, increasing the probability of the dom-
inant path not being the stable path.4

3. Routing Between Pairs of Nodes
To capture how well routing between node-pairs is charac-
terized, we partition them into the following classes:
• full: each least cost path between the pair was seen;
• partial: some, but not all, least cost paths were seen;
• none:no least cost path was seen.

Figure 5 shows the fraction of node pairs in the full and
partial classes, with the remaining being in none. We can
see that hops is a very coarse metric; it partially charac-
terizes as many as 4-20% of the pairs, which means that it
predicts more least cost paths than are actually present in
the network, thus overestimating the extent of multi-path
routing. The success of hops in earlier evaluations com-
pared to latency and hoplat can be attributed to this prop-
erty; all the alternate metrics fully describe routing only
for 47-81% of the node-pairs. On the other hand, inferred
weights fully describe 84-99% of the node-pairs, and par-
tially characterize only 1-3%. Note that some degree of
partial fitting would also arise from not having observed
enough paths to see all the least cost paths.

4To reduce measurements required to collect an ISP map, Rocket-
fuel minimizes the number of paths measured between the same pair
of nodes. Multiple measurements of infrequent paths over a period of
time would help eliminate this problem.

1221 1239 1755 3257 3967 6461
AS number

0

20

40

60

80

100

%
 o

f 
no

de
-p

ai
rs

la
te

nc
ie

s
ho

pl
at

ho
ps

w
ei

gh
ts

partial
full

Fig. 5. Percentage of node-pairs in the full or partial classes.

0 20 40 60 80 100
% of vantage points (total=616)

0

20

40

60

80

100

%
 o

f 
pa

th
s 

or
 p

ai
rs

least weight paths
pair-wise completeness

Fig. 6. Predictive power of routing model for Exodus.

D. Predictive Power of the Routing Model

We next investigate how many measurements are
needed to derive a good model for overall ISP routing,
predicting paths that were not directly observed. We re-
fer to this as the predictive power of the model. Since we
do not measure all ISP routes, the closest experiment we
can perform is to infer weights from a fraction of our mea-
surements and assess how well those weights predict the
entire set of route observations. To take a fraction of the
measurements, we randomly varied the number of vantage
points used to collect the traceroute data, in subsets of size
1%, 5%, and 10-100% in steps of 10%.

Figure 6 shows for Exodus (3967) the percentage of
paths in the total dataset that were least cost using the
weights inferred from the subset of measurements. We see
that the weights derived from 10% of the vantage points
describe routing almost as well as weights derived using all
of them. For comparison, the figure also shows pair-wise
completeness as a function of the percentage of vantage
points. The fit does not improve as we move from 50%
to almost 70% pair-wise completeness. This is encourag-
ing as it suggests that 50% completeness is sufficient to
predict the paths between node-pairs that were not directly
observed.

We ran this experiment for other ISP maps5 and ob-
tained similar results in terms of the pair-wise complete-
ness needed for a fit with good predictive power: 80%

5We could not do this experiment for Sprint (1239): as we reduced
pair-wise completeness, few constraints could be eliminated (see Sec-
tions II-C and II-D). The resulting constraint system was intractable.



for Telstra (1221), 40% for Ebone (1755), 50% for Tis-
cali (3257), and 45% for Abovenet (6461). The high com-
pleteness percentage required for Telstra is an artifact of
its simple topology, in which the pair-wise completeness
was 75% even with just 1% of the vantage points.

IV. RELATED WORK

Our work extends the Internet topology maps [3, 6, 11,
19] with link weights that are consistent with observed
routing. Like researchers studying other network proper-
ties [5, 12, 13, 14], we use only end-to-end measurements
to infer link weights. As we move towards understand-
ing intra-domain routing, we complement various inter-
domain routing analyses [10, 18, 20, 22].

Our approach is close to that of Fortz & Thorup [9] and
Wang et al. [23]. These works formulate optimal routing
as a constraint satisfaction problem. Their algorithms use
traffic demands as input to “engineer” link weights that
satisfy some policy goal such as to minimize utilization,
while our approach uses measurements of observed paths
to “reverse-engineer” weights.

The abstract problem in Section II-A is an inverse short-
est paths problem (ISPP). In an ISPP, the goal is to assign
edge weights that are consistent with a given routing char-
acteristic such as end-to-end distances or paths. Various
ISPPs have been studied [4, 8]. We solve a specific in-
stance, which to our knowledge has not been studied be-
fore, and extend the solution to handle inconsistent input.

V. CONCLUSIONS

We described a novel, constraint-based approach to in-
fer link weights using only end-to-end measurements. Our
approach is efficient and deals effectively with noisy data.
We used it to infer the backbone link weights for six ISP
networks, and found that the inferred weights characterize
the ISP routing much better than alternate metrics based
on hop count and latency: inferred weights fully charac-
terized routing between 84-99% of the router-pairs across
the six ISPs, while alternate metrics could do so for only
47-81% of them.

Our results enhance ISP topologies with link weights,
making them useful for simulations and routing studies.
Obtaining link weights is also a step towards characteriz-
ing intra-domain routing and traffic engineering; we intend
to use them to study properties such as the extent of multi-
path routing, hop and latency inflation in least weight
paths, routing load distribution, and failure resilience.

ACKNOWLEDGEMENTS

We thank Alan Borning for help with constraint solving,
Ashish Sabharwal for help with reducing the number of

constraints, and Christophe Diot and Jennifer Rexford for
useful discussions.

We also thank the developers oflp solve [1] and So-
Plex [24], the linear program solvers used in this work.

This work was supported by DARPA under grant no.
F30602-00-2-0565.

REFERENCES

[1] M. Berkelaar. lpsolve: linear programming code. ftp://ftp.ics.
ele.tue.nl/pub/lpsolve/.

[2] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint hi-
erarchies.Lisp and Symbolic Computation, 5(3), 1992.

[3] H. Burch and B. Cheswick. Mapping the Internet.IEEE Com-
puter, 32(4):97–98, 102, 1999.

[4] D. Burton and L. Toint. On an instance of the inverse shortest
paths problem.Mathematical Programming, 53, 1992.

[5] R. L. Carter and M. E. Crovella. Measuring bottleneck link
speed in packet-switched networks. Technical Report TR-96-006,
Boston University Computer Science Department, 1996.

[6] k. claffy, T. E. Monk, and D. McRobb. Internet tomography. In
Nature, January 1999.

[7] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law rela-
tionships of the Internet topology. InACM SIGCOMM, 1999.

[8] S. P. Fekete, W. Hochstättler, S. Kromberg, and C. Moll. The
complexity of an inverse shortest path problem.Contemporary
Trends in Discrete Mathematics: From DIMACS and DIMATIA
to the Future, 49, 1999.

[9] B. Fortz and M. Thorup. Internet traffic engineering by optimiz-
ing OSPF weights. InIEEE INFOCOM, 2000.

[10] L. Gao. On inferring autonomous system relationships in the In-
ternet. InIEEE Global Internet Symposium, 2000.

[11] R. Govindan and H. Tangmunarunkit. Heuristics for Internet map
discovery. InIEEE INFOCOM, 2000.

[12] V. Jacobson. Pathchar. ftp://ftp.ee.lbl.gov/pathchar.
[13] V. Jacobson. Traceroute. ftp://ftp.ee.lbl.gov/traceroute.tar.Z.
[14] K. Lai and M. Baker. Nettimer: A tool for measuring bottleneck

link bandwidth. InUSITS, 2001.
[15] K. G. Murty. Linear Programing. John Wiley & Sons, 1983.
[16] V. N. Padmanabhan and L. Subramanian. An investigation of ge-

ographic mapping techniques for Internet hosts. InACM SIG-
COMM, 2001.

[17] R. Rastogi, Y. Beribart, M. Garofalakis, and A. Kumar. Optimal
configuration of OSPF aggregates. InIEEE INFOCOM, 2002.

[18] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The
end-to-end effects of Internet path selection. InACM SIGCOMM,
1999.

[19] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topolo-
gies with Rocketfuel. InACM SIGCOMM, 2002.

[20] L. Subrmanian, S. Agarwal, J. Rexford, and R. H.Katz. Charac-
terizing the Internet hierarchy from multiple vantage points. In
IEEE INFOCOM, 2002.

[21] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and
W. Willinger. Network topology generators: Degree-based vs.
structural. InACM SIGCOMM, 2002.

[22] H. Tangmunarunkit, R. Govindan, and S. Shenker. Internet path
inflation due to policy routing. InSPIE ITCom, 2001.

[23] Y. Wang, Z. Wang, and L. Zhang. Internet traffic engineering
without full mesh overlaying. InIEEE INFOCOM, 2001.

[24] R. Wunderling. SoPlex: The sequential object-oriented simplex
class library. http://www.zib.de/Optimization/Software/Soplex/
soplex.php.


