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Abstract – Using detailed traces from 255 users, we con-
duct a comprehensive study of smartphone use. We char-
acterize intentional user activities – interactions with the
device and the applications used – and the impact of those
activities on network and energy usage. We find immense
diversity among users. Along all aspects that we study, users
differ by one or more orders of magnitude. For instance, the
average number of interactions per day varies from 10 to 200,
and the average amount of data received per day varies from
1 to 1000 MB. This level of diversity suggests that mecha-
nisms to improve user experience or energy consumption will
be more effective if they learn and adapt to user behavior.
We find that qualitative similarities exist among users that
facilitate the task of learning user behavior. For instance,
the relative application popularity for can be modeled us-
ing an exponential distribution, with different distribution
parameters for different users. We demonstrate the value of
adapting to user behavior in the context of a mechanism to
predict future energy drain. The 90th percentile error with
adaptation is less than half compared to predictions based
on average behavior across users.

Categories and Subject Descriptors

C.4 [Performance of systems] Measurement techniques
General Terms

Measurement, human factors
Keywords

Smartphone usage, user behavior

1. INTRODUCTION
Smartphones are being adopted at a phenomenal pace but

little is known (publicly) today about how people use these
devices. In 2009, smartphone penetration in the US was 25%
and 14% of worldwide mobile phone shipments were smart-
phones [23, 16]. By 2011, smartphone sales are projected to
surpass desktop PCs [25]. But beyond a few studies that re-
port on users’ charging behaviors [2, 17] and relative power
consumption of various components (e.g., CPU, screen) [24],
many basic facts on smartphone usage are unknown: i) how
often does a user interact with the phone and how long does
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an interaction last? ii) how many applications does a user
run and how is her attention spread across them? iii) how
much network traffic is generated?

Answering such questions is not just a matter of academic
interest; it is key to understanding which mechanisms can
effectively improve user experience or reduce energy con-
sumption. For instance, if user interactions are frequent and
the sleep-wake overhead is significant, putting the phone to
sleep aggressively may be counterproductive [8]. If the user
interacts regularly with only a few applications, application
response time can be improved by retaining those applica-
tions in memory [7]. Similarly, if most transfers are small,
bundling multiple transfers [1, 22] may reduce per-byte en-
ergy cost. Smartphone usage will undoubtedly evolve with
time, but understanding current usage is important for in-
forming the next generation of devices.

We analyze detailed usage traces from 255 users of two
different smartphone platforms, with 7-28 weeks of data per
user. Our traces consist of two datasets. For the first dataset
we deploy a custom logging utility on the phones of 33 An-
droid users. Our utility captures a detailed view of user
interactions, network traffic, and energy drain. The second
dataset is from 222 Windows Mobile users across different
demographics and geographic locations. This data was col-
lected by a third party.

We characterize smartphone usage along four key dimen-
sions: i) user interactions; ii) application use; iii) network
traffic; and iv) energy drain. The first two represent inten-
tional user activities, and the last two represent the impact
of user activities on network and energy resources. Instead
of only exploring average case behaviors, we are interested
in exploring the range seen across users and time. We be-
lieve that we are the first to measure and report on many
aspects of smartphone usage of a large population of users.

A recurring theme in our findings is the diversity across
users. Along all dimensions that we study, users differ by
one or more orders of magnitude. For example, the mean
number of interactions per day for a user varies from 10 to
200; the mean interaction length varies from 10 to 250 sec-
onds; the number of applications used varies from 10 to 90;
and the mean amount of traffic per day varies from 1 to
1000 MB, of which 10 to 90% is exchanged during inter-
active use. We also find that users are along a continuum
between the extremes, rather than being clustered into a
small number of groups.

The diversity among users that we find stems from the
fact that users use their smartphones for different purposes
and with different frequencies. For instance, users that use



#users Duration Platform Demographic info Information logged
Dataset1 33 7-21 weeks/user Android 16 high school students, Screen state, applications used

17 knowledge workers network traffic, battery state
Dataset2 222 8-28 weeks/user Windows 61 SC, 65 LPU, 59 BPU, 37 OP Screen state, applications used

Mobile Country: 116 USA, 106 UK

Table 1: An overview of the datasets in our study.

games and maps applications more often tend to have longer
interactions. Our study also shows that demographic infor-
mation can be an unreliable predictor of user behavior, and
usage diversity exists even when the underlying device is
identical, as is the case for one of our datasets.

Among the many implications of our findings, an over-
riding one is that mechanisms to improve user experience
or energy consumption should not follow a one-size-fits-all
mindset. They should instead adapt by learning relevant
user behaviors; otherwise, they will likely be only marginally
useful or benefit only a small proportion of users.

We show that despite quantitative differences qualitative
similarities exist among users, which facilitates the task of
learning user behavior. For several key aspects of smart-
phone usage, the same model can describe all users; differ-
ent users have different model parameters. For instance, the
time between user interactions can be captured using the
Weibull distribution. For every user, the shape parameter
of this model is less than one, which implies that the longer
it has been since the user’s last interaction, the less likely
it is for the next interaction to start. We also find that
the relative popularity of applications for each user follows
an exponential distribution, though the parameters of the
distribution vary widely across users.

We demonstrate the value of adapting to user behavior in
the context of a mechanism to predict future energy drain.
Predicting energy drain is an inherently challenging task.
Bursty user interactions at short time scales combined with
diurnal patterns at longer time scales lead to an energy con-
sumption process that has a very high variance and is seem-
ingly unpredictable. We show, however, that reasonably ac-
curate predictions can be made by learning the user’s energy
use signature in terms of a“trend table” framework. For pre-
dicting the energy use one hour in the future, our predictor’s
90th percentile error is under 25%. Without adaptation and
basing the predictions on average behavior, the 90th per-
centile error is 60%.

2. DATA COLLECTION
Our work is based on two sets of data. The first is a

high-fidelity data set that we gathered by deploying a cus-
tom logger on the phones of 33 Android users. The second
data set consists of 222 Windows Mobile users across dif-
ferent demographics. Together, these data sets provide a
broad and detailed view of smartphone usage. We leave for
the future the task of studying other smartphone platforms
such as iPhone and BlackBerry. The characteristics of our
datasets are summarized in Table 1.

2.1 Dataset1
Our first set of traces is from 33 Android users. These

users consisted of 17 knowledge workers and 16 high school
students. Knowledge workers were computer science re-
searchers and high school students were interns in a single

organization and were recruited by a third person on our
behalf. As stated in our study consent form, the users’ iden-
tities were not revealed to us. The participants were given
HTC Dream smartphones with unlimited voice, text and
data plans. We encouraged the users to take advantage of
all the features and services of the phones.

The data was collected using a custom logging tool that
we developed and deployed on the smartphones. The logger
runs in the background and records a highly detailed view
of smartphone use, including the state of the smartphone
screen, start and end of incoming and outgoing voice calls,
the time the user spends interacting with each application,
the network traffic sent and received per application, and
the battery level. The Android OS provides mechanisms to
access this information. The logger keeps data records in a
local SQLite database on the phone and uploads them only
when the phone is plugged to the charger, to minimize the
impact on the phone battery. Our logging utility is available
to other researchers by request.

The data was gathered between May and October 2009.
There is 7-21 weeks of data per user, with the average being
9 weeks.

2.2 Dataset2
Our second data set was collected by an organization that

was interested in investigating smartphone usability and ap-
plication popularity. This organization provided 222 users
with Windows Mobile smartphones from different hardware
vendors. It also paid for their voice and data plans. For rep-
resentativeness, the users were drawn from different demo-
graphics as shown in Table 1. The demographic categories
were defined based on what users stated as the primary moti-
vation for using a smartphone. Social Communicators (SC)
wanted to “stay connected via voice and text.” Life Power
Users (LPU) wanted “a multi-function device to help them
manage their life.” Business Power Users (BPU) wanted “an
advanced PC-companion to enhance their business produc-
tivity.” Organizer Practicals (OP) wanted “a simple device
to manage their life.” The subjects were asked about their
intended use of the phone before the study and were catego-
rized based on their answers. To our knowledge, the results
of this study are not public.

Traces were collected using a logger that recorded start
and end time of each application. This information was
logged using the ActiveApplication API call of the OS, which
reports on the executable that currently has the foreground
window (with a callback for changes) Other details that our
custom logger in §2.1 records (e.g., network traffic and bat-
tery level) were not logged in this study. Thus, this dataset
has lower fidelity than the first one, but it provides a view
of smartphone usage across a broader range of users.

The traces were collected between May 2008 and January
2009. There is 8-28 weeks of data per user, with the average
being 16 weeks.
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Figure 1: Ratio of voice usage to total usage. The
x-axis is user percentile and users are sorted in de-
creasing order of ratio.

2.3 Representativeness of conclusions
An important concern for user studies such as ours is

whether the resulting conclusions represent the entire popu-
lation. There are two potential sources of bias in our data: i)
the users are not representative; and ii) the measured usage
is not representative. We believe that our conclusions are
general. The first concern is alleviated by the fact that aside
from some quantitative differences, we find remarkable con-
sistency among users in the two datasets. This consistency
suggests generality given that the two datasets are gathered
independently, on different platforms, and Dataset2 was pro-
fessionally designed to be representative.

The second concern stems from the possibility that users
may not be using the monitored smartphones as their pri-
mary devices or that the usage during the monitoring period
may not be normal. All users in Dataset2 used the provided
smartphones as their primary devices. We do not know this
aspect with certainty for Dataset1, but we understand from
anecdotal evidence that some users used these devices as
their only phones and others took advantage of the unlim-
ited minutes and text plans. We study voice usage as in-
dicative of the extent to which users relied on the monitored
devices. Higher voice usage suggests use as primary phones.
Figure 1 shows the ratio of time users spent in phone calls
to total time spent interacting with the phone (§3). We see
that the overall voice usage in Dataset1 was higher than
that in Dataset2 in which all users used the phone as their
primary device.

Given that the monitored devices tended to be primary
and the long duration of the monitoring interval, we con-
jecture that our traces predominantly capture normal us-
age. Earlier work has pointed to the possibility of an initial
adoption process during which usage tends to be different
than long-term usage [19]. To show that our traces are not
dominated by the initial excitement of users or other special
events that cause usage to be appreciably different from the
normal usage, Figure 2 shows the average interaction time
per day (§3) in the first and second halves of the datasets for
each user. We see roughly similar usage in the two halves.
Detailed investigation shows that the visible differences in
the averages of the two halves, especially in Dataset1, are
not statistically significant. Other measures of usage (e.g.,
network activity) look similar. We do not claim that in-
stances of abnormal usage are absent in the datasets, but
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Figure 2: Total interaction per day during the first
and second halves of study for each user. Users
within each dataset are sorted based on the interac-
tion time in the first half. The y-axis is log scale.

the monitored period was long enough for our results to not
be impacted by such instances.

3. USER INTERACTIONS
We begin our analysis by studying how users interact with

their smartphones, independent of the application used. We
characterize application use in the next section, and the im-
pact of user actions on network traffic and energy drain in
the following sections.

We define an interaction interval, also referred to as a ses-
sion in this paper, differently for each dataset. In Dataset1,
we deem a user to be interacting with the phone whenever
the screen is on or a voice call is active. In Dataset2, an
interaction is defined as the interval that an application is
reported to be on the foreground. This includes voice calls
because on Windows Mobile a special program (“cprog.exe”)
is reported in the foreground during voice calls.

3.1 Interaction Time
Figure 3(a) shows a basic measure of user interaction—the

number of minutes in a day that a user interacts with the
smartphone. The plot shows the mean and the standard
deviation of this number for each user. For visual clarity,
in such graphs, we plot only the upper end of the standard
deviation; plotting both ends occludes the other curves. The
interested reader can estimate the lower end since standard
deviation is symmetric around the mean.

Dataset1 users tend to have more interaction minutes be-
cause, as we show later, they tend to have longer interaction
sessions while having a similar number of sessions. Within
each dataset, however, there is an order of magnitude dif-
ference among users. In Dataset1, the lower end is only 30
minutes in a day. But the high end is 500 minutes, which is
roughly eight hours or a third of the day. We are surprised
by this extremely high level of usage.

Figure 3(a) also shows that users cover the entire range
between the two extremes and are not clustered into dif-
ferent regions. The lack of clusters implies that effective
personalization will likely need to learn an individual user’s
behavior rather than mapping a user to one or a few pre-
defined categories.

We examine two factors that can potentially explain the
extent to which a user interacts with the phone but find that



1
10

10
0

10
00

0 20 40 60 80 100
User percentile

A
ct

iv
e 

tim
e 

(m
in

ut
es

)

Dataset1
Dataset2

(a) All users

High school
Knowledge worker

1
10

10
0

10
00

0 20 40 60 80 100
User percentile

A
ct

iv
e 

tim
e 

(m
in

ut
es

)

(b) Dataset1

SC
OP
BPU
LPU1

10
10

0
10

00

0 20 40 60 80 100
User percentile

A
ct

iv
e 

tim
e 

(m
in

ut
es

)

(c) Dataset2

Figure 3: The mean and the upper end of the standard deviation of interaction minutes per day. (a) All
users in each dataset. (b)&(c) Different demographics in the two datasets. The y-axes are log scale.

neither is effective. The first is that heavier users use dif-
ferent types of applications (e.g., games) than lighter users.
But, we find that the relative popularity of application types
is similar across classes of users with different interaction
times (§4.2). The second is user demographic. But, as
Figures 3(b) and 3(c) show, the interaction times are sim-
ilar across the different demographics in the two datasets.
Within each demographic, user interaction times span the
entire range. In §4.2, we show that user demographic does
not predict application popularity either.

To understand the reasons behind diversity of user inter-
action times, we study next how user interaction is spread
across individual sessions. This analysis will show that there
is immense diversity among users in both the number of in-
teraction sessions per day and the average session length.

3.2 Interaction Sessions
Interaction sessions provide a detailed view of how a user

interacts with the phone. Their characteristics are impor-
tant also because energy use depends not only on how long
the phone is used in aggregate but also on the usage distribu-
tion. Many, short interactions likely drain more energy than
few, long interactions due to the overheads of awakening the
phone and radio. Even with negligible overheads, battery
lifetime depends on how exactly energy is consumed [20].
Bursty drain with high current levels during bursts can lead
to a lower lifetime than a more consistent drain rate.

Figure 4(a) shows the number of sessions per day for dif-
ferent users. We again see a wide variation. Individual users
interact with their smartphone anywhere between 10 to 200
times a day on average.

Figure 4(b) shows the mean and standard deviation of in-
teraction session lengths. Dataset1 users tend to have much
longer sessions than Dataset2 users. Given that they have
roughly similar number of interactions per day, as seen in
Figure 4(a), their longer sessions explain their higher inter-
action time per day, as seen in Figure 3(a).

Within each dataset, the mean session length varies across
users by an order of magnitude. Across both datasets, the
range is 10-250 seconds.

Explaining the diversity in session lengths: Several
hypothesis might explain the differences in different users’
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Figure 4: The mean and the upper end of the stan-
dard deviation for the number of sessions per day
and the session length. The y-axes are log scale.
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Figure 5: (a) Scatterplot of session count per day
and mean session length of various users. (b) The
mean and 95% CI of session count per day for users
in Dataset2 with different mean session lengths.

session lengths. One hypothesis is that users with longer
sessions concentrate their smartphone usage in fewer ses-
sions. Figure 5 shows, however, that there is little correla-
tion between users’ number of sessions and session length.
Figure 5(a) shows a scatterplot of session count versus mean
length for different users. There is one data point for each
user. Figure 5(b) shows the dependence of session count on
session length by aggregating data across Dataset2 users. It
plots the observed mean and 95% confidence interval (CI) for
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Figure 6: CDFs of session length and time between
sessions for two example users. The x-axis ranges in
the graphs are different.

session counts per day for users with different mean session
lengths. The differences in the session counts are not sta-
tistically significant. In other words, it is not the case that
users who have longer sessions have fewer or more sessions.

Our other hypotheses are related to application use. The
second hypothesis is that users run varying numbers of ap-
plications during an interaction, and users that tend to use
more applications per session have longer sessions. The third
hypothesis is that users run different applications and some
applications, such as maps, have longer sessions than others.
The fourth one is that even for the same application, users
have different session lengths.

Our analysis of application use in §4 reveals that the sec-
ond hypothesis is not explanatory, as users overwhelmingly
use only one application per session. It also reveals that the
third and fourth hypotheses are likely contributors to diver-
sity in session lengths. Note that the inability of application
types to explain interaction time per day, which we men-
tion in the previous section, is different from their ability to
explain session lengths.

Distribution of a single user’s sessions: We find that
for any given user, most of the sessions are short but some
are very long. Figure 6(a) shows the CDF of session lengths
for two example users. The median session length is less
than a minute but some are longer than an hour (not shown
in the graph). A similar skewed distribution can be seen for
all users in our datasets, albeit with different median and
mean session length values. This highly skewed distribution
also explains why the standard deviations in Figure 4(b) are
high relative to the mean. In §8.1, we show how session
lengths depend on the screen timeout values.

Figure 6(b) shows that the time between sessions, when
the phone is not used, also has a skewed distribution. Most
are short (relative to the mean) but some are very long. We
show later that these off periods have the property that the
longer a user has been in one of them, the greater the chance
that the user will continue in this state.

3.3 Diurnal Patterns
We now study diurnal patterns in interaction. The pres-

ence of such patterns has several consequences. For instance,
the length of time a given level of remaining battery capacity
lasts will depend on the time of day.

Figure 7 shows for two example users that, as expected,
strong diurnal patterns do exist. As a function of the hour
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Figure 8: (a) Scatterplot of diurnal ratio of interac-
tion time per hour and interaction minutes per day.
(b) The mean and 95% CI of diurnal ratio vs. total
interaction time per day.

of the day, Figure 7(a) plots the mean number of interaction
minutes per hour. It also plots the 95% confidence interval
(CI) around the mean, which can be used to judge if the
differences in the means are statistically significant. We see
a clear pattern in which daytime use is much higher than
nightime use, though the exact pattern for different users is
different.

Figure 7(a) also shows that usage at hours in the night is
low but not completely zero. We believe that this non-zero
usage stems from a combination of irregular sleeping hours
and users using their devices (e.g., to check time) when they
get up in the middle of the night.

To capture the significance of the diurnal pattern for a
user, we define the diurnal ratio as the ratio of the mean
usage during the peak hour to the mean usage across all
hours. A diurnal ratio of one implies no diurnal pattern, and
higher values reflect stronger patterns. Figure 9(a) plots the
diurnal ratio in interaction time for all users. It shows that
while diurnal ratios vary across users, roughly 70% of the
users in each dataset have a peak hour usage that is more
than twice their mean usage.

Explaining the diversity in diurnal patterns: To
help explain the variability among users’ diurnal ratios, in
Figure 8 we study its dependence on interaction time. Fig-
ure 8(a) shows a scatterplot of the diurnal ratio and the
mean interaction time per day. We see that the diurnal ra-
tio tends to be inversely correlated with interaction time.
Figure 8(b) shows this negative correlation more clearly, by
aggregating data across users. It plots the mean and 95%
CI of the diurnal ratio of total interaction time per day for
users with different total interaction times. The diurnal ra-
tio decreases as interaction time increases. This inverse re-
lationship suggests that heavy users tend to use their phone
more consistently during the day whereas light users tend
to have concentrated use during certain hours of the day.

Understanding the source of diurnal patterns: The
variation in interaction time of a user across the day can re-
sult from variation in the number of interaction sessions or
the length of individual sessions. We find that both factors
contribute. Users tend to have different number of sessions
as well as different session lengths at different hours of the
day. Figures 7(b) and 7(c) illustrate this point for two ex-
ample users. They plot the mean number of sessions and
the mean session length for each hour of the day.
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Figure 7: The mean and 95% CI of interaction time, number of sessions, and session length during each hour
of the day for an example user from each dataset.

Figures 9(b) and 9(c) show the strength of the diurnal
pattern for the number of sessions and session length for all
the users. Observe that compared to interaction time and
session length, the diurnal ratio of the number of sessions
tends to be lower.

4. APPLICATION USAGE
We now study the applications that users run when they

interact with their smartphones. Unlike previous attempts
to understand mobile application usage [5, 19, 26] that use
diaries and interviews, we rely on the mobile phone’s OS to
report application usage. We define an application as any
executable that the OS reports. On Windows Mobile, we
get timestamped records of start and end times of appli-
cation executions in the foreground. On Android, we log
usage counters that are updated by the OS. Every time the
OS calls the onStart, onRestart or onResume method of an
Android application it starts a timer. The timer stops when
the onPause, onStop, or onDestroy method is called. We
record periodically the cumulative value of the timer for each
installed application. This information on the extent of ap-
plication use is not as accurate as the equivalent information
on Windows Mobile, but it helps us understand relative time
spent by the user in each application.

4.1 Number of applications
Figure 10 shows the number of applications used by users

in each dataset over the length of their trace. We see that
this number varies significantly, from 10 to 90, across users.
The median is roughly 50. We are surprised by this high
number given that the iPhone, which is reported to have
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Figure 10: Number of applications installed and
used by users of each dataset.

thousands of applications, is not part of our study. Our
results show that avid use of smartphone applications is a
trait shared by Android and Windows Mobile users as well.

4.2 Application Popularity
The large number of applications installed by the users

does not mean that they use them equally. We find that
users devote the bulk of their attention to a subset of appli-
cations of their choice. Figure 11 illustrates this popularity
bias for example users in each dataset. It plots the relative
popularity of each application, that is, the ratio of the time
spent interacting with the application and the total time
spent interacting with the smartphone. The bars show the
popularity PDF for the top 20 applications, and the inset
shows the semi-log plot for all applications. Because they
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Figure 9: Diurnal ratio of the interaction time, the number of sessions, and the session length for different
users. The y-axis ranges for the number of sessions is different.

la
un

ch
er gm

al
ar

m
cl

oc
k

ta
lk

co
nt

ac
ts

m
ap

s
m

m
s

ph
on

e
m

us
ic

br
ow

se
r

ca
m

er
a

sy
st

em
se

ns
be

nc
hm

ar
k

w
er

ta
go

ve
nd

in
g

ca
le

nd
ar

se
tti

ng
s

tip
pi

nt
im

e
te

tr
is

an
dr

oi
d

Dataset1 example user

U
sa

ge
 r

at
io

0.
00

0.
10

0.
20

0.
30

0 20 401e
−

07
0.

01

ie
xp

lo
re

gw
es

tm
ai

l
ho

m
e

bu
bb

le
br

ea
ke

r
P

ok
er

Li
ve

S
ea

rc
h

ca
le

nd
ar

G
oo

gl
eM

ap
s

po
ut

lo
ok

T
P

C
S

ol
ita

re
K

aG
lo

m
pv

bl
oa

d
cp

ro
g

se
rv

ic
es

te
ls

he
ll

pi
m

g
ap

pm
an

Y
G

oN
et

w
m

pl
ay

er

Dataset2 example user

U
sa

ge
 r

at
io

0.
00

0.
05

0.
10

0.
15

0 20 40 601e
−

06
0.

01

Figure 11: Relative time spent running each application for example users in each dataset. Inset is the
semi-log plot of application popularity.

are binary names, even some popular applications may ap-
pear unfamiliar. For instance, in Dataset1, “launcher” is the
default home screen application on Android; in Dataset2,
“gwes” (Graphical, Windows, and Events Subsystem) is the
graphical shell on Window Mobile.

The graphs show that relative application popularity drops
quickly for both users. In §8.3, we show that for all users
application popularity can be modeled by an exponential
distribution.

Diurnal patterns: Interestingly, application popularity
is not stable throughout the day, but has a diurnal pattern
like the other aspects of smartphone use. That is, the rel-
ative popularity of an application is different for different
times of the day. Figure 12 illustrates this for an exam-
ple user in Dataset2. We see, for instance, that tmail.exe,
which is a messaging application on Windows Mobile, is
more popular during the day than night. Time dependent
application popularity was recently reported by Trestian et
al., based on an analysis of the network traffic logs from a
3G provider [27]. Our analysis based on direct observation
of user behavior confirms this effect.
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Figure 12: Relative time spent with each application
during each hour of the day for a sample user and
her top applications.
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Figure 13: Relative popularity of each application
category across all users in each dataset.

Aggregate view application popularity: To pro-
vide an aggregate view of what users use their smartphones
for, we categorize applications into eight distinct categories:
i) communication contains applications for exchanging mes-
sages (e.g., email, SMS, IM) and voice calls; ii) browsing
contains Web browser, search, and social networking appli-
cations; iii) media contains applications for consuming or
creating media content (e.g., pictures, music, videos); iv)
productivity contains applications for calendars, alarms, and
for viewing and creating text documents (e.g., Office, PDF
reader); v) system contains applications for changing user
preferences and viewing system state (e.g., file explorer);
vi) games; vii) maps; and viii) other contains applications
that we could not include in any of the categories above,
e.g., because we did not know their function.

Figure 13 shows the mean relative popularity of each ap-
plication category across all users in each dataset. While
the results are not identical across the two datasets, they are
similar to a first order. Communication dominates in both.
Browsing is another major contributor in both datasets.
Maps, media, and games have a comparatively lower but
nevertheless substantial share of user attention.

Relationship to user demographic: To understand
the extent to which user demographic determines applica-
tion popularity, Figure 14 shows the mean and 95% CI of
relative popularity of each application category for differ-
ent user demographics. As for interaction time (§3.1), we
see that the impact of user demographics in our datasets is
minimal. In Dataset2, the relative popularity of various ap-
plication types is similar for each of the four demographics.
In Dataset1, there are noticeable differences in the mean for
communication, games and productivity applications. High
school students use communication and games applications
more, while knowledge workers use productivity applications
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Figure 14: The mean and 95% CI of relative pop-
ularity of application categories among users of dif-
ferent demographics.

more. However, considering the overlap of confidence in-
tervals, these differences in application popularity are not
statistically significant.

From this result and the earlier one on the lack of depen-
dence between user demographic and interaction time (§3.1),
we conclude that user demographic, at least as defined in
our datasets, cannot reliably predict how a user will use the
phone. While demographic information appears to help in
some cases (for e.g., the variation in usage of productivity
software in Dataset1), such cases are not the norm, and it
is hard to guess when demographic information would be
useful. Pending development of other ways to classify users
such that these classes more predictably explain the varia-
tion incorporating factors specific to a user appear necessary.
This insensitivity to user demographic has positive as well
as negative implications. A negative is that personalization
is more complex; we cannot predict a users’ behavior by
knowing their demographic. A positive implication is that
the range of user behaviors along many dimensions of in-
terest can be found in several common demographics. This
simplifies the task of uncovering the range because recruiting
subjects across multiple demographics tends to be difficult.

Relationship to interaction time: We also study if
users that interact more with their phones tend to use differ-
ent applications. For each dataset, we sort users based on
their average interaction time per day and partition them
into different classes. For Dataset1, we use two classes,
one each for the top and the bottom half of the users. For
Dataset2, which has more users, we use three classes for the
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Figure 15: The mean and 95% CI of relative pop-
ularity of application categories among different
classes of users based on interaction time per day.

top, middle, and bottom third of the users. Figure 15 shows
the mean and 95% CI for relative time spent with each ap-
plication category by each user class. We see that users in
different classes have similar application usage. Thus, we
cannot explain why some users use the phone more simply
based on the applications that they use.

4.3 Application Sessions
We now study the characteristics of application sessions.

We conduct this analysis only for Dataset2, based on times-
tamps for when an application is started and ended; Dataset1
does not contain this information precisely. Because appli-
cations can run in the background, start and end refer to
the period when the application is in the foreground.

Applications run per interaction: We begin by study-
ing the number of applications that users run in an interac-
tion session. Figure 16 shows that an overwhelming major-
ity, close to 90%, of interactions include only one application.
This graph aggregates data across all users. We did not find
statistically significant differences between users. A large
fraction of sessions of all users have only one application.

That interaction sessions very often have only one appli-
cation session suggests that users tend to interact with their
smartphone for one task (e.g., reading email, checking cal-
endar, etc.) at a time, and most of these tasks require the
use of only one application.

Application session lengths: Because interaction
sessions are dominated by those with only one application,
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Figure 16: Histogram of the number of applica-
tions called during each interaction session for all
the users in Dataset2.
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Figure 17: The mean and 95% CI of session lengths
of different application categories. The y-axis is log
scale.

the overall properties of application sessions, such as their
lengths, are similar to those of interaction sessions (§3).

However, studying the session lengths of applications sep-
arately reveals interesting insights. Different application
types have different session lengths, as shown in Figure 17,
for the categories defined earlier. Interactions with maps
and games tend to be the longest and those related to pro-
ductivity and system tend to be the shortest.

Further, given an application, different users run them
for different times. Figure 18 shows this effect for a mes-
saging application, tmail.exe, and a browsing application,
iexplore.exe. For each application, the mean session lengths
of users differ by more than two orders of magnitude.

These observations help explain why users have different
session lengths (§3.2). They prefer different applications
and those application sessions tend to have different lengths.
Further analysis confirms this phenomenon. For instance, if
we divide users into two classes based on their mean session
lengths, the popularity of games is twice as high in the class
with high session lengths.

5. TRAFFIC
In this section, we investigate traffic generated by smart-

phones. Unlike interaction events and application use, net-
work traffic is not an intentional user action but a side-effect
of those actions. Most users are likely oblivious to how much



tmail
1

10
10

0
10

00

0 20 40 60 80 100
User percentile

S
es

si
on

 le
ng

th
 (

s)
iexplore

1
10

10
0

10
00

0 20 40 60 80 100
User percentile

S
es

si
on

 le
ng

th
 (

s)
Figure 18: The mean and the upper end of the stan-
dard deviation of session lengths of two applications.
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Figure 19: The mean and the upper end of the stan-
dard deviation of the traffic sent and received per
day by users in Dataset1.

traffic they generate. We show that the diversity and diur-
nal patterns of this side-effect match those of user actions
themselves.

The analysis in this section includes only Dataset1; we do
not have traffic information for Dataset2. In Dataset1, we
record all of the data sent (or received) by the phone except
for that exchanged over the USB link, i.e., the traffic herein
includes data over the 3G radio and the 802.11 wireless link.

5.1 Traffic per day
Figure 19 shows that the amount of traffic sent and re-

ceived per day differs across users by almost three orders of
magnitude. The traffic received ranges from 1 to 1000 MB,
and the traffic sent ranges from 0.3 to 100 MB. The median
values are 30 MB sent and 5 MB received.

Our results indicate that traffic generated in a day by
smartphone users is comparable to traffic generated by PCs
a few years ago. A study of a campus WiFi network revealed
that on average users were generating 27 MB of traffic in
2001 and 71 MB in 2003 [12]. A study of Japanese residen-
tial broadband users in 2006 revealed that on average users
generate 1000 MB of traffic per day [11]. This high level of
traffic has major implications for the provisioning of wireless
carrier networks as smartphone adoption increases.

Relationship to application types: To investigate if
certain types of applications are favored more by users that
generate more traffice, we divide the users into two equal
classes based on their sum of sent and received traffic per
day. Figure 20 shows mean and 95% CI of relative popularity
of each application category for each user class. Expectedly,
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Figure 20: The mean and 95% CI of relative popu-
larity of each application category among high and
low traffic consumers.

it shows that communication applications are more popular
among users that consume more traffic.

5.2 “Interactive” traffic
We next estimate what fraction of the total traffic is “in-

teractive,” that is, has timeliness constraints. Approaches
to reduce power consumption of data transfers often advo-
cate rescheduling network transfers, for instance, by delay-
ing some transfers so that multiple of them may be bun-
dled [1, 22]. Such policies are difficult to implement for
interactive traffic without hurting user response time, and
thus are likely to be less valuable if the bulk of the traffic is
interactive.

We classify traffic as interactive if it was generated when
the screen is on. This classification method might classify
some background traffic as interactive. We expect the error
to be low because the screen is on for a small fraction of
the time for most users. Because certain user interactions
with the phone begin right after traffic exchange (e.g., a
new email is received), we also consider traffic received in a
small time window (1 minute) before the screen is turned on
as having timeliness constraints. The results are robust to
the exact choice of time window. Indeed some of the traffic
that we classify as interactive might be delay tolerant, e.g.,
a new email to be sent might be deferred for a little while.
However, the volume of traffic received by the phone, which
users would rather see immediately, dominates by one or-
der of magnitude the volume that is sent and delay-tolerant
messaging applications such as email contribute only a small
chunk of all traffic.

Figure 21 shows the fraction of interactive traffic for each
user. We see that for about 90% of the users, over 50%
of the traffic is interactive but for the rest almost none of
their traffic is interactive. Stated differently, for different
smartphone users, almost all to almost none of the traffic is
generated by applications in the background. The extremes
represent disparate ways in which people use smartphones
and which applications on the smartphone generate most
traffic. Our results imply that the energy savings that can be
had by rescheduling network activity will vary across users.

5.3 Diurnal patterns
Figure 22(a) shows the diurnal pattern for an example

user, with a sharp decline at night. Figure 22(b) shows
the strength of the diurnal pattern for individual users by
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Figure 22: (a) The mean and 95% CI for traffic
generated per hour by an example user. (b) The
diurnal ratio of traffic per hour for all users.

plotting the diurnal ratio of traffic. As defined in §3.3, the
diurnal ratio reflects how much higher the mean during the
peak hour is to the overall mean.

We see that the diurnal ratio varies across users but most
have a strong diurnal behavior. 80% of them generate over
twice their average amount of traffic in their peak hour. This
behavior is likely a direct result of the high proportion of
interactive traffic for most users and that user interactions
themselves have a diurnal pattern.

6. ENERGY CONSUMPTION
The final aspect of smartphone usage that we investigate

is energy consumption. Energy drain depends on two fac-
tors: i) user interactions and applications; and ii) platform
hardware and software. If the second factor dominates, the
energy drain of various users with the identical smartphone
will be similar. Otherwise, the energy drain will be as di-
verse as user behaviors.

We estimate the amount of energy drain based on the re-
maining battery indicator which varies between 0 and 100%.
If the battery indicator has gone down by X% in a time pe-
riod for a battery with capacity Y mAh, we compute the
energy drain in that period to be X · Y mAh 1. Given that
batteries are complex electro-chemical devices [14, 20], this
computation is approximate. It assumes that the battery
level indicator is linear with respect to energy drain.

1mAh is technically a unit of charge, yet is commonly used to
indicate energy drain because battery voltage during normal
operations is typically constant. For phones in our dataset,
this is 4V, so multiplying a mAh reading by 4 would yield
an accurate energy reading in milli-watt-hours.

0
20

40
60

80
10

0

0 4 8 12 16 20
Time (hour)

B
at

te
ry

 le
ve

l (
%

) Benchmark1
Benchmark2

Figure 23: Timelapse of the remaining battery level
indicator in controlled experiments with two differ-
ent workloads at room temperature.
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Figure 24: The mean and the upper end of the stan-
dard deviation of one hour energy drain for Dataset1
users during discharge periods.

Controlled experiments suggest that the linearity assump-
tion holds to a first order. We run a benchmark load that
drains the battery at a fixed rate in room temperature. Un-
der this benchmark, if the battery level indicator decreases
linearly with time, it must be linear with respect to energy
drain. Figure 23 shows that the level indicator decreases
roughly linearly for two different benchmarks. Benchmark1
turns the screen on and off periodically. Benchmark2 com-
putes and idles periodically. We conclude thus that the level
indicator can be used to estimate energy drain.

Figure 24 shows the mean and standard deviation of en-
ergy that users drain in an hour. This graph is computed us-
ing only periods in which the battery is not charging because
energy drain in those periods are of primary interest. We
see a two orders of magnitude difference among users. While
heaviest users drain close to 250 mAh the lightest of users
drain only 10 mAh. If the battery capacity is 1200 mAh,
this leads to a lifetime variation from about 4 to 120 hours.

Figure 25(a) shows for an example user that the drain is
not the same throughout the day but has diurnal variations
in which more energy is consumed during the day than dur-
ing the night. For this user, the level of energy consumed
changes by roughly a factor of five. Figure 25(b) plots the
diurnal ratio of energy use for all users. It shows that diurnal
variations occur, with different strengths, for all users.
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Figure 25: (a) The mean and 95% CI of energy drain
of an example Dataset1 user. (b) Diurnal ratio of
all users in Dataset1.

Our results show that user activities contribute heavily
towards energy drain; users in Dataset1, who have identi-
cal smartphones, drain energy at different rates, and energy
drain has diurnal patterns. In the future, we will develop
methods to accurately quantify the energy consumption of
the platform from that due to user-induced workload.

7. IMPLICATIONS OF USER DIVERSITY
We uncover a surprising level of diversity among smart-

phone users. For almost every aspect of usage that we study,
we find one or more orders of magnitude difference between
users. Our findings strongly motivate the need for customiz-
ing smartphones to their users. We believe that this need
is greater than that for customizing ordinary cellphones or
laptops. Ordinary cellphones do not have as rich an appli-
cation environment. Laptops are not as portable and are
more resource rich. For example, many users plug-in their
laptops while using them.

Customization can help at all levels. Consider something
as low-level as the battery. Suppose we want batteries to be
both lightweight and last for at least a day with a high proba-
bility. Meeting the latter goal for all users of a given platform
will require catering to the heaviest users. But that will lead
to unnecessarily heavy batteries for many users. (Higher
capacity batteries are heavier.) Offering multiple types of
batteries with different lifetime-weight tradeoffs provides a
way out of this bind.

At levels where intelligent mechanisms to improve user ex-
perience or reduce energy consumption reside, user diversity
motivates adapting to the smartphone user. Driving these
mechanisms based on average case behaviors may not be
effective for a large fraction of the users.

The ease and utility of customization depends on two
properties of user behavior. First, despite quantitative dif-
ferences, there must be qualitative similarities among users.
For instance, we should be able to describe the behavior of
all users with the same model. Different users may have
different parameters of this model, which will then lead to
quantitative differences among them. The presence of qual-
itative similarities imply that users are not arbitrary points
in space, and it significantly simplifies the task of learning
user behavior. Second, user behavior in the past must also
be predictive of the future. Otherwise, customization based
on past behaviors will be of little value in the future.

In the next two sections, we present evidence that these
properties hold for several key aspects of smartphone usage.
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Figure 26: The PDF of session length for sample
users of each dataset.

In §8, we show that user sessions and relative application
popularity can be described using simple models. In §9, we
show that energy drain can be described as well as predicted
using a “trend trable” framework.

8. SMARTPHONE USAGE MODELS
In this section, we develop simple models that describe

three aspects of smartphone usage – session lengths, inter-
arrival time between sessions, and application popularity.
The models are common across users but have different pa-
rameters for different users. While they do not completely
describe user behavior, they capture first order factors and
represent a first step towards more complete modeling of
smartphone usage. More importantly, along with the results
of the next section, they show that qualitative similarities
do exist among users.

8.1 Session Lengths
We first consider the statistical properties of session length

distributions of users. We find that session length values
tend to stationary. With the KPSS test for level stationar-
ity [13], 90% of the users have a p-value greater than 0.1.
The presence of stationarity is appealing because it suggests
that past behavior is capable of predicting the future.

We also find that session lengths are independent, that is,
the current value does not have a strong correlation with the
values seen in the recent past. With the Ljung-Box test for
independence [15], 96% of the users have a p-value that is
greater than 0.1.

Stationarity and independence, considered together, sug-
gest that session length values can be modeled as i.i.d sam-
ples from a distribution. Choosing an appropriate distribu-
tion, however, is complicated by the nature of the session
lengths. Most sessions are very short and the frequency
drops exponentially as the length increases. However, in-
consistent with exponential behavior, there are some very
long sessions in the tail for each user.

We find that a mixture of exponential and Pareto distri-
butions can model both ends of the spectrum. The former
captures short sessions and the latter captures long sessions.
That is, session lengths can be described by the following
mixture model:

r · Exp(λ) + (1 − r) · Pareto(xm, α)

In this equation, r is the relative mix of the two distribu-
tions, λ is the rate of the exponential, and xm and α are the
location and shape parameters of the Pareto distribution.

The location for a Pareto distribution represents the min-
imum possible value of the random variable. The location
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sample user
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Figure 28: Distribution of inferred model parame-
ters that describe session length values of users in
both datasets.

value that offers the best fit is the screen timeout value of
the user, because the session length PDF has a spike at this
value. The spike corresponds to short sessions that are ended
by the timeout (when the user forgets to switch the screen
off); we confirm this using controlled experiments with dif-
ferent timeout values. Figure 26 shows this spike, at 60 and
15 seconds, for example users from each dataset. The time-
out provides a natural division between the two component
distributions. We automatically infer its approximate value
using a simple spike detection algorithm.

We use the EM algorithm to infer the maximum likelihood
estimation (MLE) of the remaining three parameters [6].
Figure 27 shows the quality of this fit for an example user
using the QQ plot [3]. Almost all quantiles are along the
y = x line, indicating a good fit.

Figure 28 shows the four inferred parameters for various
users. While users can be modeled using the same mix-
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Figure 29: QQ plot of session offtime model for a
sample user
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Figure 30: Distribution of inferred model parame-
ters that describe the distribution of time between
sessions for users in both datasets.

ture model, the parameters of this model vary widely across
users. Because of the way we construct our model, the dis-
tribution of the parameter r and xm also provide insight
into how frequently users’ screen is switched off by the time-
out and the relative popularity of different timeout values.
60 seconds is the most popular value, likely because it is the
most common default timeout and many users never change
the default.

8.2 Time between Sessions
We find that the Weibull distribution can explain the

screen off times. This distribution has two parameters re-
ferred to as its scale and shape. We find the MLE for these
parameters for each user. From the QQ-plot in Figure 29,
we notice that the model predicts a greater probability of
seeing some very large offtimes than are observed in the
datasets. However, the probability of seeing these large off-
times is small; there are 2.7% data points that have a y-
value greater than 8000 in that graph. Hence, we believe
that Weibull provides a good fit for the length of intervals
between interactions.

Figure 30 shows the distribution of the estimated shape
and scale of the fitted Weibull distributions. Interestingly,
the shape is consistently less than one. Weibull shape values
less than one indicate that the longer the screen has been off,
the less likely it is for it to be turned on by the user. This be-
havior has interesting implications for power saving policies.
For instance, periodic activities such as checking for email
when the screen has been off for a while may be deferred or
rescheduled if needed without hurting user experience.
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Figure 31: (a) The mean square error (MSE) when
application popularity distribution is modeled using
an exponential. (b) The inferred rate parameter of
the exponential distribution for different users.

8.3 Application Popularity
We find that for each user the relative popularity of ap-

plications can be well described by a simple exponential dis-
tribution. This qualitative invariant is useful, for instance,
to predict how many applications account for a given frac-
tion of user attention. For the example users in Figure 11,
this facet can be seen in the inset plots; the semi-log of the
popularity distribution is very close to a straight line.

Figure 31(a) shows that this exponential drop in applica-
tion popularity is true for almost all users; the mean square
error between modeled exponential and actual popularity
distribution is less than 5% for 95% of the users.

Figure 31(b) shows the inferred rate parameter of the ap-
plication popularity distribution for various users. We see
that the rate varies by an order of magnitude, from 0.1 to
almost 1. The value of the rate essentially captures the pace
of the drop in application popularity. Lower values describe
users that use more applications on a regular basis. One
implication of the wide range is that it may be feasible to
retain all popular applications in memory for some users and
not for others.

9. PREDICTING ENERGY DRAIN
In this section, we demonstrate the value of adapting to

user behaviors in the context of a mechanism to predict fu-
ture energy drain on the smartphone. Such a mechanism
can help with scheduling background tasks [9], estimating
battery lifetime, and improving user experience if it is esti-
mated that the user will not fully drain the battery until the
next charging cycle [2, 21].

Despite its many uses, to our knowledge, none of the
smartphones today provide a prediction of future energy
drain. Providing an accurate prediction of energy drain is
difficult.2 User diversity of energy use makes any static pre-
diction method highly inaccurate. Even for the same user
there is a high variance in energy usage. Figure 32 shows this
variance by plotting the ratio of the standard deviation to
the mean energy drain over several time periods for users in
Dataset 1. The standard deviation of 10-minute windows is
higher than three times the mean for a fifth of the users. The

2Energy drain prediction on smartphones is more challeng-
ing than what is done for laptops. Laptops provide a pre-
diction of battery lifetime only for active use. Smartphone
predictions on the other hand must cover multiple active,
idle periods to be useful.
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Figure 32: Battery drain predictors have to cope
with the high variance in drain
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Figure 33: A user’s trend table captures how battery
drain in n consecutive chunks relates to drain in the
subsequent window.

bursty nature of user interactions is one cause of this high
variance. The variance is high even at longer time scales.
The standard deviation for two hour windows is larger than
150% of the mean for half the users. The diurnal patterns
that we showed earlier are one cause of high variance over
such large time scales.

Although the variance is high, there are patterns in a
user’s behaviors. For instance, we showed earlier that a
phone that has been idle for a while is likely to remain idle
in the near future, and it will thus continue to draw energy
at a similar rate.

We hypothesize that a predictor tuned to user behavior
can be accurate. We present a simple personalized energy
drain predictor that incorporates various user-specific fac-
tors such as length of idle periods, and different types of
busy periods. Instead of explicitly identifying these factors,
our predictor captures them in a “trend table” framework.

Our framework is shown in Figure 33. Each entry in the
trend table is indexed by an n-tuple that represents energy
usage readings from adjacent chunks of size δ each. This
index points to energy usage statistics across all time win-
dows of size w in the history that follow the n chunk values
represented by that index. Thus, the trend table captures
how the energy usage in n consecutive chunks is related to
the energy use in the subsequent time windows of size w.

In this paper, we use n = 3, δ = 10 minutes and maintain
different trend tables for each window size w for which the
prediction is required. To keep the trend table small, we
quantize the energy readings of chunks. We maintain the
mean and standard deviation for all subsequent windows
that map to that index.

To make a prediction, we use the energy readings from
the n immediately preceding chunks. Let these readings be
(x1 . . . xn). Then, we search for indices in the table that
differ from (x1 . . . xn) by no more than a threshold s and
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Figure 34: The ratio of error to true battery drain
for different energy drain predictors.

predict based on them, such that similar indices have higher
relative weight. More precisely, the prediction is

X

e s.t.∀i=1...n|he

i
−xi|<s

ke × ûe

P

ke
,

where e iterates over all tuples in the trend table, he
i is

the value of the chunk i of the tuple e, ûe represents the
statistics stored for that index, and the relative weight ke =
s − maxi=1...n |he

i − xi|. For results shown here, we use
s = 0.5%.

Figures 34 shows how well our Personalized predictor works
for predicting usage for two different future time windows.
There is one point per user in each graph, which corresponds
to the median error seen across many predictions for that
user. We see that the 90th percentile error is 25% for 1-hour
window and 40% for 2-hour window.

To place this level of accuracy in context, the figure also
shows the accurary of three alternative predictors. The
Generic predictor uses a trend table but instead of building
a user-specific table, it builds one that combines all users.
We see that its 90th percentile error is roughly twice that
of the Personalized predictor. Its predictions are worse for
half of the users.

The Short-term predictor predicts energy drain simply as
the amount drained in the immediately preceding window
of the same size. For both time windows, its 90th percentile
error is no better than that of the Generic predictor.

The Time-of-day predictor predicts energy drain based on
values observed for the user at the same time of the day in
the past, similar to that proposed by Banerjee et al. [2].
Thus, this predictor has some degree of personalization, but
it learns user behavior in less detail than the Personalized
predictor. We see that its performance for 1-hour window
is similar to the Short-term predictor. For 2-hour window,
its error is higher than the Personalized predictor across the
board, though its worst case error is lower than the Short-
term and Generic predictors.

Overall, these results demonstrate the value of appropri-
ately learning user behaviors to design intelligent mecha-
nisms on smartphones.

10. RELATED WORK
In a range of domains, there is a rich history of work that

characterizes user workloads. However, because smartphone
adoption has gathered pace relatively recently, our work rep-
resents one of the few to study how people use smartphones.

Along with other recent works, it helps complete the pic-
ture. Banerjee et al. and Rahmati et al. report on battery
charging behaviors [2, 18]. Like us, they find considerable
variation among users. Banerjee et al. also propose a pre-
dictor that estimates the excess energy of the battery at
the time of charging, using a histogram of past battery us-
age [2]. Shye et al. study the power consumption character-
istics of 20 users [24]. They infer properties such as which
components in the phone consume most power and explore
optimizations based on these characteristics. Rahmati and
Zhong study 14 users of a particular demographic to study
which applications are popular in that demographic, where
the phone is used, and how it is shared among users [19].

In contrast to these works, we focus on understanding
different aspects of smartphone use (e.g., interactions and
traffic) and on exposing the diversity of user behaviors, in-
stead of only the average behavior. Our study also entails
an order of magnitude more users than previous efforts.

Like us, other researchers have developed logging utilities.
MyExperience is one such early utility [10], and the works
above involve custom utilities as well. Our focus in this
paper is not on the development of logging tools but on
analyzing their data to gain insight into user behavior.

There is a body of work in modeling the aggregate be-
havior of mobile users. Using traces from a large cellular
operator some network related aspects of mobile usage have
been modeled. Halepovic et al. and Williamson et al. re-
port that call arrivals are bursty and present diurnal pat-
terns [28]. Willkomm et al. and Brown et al. report that
mobile users call duration can be approximately modeled by
a lognormal distribution [4, 29]. We use traces collected on
the mobile device itself and focus on modeling the interac-
tions of individual users instead of the aggregate behavior.

11. CONCLUSIONS
By studying 255 users of two different smartphone plat-

forms, we comprehensively characterized user activities and
their impact on network and battery. We quantify many
hitherto unknown aspects of smartphone usage. User diver-
sity is an overarching theme in our findings. For instance,
different users interact with their phones 10-200 times a day
on average; the mean interaction length of different users



is 10-250 seconds; and users receive 1-1000 MB of data per
day, where 10-90% is received as part of active use.

This extent of user diversity implies that mechanisms that
work for the average case may be ineffective for a large frac-
tion of the users. Instead, learning and adapting to user
behaviors is likely to be more effective, as demonstrated by
our personalized energy drain predictor. We show that qual-
itative similarities exist among users to facilitate the devel-
opment of such mechanisms. For instance, the longer the
user has not interacted with the phone, the less likely it is
for her to start interacting with it; and application popular-
ity for a user follows a simple exponential distribution.

Our study points to ways in which smartphone platforms
should be enhanced. Effective adaptation will require future
platforms to support light-weight tools that monitor and
learn user behaviors in situ. It will also require them to
expose appropriate knobs to control the behavior of lower-
level components (e.g., CPU or radio).
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