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Abstract — Multi-hop wireless networks are vul-
nerable to free-riders because they require nodes to for-
ward packets for each other. Deployed routing protocols
ignore this issue while proposed solutions incorporate
complicated mechanisms with the intent of making free-
riding impossible. We present Catch, a protocol that falls
between these extremes. It achieves nearly the low mech-
anism requirements of the former while imposing nearly
as effective barriers to free-riding as the latter. Catch is
made possible by novel techniques based on anonymous
messages. These techniques enable cooperative nodes
to detect nearby free-riders and disconnect them from
the rest of the network. Catch has low overhead and
is broadly applicable across routing protocols and traffic
workloads. We evaluate it on an 802.11 wireless testbed
as well as through simulation.

1 Introduction

Selfish behavior is an important design consideration
whenever parties with varied interests come together to
achieve a common goal. Examples where individual be-
havior can be at odds with the system goal include free-
riding in peer-to-peer file sharing networks [1, 36, 25, 32,
13, 41], cheating in online games [33, 6], ISP competi-
tion in Internet routing [38, 12], and network congestion
control [16, 17, 37, 23, 4, 26, 28]. As has been observed
in many of these systems, some parties will behave self-
ishly if there is gain to be had, even to the detriment of
others.! A high-level goal in these systems is to design
protocols that ensure the system will work well despite
selfish behavior.

In this paper, we study the problem of selfish behav-
ior in multi-hop wireless networks. The emergence of
these networks is being driven by the rapid deployment
of 802.11 networks and the advantages of relaying pack-
ets between nodes. In infrastructure rich areas, relaying
can reduce dead spots, lower power consumption [31],
and increase network capacity [19]. In rural or develop-
ing areas, multi-hop wireless networks can be deployed
more readily and at lower expense than traditional wire-
less networks. Research examples of multi-hop networks
include MIT’s Roofnet [35], Microsoft’s MUP [2], the
Digital Gangetic Plains Project [8], and UCAN [27].

Selfish behavior is a concern in this setting because
relaying packets for others consumes bandwidth and en-

ergy. Unlike traditional, wired LANs, nodes in these
networks are often controlled by independent and poten-
tially competing parties, e.g., nearby apartments [2, 35]
or villages [8]. In the absence of any pressure to be-
have cooperatively, nodes have an incentive to free-ride
by sending their own packets without relaying packets
for others. This concentrates traffic through the cooper-
ative nodes, which decreases both individual and system
throughput, and may even partition an otherwise con-
nected network.

Deployed routing protocols ignore the issue of free-
riding. They simply assume that factors external to the
routing protocol cause all nodes to cooperate. This in-
curs no overhead but unfortunately makes it trivial for a
node to free-ride, e.g., by using a simple firewall rule to
render itself indistinguishable from a node that lacks the
wireless connectivity needed to relay traffic. Moreover,
we show experimentally (Section 5.2) that free-riders can
obtain substantial benefits. We should reasonably expect
free-riding to become prevalent in all but the most benign
situations.

Proposed solutions typically incorporate enough
mechanism in the routing protocol to eliminate free-
riding. This often involves some form of distributed ac-
counting that allows each node to consume no more for-
warding service than it provides. These solutions suf-
fer from two serious drawbacks. They require infrastruc-
ture that seems unlikely to come about in practice, e.g.,
centralized clearance services [44, 34] or trusted hard-
ware [11]. And they impose overly restrictive require-
ments on the system, e.g., uniform traffic rates among all
node pairs [39].

Our goal is to combine the strengths of these two
approaches while avoiding their weaknesses. Like de-
ployed protocols, we assume that most (but not all) nodes
will behave cooperatively. Like proposed solutions, we
do not rely on trust alone but include mechanisms that
actively discourage free-riding. The insight underly-
ing this combination is that early users of a system are
typically cooperative (as they try to get the system to
work at all) while selfish behavior emerges when the user
base grows [22]. Evolutionary game theory predicts that
free-riding will not flourish if discouraged from an early
stage [18].



Our solution is called Catch. It uses an existing major-
ity of cooperative nodes to collectively discourage a mi-
nority of selfish nodes from free-riding. In game theory
parlance, Catch assures that cooperation is an evolution-
arily stable strategy. To achieve this, Catch uses novel
techniques based on anonymous messages (in which the
identity of the sender is hidden) to tackle two critical
problems. First, Catch allows a cooperative node to de-
termine whether its neighbors are free-riding, i.e., drop-
ping packets that should be relayed. Second, it enables
the cooperative neighbors of a free-rider to disconnect it
from the rest of the network. These tasks can be accom-
plished even when cooperative nodes can communicate
with each other only through potential free-riders. The
result is that free-riding that previously succeeded is now
deterred in a low-cost manner.

We have implemented and evaluated Catch on an in-
building 802.11b testbed. This provides a realistic eval-
uation environment with the complex link quality factors
that affect actual wireless systems. Real wireless condi-
tions significantly complicate the implementation of ro-
bust mechanisms where nodes monitor the behavior of
their neighbors. Yet they have received little attention
in earlier work, which to our knowledge is exclusively
based on simulation. We find that Catch is able to detect
free-riding by individual nodes both quickly and with
high accuracy. Its overhead is modest, roughly 24Kbps
of control packets per node in our testbed, with no space
overhead or cryptographic operations per data packet.

The rest of this paper is organized as follows. We
describe our problem setting in Section 2, followed by
our approach based on anonymous messages in Sec-
tion 3. The Catch protocol itself is described in Sec-
tion 4. Section 5 describes our evaluation based on the
802.11 testbed. We then report simulation results that
analyze Catch across a broad range of parameters in Sec-
tion 6. Finally, we present related work in Section 7 and
our conclusions in Section 8.

2 Problem

We focus on selfish behavior, whereby a node gains at
the expense of others, rather than malicious behavior, in
which a node actively attacks others, e.g., by jamming
its radio transmissions. Consider the simple example of
a multi-hop wireless network in Figure 1. Here A may
wish to send a message to C, either to communicate with
C itself or because C' serves as a gateway to additional
nodes. Because A and C are not in each other’s radio
range, communication between then must rely on B. On
the other hand, B may be interested in communicating
via C' but uninterested in obtaining any service from A.
In that case, B may want to avoid the costs of forwarding
packets for A.

A—B—O

Figure 1: An example multi-hop wireless network topology in
which free-riding can take place.

B can avoid these forwarding loads in two distinct
ways: at the forwarding level and at the routing level.
At the forwarding level, B can simply drop some or all
of the data packets it receives for forwarding from A. At
the routing level, B can refuse to send routing messages
that acknowledge connectivity with A. Consequently, B
will appear to be a “dead-end” from C"s perspective and
unreachable from A’s, and so neither will ever request
forwarding of it. This strategy, which we call link con-
cealment, is broadly applicable and, to our knowledge,
no existing wireless routing protocol or policing scheme
counters it. Our protocol, Catch, prevents B from get-
ting away with these selfish behaviors in the case that
both A and C' behave cooperatively. B would appear to
be immune from adverse consequences for free-riding,
because at best only A is aware of either of these behav-
iors (and it cannot communicate with C' except through
B), and only C can inflict any punishment on B. But we
will see that this is not so.

Catch relies on three assumptions about nodes. First,
most of them are cooperative in that they correctly run
a protocol we define. A minority of nodes may be self-
ish and attempt to free-ride; we do not consider collu-
sion amongst these nodes. Second, we assume omni-
directional radio transmitters and antennas, so that nodes
can overhear nearby communications. This is true for
common 802.11 hardware today. Third, nodes have an
unforgeable identity. Such identities are not provided
by current hardware but can be implemented by other
means, e.g., using one-way hash chains [20] and impos-
ing a startup cost for new identities.

Catch does not make any assumption regarding the
routing protocol, traffic workload, or objectives of the
nodes (such as bandwidth maximization or energy con-
servation). We believe that it works largely unchanged
across these variables. We do not directly consider fair-
ness issues but assume that a higher layer protocol de-
cides what fraction of packets a node should relay for
others. Catch can then be used to enforce that policy.

3 The Power of Anonymity

At a high-level, our approach is to use cooperative nodes
to monitor for the presence of free-riders and to isolate
them from the rest of the network. In this way, free-riding
is no longer attractive. However, this approach requires
us to tackle two problems, each of which is difficult or
impossible to solve in the general case:



1. A node must be able to distinguish between selfish
nodes that deliberately drop packets and cooperative
nodes that simply do not receive them due to wire-
less transmission errors. It must do this from afar,
even though packet reception events are not exter-
nally observable.

2. When a node detects a free-rider, it must be able to
signal all of the free-rider’s neighbors so that they
can collectively isolate it. This must happen even
when the only path to those neighbors is through the
free-rider itself (which can simply refuse to forward
messages that are not in its interest).

We show that anonymous messages, in which the re-
ceiver cannot determine the identity of the sender, can
be combined with the broadcast nature of wireless to
address both problems. This building block was first
used in Cocaine [40]. Anonymous messages can be pro-
vided for most current 802.11 hardware by scrubbing the
source MAC address on packets [7]. This forces would-
be free-riders to engage in sophisticated games with sig-
nal strength measurements if they are to infer the sender.
For now, we assume that anonymity can be provided and
return to the impact of signal strength hints in Section 5.

3.1 Anonymous Challenges and
Watchdogs

To distinguish deliberate packet dropping from wireless
errors, we compare an estimate of the true connectivity
of a node with its observed forwarding behavior. We use
a watchdog [29] to observe the forwarding behavior of a
testee node that is being tested for selfish behavior from
a tester node that is assumed to operate correctly. (We
use the terms fester and festee in these roles throughout
this paper.) The watchdog relies on the broadcast nature
of wireless transmissions. After a node sends a packet
to a neighbor for relaying, it can listen to the wireless
medium to observe whether the packet is forwarded by
the neighbor. It can thereby build up an estimate of the
neighbor’s forwarding behavior over time.

It is more difficult to remotely estimate the true con-
nectivity of a node. To do so, we develop an anonymous
challenge message (ACM) sub-protocol as follows. Ob-
serve that even a selfish testee must depend on at least
one of its testers to forward its packets if it is to stay con-
nected. Call this tester the gateway. Let the gateway reg-
ularly but unpredictably send an anonymous challenge
to the testee for it to rebroadcast; the gateway refuses to
forward packets for the testee if it does not overhear the
rebroadcasts (since it believes the testee is not connected
or is free-riding). Now consider that all other testers with
connectivity to the testee are also sending it anonymous
challenges, requiring that they be rebroadcast. Because

the testee cannot differentiate gateway challenges from
other challenges, it must rebroadcast them all or risk los-
ing connectivity to the gateway. This allows the other
testers to estimate their connectivity to the testee. They
then compare this to the observed forwarding behavior
and infer deliberate packet dropping if there is a discrep-
ancy. In practice, the estimates of connectivity and for-
warding are statistical and only recent estimates are com-
pared to allow for real wireless losses.

The ACM protocol is difficult to undermine even with
weak anonymity because the likelihood of correctly han-
dling a series of challenges decreases exponentially over
time. Without breaking the protocol, a testee has only
two options to avoid being flagged as deliberately drop-
ping packets. First, it can be honest and reveal its true
connectivity to its neighbors and forward their packets.
This is what we desire. Second, it can selfishly drop both
challenges and data packets in equal amounts and appear
to be poorly connected to all its neighbors. But this is
a counter-productive strategy. Because the challenges
are anonymous they will be dropped independently of
their source, and so data packets must also be dropped
independently of their source to match. This forces the
selfish node to drop and retransmit even its own packets,
needlessly consuming its own resources. We note that
the ACM protocol is compatible with nodes that sleep
for power management, effectively dropping all packets.
These nodes neither contribute to the network nor con-
sume its resources, which we consider acceptable behav-
ior. The ACM protocol also has the effect of discarding
asymmetric links as does the 802.11 MAC.

3.2 Anonymous Neighbor Verification

Once a tester detects free-riding, it informs all other
testers of the free-rider, so that they can simultaneously
isolate it. This is necessary: if testers independently
break connectivity with the free-rider, they only help the
free-rider by reducing its forwarding burden while leav-
ing it able to send its own packets through other testers.
The challenge is to inform the other testers even though
the only path to them might be via the free-rider, who
may discard any incriminating information.

We define an anonymous neighbor verification (ANV)
sub-protocol to allow a tester to reliably inform the other
testers when the testee misbehaves. It operates in two
phases. In the first (“ANV Open”) phase, all testers be-
come aware of each other via the testee: each tester sends
a cryptographic hash of a randomly generated token to
the testee for it to rebroadcast, and other testers take note
when the rebroadcast happens. As before, anonymous
messages are used to prevent the testee from selectively
excluding testers. If the testee does not rebroadcast these
messages, the testers assume that it lacks connectivity or
is free-riding and do not relay packets for it.
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Figure 2: An example topology to illustrate the use of Catch.
The lines connect nodes that can directly communicate. (This is
done to simplify the illustration; in reality, wireless connectivity
is not binary but varies over a range [3].)

In the second (“ANV Close”) phase, each tester re-
leases its token to the testee only if the testee has be-
haved well, as determined by the ACM protocol. The
testee rebroadcasts this token. If the hash of the received
token matches one of the hashes collected during the
first phase, other testers know that this particular tester
is satisfied; the original token can only be released by the
tester who encrypted it because it is computationally hard
to invert the hash. If a tester does not eventually hear all
of the tokens it expects based on the first phase, it con-
cludes that another tester is signaling the presence of a
free-rider by refusing to release its token. The free-rider
is then isolated by all testers. Note that it is crucial that
failure of the testee be signaled by the absence of a mes-
sage to prevent the free-rider from blocking the signal,
as it could with a more straightforward positive signaling
mechanism.

We make two further observations. First, as before,
dropping messages in the first phase to exclude particular
testers and their data packets is unlikely to succeed. This
is because the likelihood of correctly matching anony-
mous messages to testers decreases exponentially over
time. Second, interference in the second phase of the
sub-protocol by the testee is clearly unproductive be-
cause it can only lead to its isolation.

3.3 Example

We use an example to illustrate the power of the com-
bined protocols. In Figure 2, a cooperative client is com-
pletely surrounded by free-riders. Without Catch the
client cannot communicate with any of the gateways be-
cause the free-riders ignore its packets. With Catch, the
client uses the ACM protocol to determine that it is in
fact connected to the selfish nodes, and the watchdog to
verify that its packets are not being dropped. If they are,
the client uses the ANV protocol to inform the gateways,
which isolates the free-riders. The threat of this punish-
ment deters free-riding. Further, while we leave the issue
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Figure 3: Protocol flow. Packet exchange between a tester and
a cooperative (left side) or free-riding (right side) testee. Num-
bers on the left of the time sequence correspond to the protocol
steps.

of collusion for future work, Catch works for this topol-
ogy even if the selfish nodes collude. This suggests a
degree of collusion-resistance in the design.

4 The Catch Protocol

Catch builds on the anonymous techniques above, adapt-
ing them for use in real, wireless networks.

4.1 Overview

Catch operates as a sequence of protocol epochs run be-
tween a festee node and its neighbors, who act as festers.
Figure 3 provides two illustrations of the per-epoch pro-
tocol steps, one when the testee is cooperating and the
other when it is free-riding.

Each epoch consists of the following steps:

1. Epoch-Start. The testee broadcasts an EpochStart
packet that includes its identity and an epoch iden-
tifier. Nodes that receive this request participate as
testers for this epoch.

2. Packet Forwarding and Accounting. Testers run a
watchdog [29] to count the number of their data
packets that were correctly relayed. Note that the
watchdog allows the testers to check for packet re-
ordering (to force TCP backoff), corruption, or mis-
direction. Simultaneously, testers run the ACM pro-
tocol to estimate true connectivity. This involves
sending anonymous challenges and counting their
rebroadcasts; the data packets themselves are not
anonymous.



3. Anonymous Neighbor Verification Open (ANVI).
Each tester “opens” the two-phase ANV sub-
protocol (Section 3.2) by sending an anonymous
packet containing a nonce (to prevent replay at-
tacks) and a hashed token to the testee for rebroad-
casting.

4. Tester Information Exchange. Each tester compares
the fraction of its data packets that it overheard
and the fraction of its anonymous challenges that
it heard reflected. It obtains a one-bit (“sign”) re-
sult depending on which is greater: 0 for challenges
and 1 for data packets. It then sends its sign bit and
identity to the testee for rebroadcasting.

5. Epoch Evaluation and ANV Close (ANV2). Each
tester determines whether the testee is operating
correctly using its observations and the sign bits
from other testers. This is done with a pair of statis-
tical tests described in the next subsection. If both
tests pass (and the testee correctly rebroadcast the
tester’s sign bit), the tester releases its token. Other-
wise, it withholds its token.

6. Isolation Decision. An epoch fails for a tester if
it withholds its token or it does not receive all ex-
pected tokens. If too many epochs fail too quickly
(Section 4.3) then the tester decides that the testee
is free-riding and punishes it by dropping its pack-
ets for a fixed number of epochs. By virtue of the
protocol, all testers decide to punish a free-rider at
(nearly) the same time, so that it is isolated.

We increase the likelihood of all testers seeing all con-
trol packets in two ways. First, we use retransmissions
if a tester does not hear the rebroadcast. Second, we use
cumulative broadcasts, where the testee sends all of the
information it has received on every transmission.

4.2 The Per-Epoch Tests

Each tester applies two statistical tests per epoch to de-
termine whether a testee is behaving correctly. Each test
is designed to be sensitive to distinct selfish strategies.
The key challenge in both is to avoid mistaking volatile
wireless conditions for misbehavior.

One selfish strategy is to drop packets from a particu-
lar tester in the hope that the consensus across neighbors
will be that the free-rider has passed the epoch, since all
other testers should find its behavior acceptable. To de-
tect this, each tester compares observed forwarding and
true connectivity estimates for the last three epochs us-
ing the z test [30]. We found that high confidence levels
(99% and above) coupled with using measurements from
multiple epochs provides a good balance between quick
detection of free-riding and a low rate of false positives.

The second selfish strategy is to uniformly drop some
fraction of the packets received from each tester, mak-
ing it hard for any one of them to conclude that free-
riding has taken place. To detect this, we employ the
sign test [30] using the sign bits exchanged by all testers.
This test is based on the idea that the perceived forward-
ing and connectivity rates should have identical means
if the testee is not deliberately dropping packets. Thus,
random fluctuations in each epoch should yield about as
many results in which one exceeds the other as the op-
posite. Each tester accumulates the one-bit results for all
epochs in which it has participated, and applies the sign
test to decide if the balance is reasonable.

4.3 The Isolation Decision

Isolation of a testee is decided by all testers in parallel.
Each maintains a small history of per-epoch test results,
represented as a three state finite state automaton (FSA)
that moves to the right when an epoch fails and the left
when an epoch passes. If the FSA falls off the right edge,
the testee is isolated.

While it might seem that this scheme allows a node
to free-ride for at least half of the epochs, the fact that
the per-epoch test results depend on packet accounting
data aggregated over the previous three epochs prevents
this: free-riding in any one epoch impacts the tests for
three consecutive epochs, and is likely to lead to multi-
ple failed tests. We more fully explore this issue in Sec-
tion 6.3.

4.4 Protocol Fail-safes

Because Catch is designed to operate when some nodes
act in a selfish manner, we are as concerned about what
happens when the protocol is not followed as when it is.
In Appendix A we provide a short analysis by message
type that shows that selfish nodes cannot undermine the
protocol in the absence of collusion.

5 Experimental Evaluation

This section describes our experiments with Catch on
an 802.11b testbed. This allows us to test how well
Catch works in wireless environments that exhibit com-
plex packet loss behaviors [24].

5.1 The Testbed

Our testbed is composed of 15 PCs equipped with
802.11b that run Linux 2.4.26. We use NetGear MA311
PCI network adapters (Prism 2.5 chipset), operating in
the ad-hoc mode on channel 1 using the hostap driver.
Each node also has a wired Ethernet interface to facili-
tate remote management of the experiments.

The testbed is located on a single floor of an office
building, as shown in Figure 4. The building has its own
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Figure 4: Our wireless testbed, consisting of fifteen 802.11b
nodes. The node locations are marked with circles. Horizon-
tally, the building is 184 ft. long.

dense deployment of wireless access points, including
ten on the same floor as our testbed, some of which com-
pete with us on channel 1. Such a setting is noisy, but
realistic [3].

Our system exhibits well-known characteristics of
wireless networks, including error rates that are not a
simple function of distance, that are strongly asymmet-
ric, and that vary widely over time. Figure 5 gives a
static summary of these effects. It shows the average
one-way delivery rate in each direction for each pair of
nodes that were able to communicate at all. To compute
these rates, each node broadcast 500 1000-byte packets
over two minutes. The other nodes counted how many
of those packets they received. The figure shows a wide
range of delivery rates rather than a binary state of con-
nectedness, which is consistent with prior results [3, 43].
The diameter of our network is between 3 and 5 hops,
depending on the threshold of link quality at which two
nodes are considered connected.

5.1.1 Catch Implementation

We implemented Catch at user-level using the Linux net-
filter framework to monitor and manipulate the packets
sent, received, and forwarded by a node. The watchdog
component of Catch also needs to overhear all packets
sent by the node’s neighbors regardless of their intended
destination. To capture these packets, we operate our
wireless network adapters in promiscuous mode and use
the Linux pcap framework. The Catch protocol itself is
written in ruby and is completely independent of the un-
derlying routing protocol.
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Figure 5: For each node pair in the testbed, the fraction of
sent packets successfully received in each direction. There are
105 pairs total in the testbed. Only node pairs with a non-zero
delivery rate between them in at least one direction are shown.

One complication is that the watchdog mechanism
needs to account for 802.11 MAC-level retransmissions.
To see this, consider a tester judging whether the testee
forwarded a particular data packet. The quality of the
link between the testee and the recipient determines the
number of retransmissions done by a cooperative testee.
This in turn changes the probability that the tester will
overhear the transmission. To correct for this recipient-
based variation, we measure the data forwarding rate us-
ing only the first transmission as indicated by a bit in
the 802.11 MAC header. A complete implementation of
Catch would also check that retransmissions are handled
consistently to close a secondary loophole. We have not
done so yet.

We use the following parameters values for our ex-
periments; simulations suggest that Catch is not highly
sensitive to the exact choices. The length of an epoch is
set to one minute. The confidence interval for the z test
is 99.999%, and that for the sign test is 99.995%. (Both
experiments and simple analysis showed that very high
confidence values are most effective.) There are fifteen
anonymous ACM messages per epoch, each of which is
1500 bytes, the MTU (maximum transmission unit) size
of our network adapters. The loss rate for smaller data
packets (such as TCP acknowledgements) can be less
than that of the ACM messages. To verify forwarding
behavior, our implementation checks that the loss rate
for data packets is less than that for ACM messages.

5.1.2 Multi-Hop Performance

We first show the potential benefit of relaying packets by
comparing the performance of a single, centrally located
access point (AP) setup to that of multi-hop routes. To do
this we transfer a large file from one node, which acts as
the AP (node 8 in Figure 4), to four client nodes (nodes
4, 6,9 and 14). Each client downloads a 600KB file ten
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times. In one set of experiments, the clients communi-
cate directly with the AP. In the other, they use multi-hop
routes via a single intermediary node, over paths 4:5:8,
6:7:8, 14:10:8, and 9:10:8. We use static routes between
nodes to factor out effects that stem mainly from the rout-
ing protocols; wireless routing protocols are an open area
of research [14].

Figure 6 shows the results. The z-axis labels give the
delivery rate of the direct links, averaged over both direc-
tions. The parenthesized numbers give an estimate of the
quality of the two-hop path, computed as the product of
the delivery rate of the individual links. In total, the use
of multi-hop paths reduced download time by 16%, with
per-node benefits ranging from 30% to -2%. The better
performance of the multi-hop routes is due in part to the
lower packet loss rates they enjoy. De Couto et al. have
studied these issues in more detail [15, 14].

5.2 The Impact of Free-riders

We now consider the performance impact of free-riding,
both as benefits to the free-riders and as costs to the co-
operative nodes. We do this by contrasting the per-node
throughput achieved in a fully cooperative network with
those achieved when some nodes are allowed to free-ride.

In this experiment, we randomly selected 3 nodes as
free-riders. All nodes were trying to download randomly
selected files from randomly selected servers. Figure 7 il-
lustrates the average amount of data transferred under the
two scenarios: “Free-riding Discouraged,” which results
in all nodes behaving cooperatively, and “Free-riding Ig-
nored,” where free-riders simply do not relay packets for
cooperative nodes. Both scenarios were run for 35 min-
utes. The two bars in each scenario average the per-node
results for twelve nodes that acted cooperatively and for
the three free-riders. The data illustrates two key points.
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Figure 7: Average amount of data transferred per node when
free-riding is discouraged and when it is not. None of the nodes
free-ride in the former. Nodes 7, 14 and 15 free-ride in the
latter.

First, there is a very large incentive to free-ride: the free-
riders improve their throughput by 400% relative to when
they are forced to cooperate. This indicates that there
is considerable potential motivation for nodes to behave
selfishly in these environments if they can do so with-
out retribution. Second, the improved situation for the
free-riders comes at the expense of cooperative nodes.
The performance of the cooperative nodes is decreased
by 25% when 20% of their fellow nodes selfishly mis-
behave. While this is only a single example, it clearly
demonstrates the need to incorporate protection against
free-riding in routing protocols.

5.3 Catch Evaluation

In this section we evaluate the effectiveness of Catch.

5.3.1 Detecting Free-riders

Our first experiment measures the speed with which
Catch detects free-riding. To construct a base case, we
selected triplets of nodes such that both the first and the
third node had a reasonable (>75%) delivery rate to the
second node. The second node was configured to act as a
free-rider that randomly dropped a fraction of the packets
it received for forwarding. We experimented with differ-
ent drop rates; Drop rates less than 100% mimic a sit-
uation in which the free-rider tries to evade detection by
appearing to be a cooperative but poorly connected node.
The first node downloaded randomly selected files rang-
ing from 1KB to 3MB in size from the third node. The
request and response traffic was relayed through the sec-
ond node. Five download sessions ran in parallel so that
even in the presence of a high drop rate and TCP back-
off dynamics, a minimum amount of traffic (roughly ten
packets per epoch) is generated for the statistical tests.
Figure 8 presents the results. The line “Drop packets
from both” corresponds to the case when the free-rider
drops packets from both neighbors. It shows the aver-
age number of epochs required to detect a free-rider for
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Figure 8: The number of epochs required to detect free-
riders in the testbed versus the fraction of packets a free-rider
dropped. Each point is the average of 10 experiments. Vertical
bars represent the inter-quartile range.

varying drop rates. Catch reacts quickly to free-riding,
and its reaction time decreases with drop rate. Detection
is almost immediate for very high drop rates; recall from
Section 4.3 that at least three epochs must fail before iso-
lation. Even at the low drop rate of 10%, Catch isolates
the free-rider in under 9 epochs.

The curve “Drop packets from one” shows the results
for the case where the free-rider dropped packets only
for the client. This evaluates whether a single victim can
cause the free-rider to be isolated. We find that for high
drop rates the detection speed is just as fast as the pre-
vious case. It is slower at lower drop rates, but even at
the low drop rate of 10% the average detection time is
less than 30 epochs. Thus, a free-rider that persistently
drops packets of just one neighbor at a very low rate is
eventually caught and punished.

5.3.2 False Accusations

We next check that the rapid detection of free-riders
does not come at the cost of falsely accusing cooperative
nodes of free-riding. We ran two five hour experiments
in which all nodes were cooperative. Each node repeat-
edly downloaded files (as before) from randomly chosen
servers. This workload is high enough to saturate our
network, stressing the accuracy of inference and increas-
ing the probability of false accusations. We observed no
false positives in the first experiment and a single false
positive in the second. It is difficult to estimate the true
rate of false accusations from this because they are so
rare, but nevertheless we find it encouraging.

5.3.3 Coordinated Isolation

We now evaluate whether wireless conditions hinder the
ability of the testers to simultaneously isolate a free-rider.

We randomly selected three (20%) nodes as free-riders
that dropped all the packets they received for forward-
ing. All nodes executed a workload similar to the one in
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Figure 9: Average throughput of cooperative nodes (solid line)
and free-riders (dashed line) as a function of time. Throughput
was calculated using one minute intervals. There were three
free-riders. The punishment interval is 30 minutes.

the previous section with the exception that nodes only
selected the cooperative nodes as file servers. We then
measured the throughput obtained by the free-riders. It
should be zero if coordinated isolation was successful.

Figure 9 plots the average throughput obtained by the
free-riding and cooperative nodes. It shows that the
cooperative nodes successfully shut out the free-riders.
Roughly eight minutes into the experiment, all the free-
riders were identified and isolated. Though not shown
in the graph, the spread of time over which different
neighbors of a free-rider started isolating it was two min-
utes. The free-riders were allowed to send traffic again
after the punishment interval of 30 minutes. The average
throughput of the free-riders appears to recover before 30
minutes because different free-riders were isolated and
released at different times.

5.3.4 Protocol Overhead

We report on the overhead of Catch in this section. We
have made no attempt to optimize the protocol because
its requirements are already modest.

Consider the activity for a pair of neighboring nodes
in an epoch, both playing the role of tester and testee.
The packet overhead of Catch comes from its messages,
which have different sizes and frequencies: StartEpoch
(40 bytes), ACM challenges and responses (1500 bytes,
15 times per epoch), ANV open and close (100 bytes),
and sign exchanges (40 bytes). These packets come to a
total of 0.6 packets or 758 bytes per neighbor per second.
Our testbed has fewer than four well-connected neigh-
bors per node on average, which means that the protocol
overhead is less than 2.4 packets per second or 3 KBps
per node. This is 3% of the 100 KBps that the honest
nodes got on average in Figure 9. The overhead would
be even lower for the newer and faster 802.11a/g.
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Figure 10: The spread of received signal strength at Nodes 4,
9 and 15 in our testbed. The y-axis represents the magnitude
of the signal reported by the hardware. The bars represent the
range in which 90% of the packets from a neighboring node
fall.

We found the processor consumption of Catch to also
be very reasonable. Informally observed using fop dur-
ing our experiments, it took at most 10% of the CPU on
Pentium-IV 3 GHz nodes. Much of this is an artifact of
our user-level implementation. Each packet that passes
through the local machine or is promiscuously overheard
crosses the user-kernel boundary at least once. In fact,
before moving to a PC-based testbed for OS reliability
reasons, we had successfully experimented with Catch
on a testbed composed of 10 iPAQs.

5.3.5 Compromising Anonymity

In this section we study the potential leverage of signal
strength attacks on anonymity. We show that even in its
present form Catch is useful in protecting the coopera-
tive nodes and is by far preferable to doing nothing. Tak-
ing specific steps in Catch to discourage signal strength
based cheats is the subject of future work.

At the MAC level, anonymity is a reasonable assump-
tion, since it is possible to send packets with an arbi-
trary source address and contents using commonly avail-
able 802.11 hardware [7]. At the physical level, how-
ever, strong anonymity cannot be guaranteed against a
determined adversary: the source of a packet might be
estimated, or at least classified, from the wireless signal
strength or direction.

Signal strength cheats are a level of escalation beyond
the selfish misbehavior we have defended against thus
far. Free-riding using signal strength measurements is
not a simple matter of installing a firewall rule, but re-
quires changes to the network interface driver. Our hard-
ware cannot give information about signal source direc-
tion, nor can any commodity hardware (fitted with an
omnidirectional antenna) of which we are aware.

Catch provides protection against such cheats because
the received signal strength from an individual neigh-
bor varies over a range of values. When the ranges of
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Figure 11: The fraction of forwarding load avoided if a node
adopts a signal strength cheating strategy. (We assume for-
warding load is proportional to the number of neighbors.)

multiple neighbors overlap it becomes impossible to ac-
curately distinguish among them. Empirical reports of
wireless network conditions [42, 43, 24] and localization
schemes based on received signal strength [5] illustrate
the difficulties of using signal strengths. As examples,
Figure 10 shows the spread of received signal strength at
three nodes in our testbed.

To better understand the overall threat, we experi-
mented with a cheater that uses signal strength to dif-
ferentiate among its neighbors. The cheater listens to
data packets for a short period of time, measuring their
signal strengths and sources. It then chooses a signal
strength threshold at which to drop incoming packets.
It relays packets and appears cooperative to neighbors
whose packets arrive with strengths above the threshold.
It drops packets below the threshold to appear to be a
legitimate non-neighbor to all other nodes.? Using this
procedure, a cheater may end up cooperating with be-
tween just one and all of its legitimate neighbors. Of the
nodes in Figure 10, Node 4 is forced to cooperate with
all of its neighbors, Node 9 with only two of them, and
Node 15 with only one of them. (Peripheral nodes that
can uniquely identify a neighbor do not present a major
threat as such nodes are not expected to relay packets.)

Figure 11 shows the benefits of this attack in our
testbed. For each of the 15 nodes we plot the fraction
of forwarding traffic that would be avoided, assuming
that forwarding loads are proportional to the number of
neighbors, or zero if a cheater manages to establish only
a single neighbor. We conservatively assume that when
a cheater identifies a subset of its neighbors, one of the
nodes in the subset is capable of forwarding packets for
it; otherwise, the cheater needs to admit connectivity to
other neighbor(s). Just under half the time a cheater can
escape forwarding entirely, while just over half it avoids
none or only a modest amount. Of course, if no proto-
col is run to protect against cheating, all nodes can cheat
100%, leading to a tragedy of the commons.
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Even though a cheater may expect to reduce its for-
warding load by about half using signal strength infor-
mation, Catch still helps the cooperative nodes. Fig-
ure 12 shows that Catch greatly improves connectivity
for those nodes, relative to taking no measures against
cheating. It plots the probability that a (randomly se-
lected) set of such cheaters would partition the cooper-
ative nodes when running with and without Catch. Be-
cause Catch forces many cheaters to admit to multiple
neighbors, and so to be available for packet forwarding,
it significantly reduces the odds that the network is par-
titioned. For example, when 20% (3) of the nodes cheat,
that probability is lowered from about 60% to about 10%
when using the highest quality links. At a 75% link de-
livery rate threshold, the odds of a network partition are
reduced from about 30% to zero. Of course, these re-
sults are specific to our testbed; in general, the extent of
protection provided by Catch depends on the degree of
overlap between the signal strengths of different neigh-
bors. We are currently extending Catch to mitigate such
attacks by having testers vary their signal strength as part
of the testing.

6 Simulation and Analysis

We now extend our analysis of Catch using simulation.

6.1 Simulation Testbed and Metrics

We built a simulator to generate packet loss and recep-
tion counts for each epoch and to drive the protocol state
machine. The simulator does not model the details of
packet delivery. The protocol state machine is parameter-
ized by the neighborhood topology, its loss rates, and the
z and sign statistical test parameters. We focus on pack-
ets that are subject to Catch’s statistical tests and ignore
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Figure 13: Average time to isolation versus drop rate, for var-
ious background network loss rates. (Y-axis on a log scale.)

other (control) packets. Our base setting includes a single
free-rider with six neighbors. The epoch duration in the
simulations is one minute. We set the confidence levels
for the z and sign tests to 99.999% and 99.995% respec-
tively. Results from the simulator showed that these val-
ues achieved the best overall tradeoff between detection
speed and false positive rate.

To assess the effectiveness of Catch, we use Average
Time to Isolation (ATT) as the metric. ATI is measured
in units of epochs. An ideal policy would exhibit ATI
values of one for nodes that free-ride (at any rate), and
infinite ATI values for those that do not.

6.2 Physical Environment Effects

We first evaluate Catch’s robustness to two characteris-
tics of the physical environment: packet loss and network
density. To model free-riding, we use a straightforward
strategy in which the free-rider drops packets randomly
with fixed probability. Because the packet losses due to
the wireless network are also modeled as a random pro-
cess, this drop strategy is arguably difficult for our statis-
tical tests to detect.

6.2.1 Packet Loss

We would expect higher wireless loss rates to make it
more difficult to detect free-riding. Figure 13 shows ATI
results as a function of drop rate for three different back-
ground network loss rates. Each data point shows the
average of 40 runs. When there is no free-riding (the
y-axis), there is a large isolation time — an average of
around 26,000 epochs (about 18 days). These times fall
steeply as the drop rate grows, to under 10 epochs for
drop rates of 10-20%. The results for loss rates in the
range of 10%-25% are in line with those observed in
our testbed (Figure 8), except that the homogeneous link
qualities in the simulation environment result in much
longer false accusation times. Thus, the impact of high
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wireless loss rates on Catch is quite small. Even at a
network loss rate of 50% Catch isolates a free-rider who
drops 25% of the packets it needs to forward in seven
epochs on average, which is only four epochs more than
the fewest possible.

6.2.2 Network Density

We would expect Catch to perform better in denser net-
works because larger neighborhoods are more likely to
make correct statistical decisions. Figure 14 examines
the impact of the number of neighbors on detection and
false accusation times. We show results for a coopera-
tive node (the top line) as well as for free-riders at drop
rates from 10-50%. Increasing the number of neighbors
from six to ten yields a small decrease in the time to de-
tect free-riders, as might be expected: already at 6 neigh-
bors there is little room for improvement. More surpris-
ingly, reducing the number of neighbors by a factor of
three, to only two, increases detection time by only a few
epochs. Additionally, the rate at which cooperative nodes
are falsely accused is essentially unaffected over the en-
tire range. Thus, Catch seems to be robust, working well
in both high and low density networks.

6.3 More Sophisticated Cheaters

Thus far, we have analyzed a simple drop model in which
the free-rider randomly drops packets it is meant to for-
ward. We now use our knowledge of the statistical tests
to construct packet dropping variations that target poten-
tial weaknesses. While we cannot prove the negative re-
sult that there are no strategies that might be effective
against Catch, we can show that these customized strate-
gies yield only very limited success.

One variation is targeted free-riding, in which the free-
rider drops packets from a time-varying subset of neigh-
bors, rather than uniformly from all. This stresses the
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Figure 15: The time to isolation for customized free-riding
strategies. The free-rider directs all misbehavior in a single
epoch to the number of neighbors given on the x-axis. (Total
cheat rate = 20%. Network loss rate = 20%.)

z test in Catch, whereas we know that the basic free-
rider is most often detected by the sign test. We call this
approach “rotation.” A second variation attacks the iso-
lation decision process. Since three consecutive failed
epoch tests are required to isolate a node, a free-rider
may attempt to escape isolation by dropping packets on,
say, alternate epochs. We call this the “on-off” strategy.
Finally, both attacks may be used at once.

Figure 15 plots the number of epochs to isolation for
these strategies against the number of nodes targeted, for
the difficult environment where the loss rate is as large
as the drop rate. (Both were set to 20%.) The graph
suggests that these custom-built strategies are only very
modestly successful. The most effective strategy for the
free-rider is to obtain its overall average drop rate of 20%
by dropping 60% of the packets from two of its six neigh-
bors, while rotating that pair each epoch. Using that strat-
egy, the free-rider is isolated in nine epochs on average,
compared to five epochs for the base free-riding strategy.

As another variation of the basic free-riding model,
we experimented with free-riders that drop packets in a
deterministic pattern, rather than randomly. The threat
here is that the reduction in variance will help free-riders
avoid detection. In fact, the opposite happened: Catch
was more effective.

6.4 Assessing Effectiveness

To complete this section, we consider how much better
it might be possible to do than Catch. This is a difficult
question to answer. We address it by comparing Catch
to an unrealistically powerful alternative, the Detection
Oracle, that serves as an informal upper bound on what
might be possible by any technique.

The Detection Oracle hears all packet transmissions
everywhere in the network, without loss, and so has re-
liable knowledge of all externally visible events. Addi-
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tionally, it retains infinite history information, enabling it
to apply the Catch statistical tests over this maximal pool
of data. In contrast, the nodes in any real system have
only imprecise information (due to losses), each one is
directly aware of only a subset of the global informa-
tion, and history information must be devalued due to
the changing environment.

Figure 16 compares the Detection Oracle with Catch.
It suggests that Catch does nearly as well as possible.
The oracle’s advantage exceeds a five epoch reduction in
detection time only in the case of high network loss rate
(50%) and relatively low (5-25%) drop rates.

7 Related Work

Anonymous broadcast was first used as a protocol build-
ing block in the Cocaine protocol for auction between
mistrustful parties [40]. In a manner similar to Catch,
Cocaine combines this building block with one-way hash
functions. We apply this approach in a different and prac-
tical setting, and our work also hints at the generality of
the building block and the approach.

Catch belongs to the class of enforcement-based
mechanisms that discourage free-riding through the fear
of punishment. The watchdog part of our detection
mechanism was originally proposed by Marti ez al. [29].
It is our use of it in real networks and in conjunction
with anonymity to detect misbehavior that is novel. Ex-
isting enforcement-based protocols [29, 10, 9] rely on
reputation spreading to deal with cheating nodes. This
requires global flooding, while Catch limits information
spread to single-hop neighborhoods. Moreover, simple
flooding requires network redundancy as selfish nodes
will not forward incriminating reputation packets. Catch
uses anonymity and one-way hash functions to reliably
communicate with the neighbors of free-riders. Our use

of one-way hash functions is similar to Hu et al.’s work
on secure routing in wireless networks [20, 21].

Incentive-based approaches discourage free-riding by
making cooperation more attractive. Nodes accumulate
virtual currency by forwarding for others, which they
can then use for sending their own packets. Examples
include Nuglets [11], Sprite [44] and priority forward-
ing [34]. These schemes rely on a trusted central au-
thority or tamper-proof hardware to ensure the integrity
of the currency, and to redistribute wealth so that even
nodes that are not in a position to forward for others can
send their packets. In contrast, the operation of Catch is
completely distributed. Incentives also fail to encourage
nodes with very little data of their own to send. This can
lead to a disconnected network when light-senders are
located at strategic points in the topology.

Finally, game-theoretic approaches formulate the for-
warding decision such that forwarding at a certain rate
becomes the Nash equilibrium [18] for the network. This
means that deviation from the recommended forwarding
behavior can only result in situations that are worse for
the deviant node. Generous Tit-for-Tat (GTFT) is an ex-
ample of such an approach [39]. Like GTFT, Catch re-
lies on the mechanics of Tit-for-Tat by assuming cooper-
ation and punishing free-riders. However, while GTFT
requires knowledge about the utilities of all the nodes in
the network, Catch relies only on information collected
in the one-hop neighborhood of individual nodes.

8 Conclusions

We have presented Catch, a protocol to sustain cooper-
ation in multi-hop wireless networks comprised of au-
tonomous nodes. Catch is much more widely applica-
ble than other proposed solutions, needing no central au-
thority and placing no restrictions on workloads, rout-
ing protocols or node objectives. It uses novel strate-
gies based on anonymous messages and statistical tests to
detect free-riders with high likelihood and punish them
with periods of isolation. Anonymous challenge mes-
sages are used to estimate true loss rates, even when deal-
ing with untrusted and uncooperative nodes. Anonymous
neighbor verification is used to compel a node to for-
ward packets, even when the data being carried is con-
trary to its interests. While our application of anonymity
and neighborhood watch are specific to the wireless do-
main, we expect that these techniques are general enough
to be applicable in other domains.

We implemented Catch in Linux and performed what
to our knowledge is the first evaluation of cooperative
routing protocols in an 802.11 wireless testbed. We
showed that Catch works well despite volatile wireless
conditions and requires little bandwidth overhead (and
negligible CPU overhead). In our experiments, free-
riders are quickly isolated from the network (and more



rapidly for more egregious drop strategies) and cooper-
ative nodes are rarely accused of misbehaving. Simu-
lations confirm this finding over a wide range of condi-
tions. We quantified the impact of free-riding by show-
ing that the presence of even a few free-riders can parti-
tion the network. In one experiment, their presence led
to a 25% overall performance degradation for the coop-
erative nodes. We also explored the leverage of signal
strength cheats, and found that even without any measure
to actively thwart such cheats, Catch provides worth-
while protection. Extending Catch to defeat these strate-
gies is part of our future work.
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Notes

nterestingly, “TCP accelerators” have been a concern but have not
become pervasive because the bottleneck is usually close to the host,
implying that there is little to be gained by deviating from the protocol.

2In theory, the cheater can pick an arbitrary signal strength range
rather than limiting itself to the top end. But our measurements show
that the degree of overlap among neighbors in the middle and bottom
part of the range would preclude this behavior. Additionally, better
signal strength roughly translates to better connectivity, providing an
incentive to pick such neighbors.

A Catch Fail-safes

We briefly consider each step of Catch in light of pos-
sible, intentional violations by a free-rider. Our goal is

to show that a free-rider cannot defeat the protocol by
manipulating messages in unanticipated ways.

Epoch-Start Each node must periodically send
EpochStart messages or it is deemed uncooperative by
its neighbors and is ignored.

Packet Forwarding and Accounting The testee can
drop some or all of the challenges. However, because the
challenges are anonymous it: ¢) cannot selectively inflate
the loss rate on some of the links and %) has to waste its
own resources if it chooses to uniformly inflate the loss
rate on all links. (Section 3.1)

Anonymous Neighbor Verification Open (ANV1)
The testee can drop some fraction of the ANV1 mes-
sages. However, this will be detected in a reasonably
short time because of anonymity. (Section 3.2)

Tester Information Exchange The testee is unable to
interfere with the exchange because it relies on all the
testers to release their tokens.

Epoch Evaluation and ANV Close (ANV2) It is in
the testee’s interest to forward these messages since they
are required for it to pass the epoch evaluation.

Isolation Decision Testers drop the free-rider’s data
packets to isolate it. To prevent this punishment from
being circumvented, we require that some unforgeable
notion of identity transmitted with data packets.

Deliberate False Accusations A different style of at-
tack is for a fester to falsely accuse a cooperative testee
and cause it to be isolated. The tester is then no longer re-
quired to relay packets for this testee. To discourage this,
a cooperative testee retaliates by isolating its accuser, or
all of its neighbors, if the identity of the accuser is un-
known, i.e., mutually-assured-destruction.

Dropping specific data packets A free-rider can use
application-level knowledge to throttle data flow if en-
cryption is not used. For instance, it could selectively
drop TCP SYN packets at a higher rate to curb data
packet generation. We can detect such behavior by look-
ing for statistical differences in the forwarding rate of
such special packets.

Blocking control packets Another possibility is for
a node to target specific protocol packets sent by other
nodes by interfering with their transmission. This is not
plausible because we send protocol packets at random-
ized times.

Reducing transmission power A free-rider can re-
duce its relaying responsibilities by reducing its trans-
mission power. This requires the node to be topologically
well-placed such that there exists a power level at which
it has good connectivity to one other node and almost no
connectivity to others. Catch does not counter this strat-
egy, as we view power management to be a legitimate
strategy for minimizing co-channel interference.



