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Abstract— We present Bolt, a data management sys-
tem for an emerging class of applications—those that
manipulate data from connected devices in the home. It
abstracts this data as a stream of time-tag-value records,
with arbitrary, application-defined tags. For reliable
sharing among applications, some of which may be run-
ning outside the home, Bolt uses untrusted cloud stor-
age as seamless extension of local storage. It organizes
data into chunks that contains multiple records and are
individually compressed and encrypted. While chunking
enables efficient transfer and storage, it also implies that
data is retrieved at the granularity of chunks, instead of
records. We show that the resulting overhead, however,
is small because applications in this domain frequently
query for multiple proximate records. We develop three
diverse applications on top of Bolt and find that the per-
formance needs of each are easily met. We also find that
compared to OpenTSDB, a popular time-series database
system, Bolt is up to 40 times faster than OpenTSDB
while requiring 3-5 times less storage space.

1 Introduction

Our homes are increasingly filled with connected de-
vices such as cameras, motion sensors, thermostats, and
door locks. At the same time, platforms are emerging
that simplify the development of applications that inter-
act with these devices and query their state and sensed
data. Examples include HomeOS [20], MiCasaVerde [5],
Nest [6], Philips Hue [2], and SmartThings [9].

While such platforms provide high-level abstractions
for device interaction, they do not provide such abstrac-
tions for data management other than the local file sys-
tem. Many applications, however, require richer data ma-
nipulation capabilities. For instance, PreHeat stores data
from occupancy sensors and uses historical data from
specific time windows to predict future occupancy and
control home heating [36]; Digital Neighborhood Watch
(DNW) [16, 19] stores information about objects seen
by security cameras, and shares this information upon

request by neighboring homes, based on a time window
specified in the requests. Developing such applications
today is difficult; developers must implement their own
data storage, retrieval, and sharing mechanisms.

Our goal is to simplify the management of data from
connected devices in the home. By studying existing and
proposed applications, we uncover the key requirements
for such a system. First, it should support time-series
data and allow for values to be assigned arbitrary tags;
device data is naturally time-series (e.g., occupancy sen-
sor readings) and tags can provide a flexible way to as-
sign application-specific semantics (e.g., DNW may use
“car” as a tag for object information). Second, the sys-
tem should enable sharing across homes because many
applications need access to data from multiple homes
(e.g., DNW application or correlating energy use across
homes [14]). Third, the system should be flexible to
support application specified storage providers because
applications are in the best position to prioritize storage
metrics like location, performance, cost, and reliability.
Fourth, the system should provide data confidentiality,
against potential eavesdroppers in the cloud or the net-
work, because of the significant privacy concerns asso-
ciated with home data. As we discuss later, none of the
existing systems meet these requirements.

We develop Bolt, a system for efficiently storing,
querying, and sharing data from connected home de-
vices. It abstracts data as a stream of time-tag-value
records, over which it builds indices to support efficient
querying based on time and tags. To facilitate sharing,
even when individual homes may be disconnected, Bolt
uses cloud storage as seamless extension of local stor-
age. It organizes data into chunks of multiple records
and compress these chunks prior to the transfer, which
boosts storage and network efficiency. To protect confi-
dentiality, the chunks are encrypted as well. Bolt decou-
ples the index from the data to support efficient query-
ing over encrypted data. Applications use the index to
identify and download the chunks they need. Our design



leverages the nature of queries in this domain. Applica-
tions are often interested in multiple proximate records.
Retrieving data at the granularity of chunks, rather than
individual records, improves network efficiency through
batching of records and improves performance through
prefetching records for subsequent queries.

Our current implementation of Bolt supports Windows
Azure and Amazon S3 as cloud storage. We evaluate
it first using microbenchmarks to understand the over-
head of Bolt’s streams supporting rich data abstractions
compared to raw disk throughput. We find that chunk-
ing improves read throughput by up to three times due to
strong temporal locality of reads and that the overhead of
encrypting data is negligible.

We then develop three diverse applications on top
Bolt’s APIs and evaluate their read and write perfor-
mance. We find that Bolt significantly surpasses the per-
formance needs of each application. To place its perfor-
mance in context, we compare Bolt to OpenTSDB [10],
a popular data management system for time-series data.
Across the three applications, Bolt is up to 40 times faster
than OpenTSDB while requiring 3-5 times less storage
space. OpenTSDB does not provide data confidential-
ity, which makes our results especially notable; by cus-
tomizing design to the home setting, Bolt simultaneously
offers confidentiality and higher performance.

While our work focuses on the home, connected de-
vices are on the rise in many other domains, including
factories, offices, and streets. The number of these de-
vices worldwide is projected to surpass 50 billion by
2020 [3]. Effectively managing the deluge of data that
these devices are bound to generate is a key challenge in
other domains too. The design of Bolt can inform sys-
tems for data storage, querying, and sharing in other do-
mains as well.

2 Application Requirements

To frame the requirement for our system, we surveyed
several applications for connected homes. We first de-
scribe three of them, which we pick for their diversity in
the type of data they manipulate and their access patterns.
We then outline the requirements that we inferred.

2.1 Example applications

PreHeat: PreHeat uses occupancy sensing to efficiently
heat homes [36]. It records home occupancy and uses
past patterns to predict future occupancy to turn a home’s
heating system on or off. It divides a day into 15-minute
time slots (i.e., 96 slots/day), and records the occupancy
value at the end of a slot: 1 if the home was occupied
during the preceding slot, and O otherwise. At the start
of each slot, it predicts the occupancy value, using the
slot occupancy values for the past slots on the same day
and corresponding slots on previous days. For instance,

for the nth slot on the day d, it uses occupancy values for
slots 1---(n—1) on the day d. This is called the partial
occupancy vector (POV}). Additionally, PreHeat uses
POVY,_,,POVY_,, ..., POVY. Of all past POVs, K POVs
with the least Hamming distance to POV’; are selected.
These top-K POVs are used to predict occupancy, and
the heating system is turned on or off accordingly.

Digital Neighborhood Watch (DNW): DNW helps
neighbors jointly detect suspicious activities (e.g., an un-
known car cruising the neighborhood) by sharing secu-
rity camera images [16, 19]. The DNW instance in each
home monitors the footage from security cameras in the
home. When it detects a moving object, it stores the ob-
ject’s video clip as well as summary information such as:

Time: 15:00 PDT,
ID: 001

Type: human
Entry Area: 2
Exit Area: 1
Feature Vector :{114,

27th September, 2013

117, ... , 22}.

This summary includes the inferred object type, its loca-
tion, and its feature vector which is a compact represen-
tation of its visual information.

When a home deems a current or past object interest-
ing, it asks neighbors if they saw the object around the
same time. Each neighbor extracts all objects that it saw
in a time window (e.g., an hour) around the time specified
in the query. If the feature vector of one of the objects is
similar to the one in the query, it responds positively and
optionally shares the video clip of the matching object.
Responses from all the neighbors allow the original in-
stance to determine how the object moved around in the
neighborhood and if its activity is suspicious.

Energy Data Analytics (EDA): Utility companies
around the world are deploying smart meters to record
and report energy consumption readings. Given its fine-
grained nature, compared to one reading a month, data
from smart meters allows customers to get meaningful
insight into their energy consumption habits [39]. Much
recent work has focused on analysing this data, for in-
stance, to identify the consumption of different appli-
ances, user activities, and wastage [14, 22, 29, 33].

A specific EDA application that we consider is where
the utility company presents to consumers an analy-
sis of their monthly consumption [14]. It disaggre-
gates hourly home energy consumption values into dif-
ferent categories—base, activity driven, heating or cool-
ing driven, and others. For each home, the variation
in consumption level as a function of ambient tempera-
ture is analysed by computing for each temperature value
the median, 10th, and 90th-percentile home energy con-
sumption. These quantities are then reported to the con-
sumer, along with a comparison with other homes in the
neighborhood or city.



Other applications that we surveyed include
DigiSwitch [17], which supports elders who reside
separately from their caregivers by sharing sensed
activity in the home, and a few commercial systems
such as Kevo that come with the Kwikset wireless door
lock [4]. The requirements, which we describe next,
cover these applications as well.

2.2 Data management requirements

We distill the requirements of connected home applica-
tions into four classes.

Support time-series, tagged data: Most applications
generate time-series data and retrieve it based on time
windows. The data may also be tagged and queried using
application-specific concepts. For example, object type
“human” is a possible tag in DNW and ‘“heating con-
sumption” is a possible tag in EDA.

We make other observations about data manipulation
patterns of home applications. First, data in these set-
tings has a single writer. Second, writers always generate
new data and do not perform random-access updates or
deletes. Third, readers typically fetch multiple proximate
records by issuing temporal range & sampling queries for
sliding or growing time windows. Traditional databases
with their support for transactions, concurrency control,
and recovery protocols are an overkill for such data [37],
and file-based storage offers inadequate query interfaces.

Efficiently share data across homes: It is not uncom-
mon for applications to access data from multiple homes.
Both DNW and EDA fall in this category. Online storage
services, like Dropbox [1] or OneDrive [7], can simplify
cross-home sharing, but they will unnecessarily synchro-
nize large quantities of data. Applications may want to
access only part of the data produced by a device. For
example, in DNW, it would be wasteful to access the en-
tire day worth of video data if the search for suspicious
objects needs to be done only over a few hours.

Support policy-driven storage: Different types of data
have different storage requirements for location, access
performance, cost, and reliability. A camera that records
images might store them locally and delete them once
the DNW application has extracted images of objects
in them. The DNW application might store these im-
ages on a remote server to correlate with images cap-
tured by neighbours. Once analysed, they can be stored
on cheaper archival storage servers. Applications are in
the best position to prioritize storage metrics and should
be able to specify these policies.

Ensure data confidentiality & integrity: Applications
may use remote storage infrastructure to simplify data
management and sharing, but may not trust them for con-
fidentiality or integrity of data. Data generated by home
applications may contain sensitive information; DNW

contains clips of residents, and data from occupancy sen-
sors and energy meters reveal when residents are away,
which can be exploited by attackers. Therefore, the data
management system for these applications should guar-
antee the confidentiality and integrity of stored data. The
system should also support efficient changes in access
policies, without requiring, for instance, re-encryption of
a large amounts of data.

Efficiently meeting all the requirements above is chal-
lenging. For example, storing data locally facilitates con-
fidentiality but inhibits efficient sharing, remote access,
and reliable storage. By the same token, storing data in
the cloud provides reliable storage and sharing, but un-
trusted storage servers can compromise confidentiality;
also, sharing by synchronizing large amounts of data is
inefficient. Finally, naively storing encrypted data on un-
trusted servers inhibits efficient sharing.

As we review in detail in §7, existing systems either
expose inefficient sharing and querying abstractions for
temporal data [21, 23, 30], assume partial or complete
trust on the storage servers [31], or store data locally
while ignoring application storage policies [25]. In the
following sections we describe the design of Bolt to sup-
port the storage requirements listed above.

3 Opverview of Bolt

The data abstraction exposed by Bolt is a stream in which
each record has a timestamp and one or more tag-value
pairs, i.e., <timestamp, <tagl,valuel>, [<tag2, value2>,
..]>. Streams are uniquely identified by the three-tuple:
<HomelD, AppID, StreamID>. Bolt supports filtering and
lookups on streams using time and tags.

3.1 Security assumptions and guarantees

Bolt does not trust either the cloud storage servers or the
network to maintain data confidentiality or integrity. We
assume that the storage infrastructure is capable of unau-
thorized reading or modification of stream data, return-
ing old data, or refusing to return any data at all. Atop
this untrusted infrastructure, Bolt provides the following
three security and privacy guarantees:

1. Confidentiality: Data in a stream can be read only
by an application to which the owner grants access,
and once the owner revokes access, the reader can-
not access data generated after revocation.

2. Tamper evidence: Readers can detect if data has
been tampered by anyone other than the owner.
However, Bolt does not defend against denial-of-
service attacks, e.g., where a storage server deletes
all data or rejects all read requests.

3. Freshness: Readers can detect if the storage server
returns stale data that is older than a configurable
time window.



3.2 Key techniques

The following four main techniques allow Bolt to meet
the requirements listed in the previous section.

Chunking: Bolt stores data records in a log per stream,
enabling efficient append-only writes. Streams have an
index on the datalog to support efficient lookups, tem-
poral range and sampling queries, and filtering on tags.
A contiguous sequence of records constitute a chunk. A
chunk is a basic unit of transfer for storage and retrieval.
Data writers upload chunks instead of individual records.
Bolt compresses chunks before uploading them, which
enhances transfer and storage efficiency.

Readers fetch data at the granularity of chunks as well.
While this means that more records than needed may
be fetched, the resulting inefficiency is mitigated by the
fact that applications, like the ones we surveyed earlier,
are often interested in multiple records in a time win-
dow, rather than a single record generated at a particu-
lar time. Fetching chunks, instead of individual records,
makes common queries with temporal locality efficient,
avoiding additional round trip delays.

Separation of index and data: Bolt always fetches the
stream index from the remote server, and stores the in-
dex locally at readers and writers; data may still reside
remotely. This separation opens the door to two prop-
erties that are otherwise not possible. First, because the
index is local, queries at endpoints use the local index to
determine what chunks should be fetched from remote
servers. No computation (query engine) is needed in the
cloud, and storage servers only need to provide data read-
/write APIs, helping reduce the cost of the storage sys-
tem. Second, it allows Bolt to relax its trust assumptions
of storage servers, supporting untrusted cloud providers
without compromising data confidentiality by encrypt-
ing data. The data can be encrypted before storing and
decrypted after retrievals, and the provider needs to un-
derstand nothing about it. Supporting untrusted cloud
providers is challenging if the provider is expected to
perform index lookups on the data.

Segmentation: Based on the observation that applica-
tions do not perform random writes and only append new
data, streams can grow large. Bolt supports archiving
contiguous portions of a stream into segments while still
allowing efficient querying over them. The storage lo-
cation of each segment can be configured, enabling Bolt
streams to use storage across different providers. Hence,
streams may be stored either locally, remotely on un-
trusted servers, replicated for reliability, or striped across
multiple storage providers for cost effectiveness. This
configurability allows applications to prioritize their stor-
age requirements of space, performance, cost, and relia-
bility. Bolt currently supports local streams, Windows
Azure storage, and Amazon S3.

Decentralized access control and signed hashes: To
maintain confidentiality in the face on untrusted storage
servers, Bolt encrypts the stream with a secret key gener-
ated by the owner. Bolt’s design supports encryption of
both the index and data, but by default we do not encrypt
indices for efficiency,' though in this configuration infor-
mation may leak through data stored in indices. Further,
we use lazy revocation [28] for reducing computation
overhead of cryptographic operations. Lazy revocation
only prevents evicted readers from accessing future con-
tent as the content before revocation may have already
been accessed and cached by these readers. Among the
key management schemes for file systems using lazy re-
vocation, we use the hash-based key regression [24] for
its simplicity and efficiency. It enables the owner to share
only the most recent key with authorized readers, based
on which readers can derive all the previous keys to de-
crypt the content.

We use a trusted key server to distribute keys. Once a
stream is opened, all subsequent reads and writes occur
directly between the storage server and the application.
This way, the key server does not become a bottleneck.

To facilitate integrity checks on data, the owners gen-
erate a hash of stream contents, which is verified by
the readers. To enable freshness checks, similar to SF-
SRO [23] and Sirius [26], freshness time window is part
of the stream metadata. It denotes until when the data
can be deemed fresh; it is based on the periodicity with
which owners expect to generate new data. Owners peri-
odically update and sign this time window, which readers
can check against when a stream is opened.

4 Bolt Design

We now describe the design of Bolt in more detail.

4.1 APIs

Table 1 shows the Bolt stream APIs. Applications, iden-
tified by the <HomelD, AppID> pair, are the principals
that read and write data. On create and open, they
specify the policies shown in Table 2, which include the
stream’s type, storage location, and protection and shar-
ing requirements. The stream type can be ValueStream,
useful for small data values such as temperature readings,
or FileStream, useful for large values such as images or
videos. The two types are stored differently on disk.
Each stream has one writer (owner) and one or more
readers. Writers add time-tag-value records to the stream
using append. Records can have multiple tag-value
pairs and multiple tags for a value. Tags and values
are application-defined types that implement IKey and
IValue interfaces, allowing Bolt to hash, compare, and

!Index decryption and encryption is a one time cost paid at stream
open & close respectively and is proportional to the size of the index.



Function Description

createStream(name, R/W, policy)
openStream(name, R/W)
deleteStream(name)

Create a data stream with specified policy properties (see Table 2)
Open an existing data stream
Delete an existing data stream

append( [tag, value] )
append( [tag], value )

Append the list of values with corresponding tags. All get same timestamp
Append data labelled with potentially multiple tags

getLatest()

get(tag)

getAll(tag)

getAH(tag’ Istarts tend)
getAH(ta& Istart> tend» tskip)
getKeys(tagsare> 1agena)

Retrieve latest < time,tag,value > tuple inserted across all tags
Retrieve latest < time,tag, value > tuple for the specified tag
Retrieve all time-sorted < time,tag,value > tuples for specified tag
Range query: get all tuples for tag in the specified time range
Sampling range query

Retrieve all tags in the specified fag range

sealStream()
getAllSegmentIDs()
deleteSegment(segmentID)

Seal the current stream segment and create a new one for future appends
Retrieve the list of all segments in the stream
Delete the specified segment in the current stream

grant(appld)
revoke(appld)

Grant appld read access
Revoke appld’s read access

Table 1: Bolt stream APIs: Bolt offers two types of streams: (i) ValueStreams for small data values (e.g.,
temperature readings); and (ii) FileStreams for large values (e.g., images, videos).

Property  Description

Type ValueStream or FileStream

Location Local, Remote, or Remote Replicated
Protection  Plain or Encrypted

Sharing Unlisted (private) or Listed (shared)

Table 2: Properties specified using Bolt policies

serialize them. Finally, writers can grant and revoke
read access other applications. Readers can filter and
query data using tags and time (get~*). We currently
support querying for the latest record, the latest record
for a tag, temporal range and sampling queries, and range
queries on tags. Range queries return an iterator, which
fetches data on demand, when accessed.

4.2 Writing stream data

An owner first creates a new Bolt stream and appends
data records to it. Figure 1 shows the data layout for
a stream. Streams consist of two parts: a log of data
records (Datalog), and an index that maps a tag to a
list of data item identifiers. Item identifiers are fixed-
size entries and the list of item identifiers in the index
is sorted by time, enabling efficient binary searches for
range and sampling queries. The index is memory resi-
dent and backed by a file; records in the DatalLog are on
disk and retrieved when referenced by the application.
The DatalLog is divided into fixed sized chunks of con-
tiguous data records.

Tags Item identifiers Index
'8 N tsl ts5, ts7, ts§, X
animal-—-[ ¢ l ¢ [ ¢ I ’ ] (in memory,
offsetl] offset6 ) offset7 | offset8 disk backed)
car ts6, ts8,
person offset6 | offset8
ts2, ] ts3, [ ts4, [ ts6, ]
\_ J __\offset2 ] offset3 | offset4] offset6
x/ x’/ x/
Val | Val | val | Val | Val [ Val | Val | Val Data _L°g
1| 2] 3| a)s5|6])] 7] s (on disk)
: Chunk #1, Chunk #2, i Chunk #3, ChunkList
Hash(Chunk #1) Hash(Chunk #2)  Hash(Chunk #3)

Figure 1: Data layout of a ValueStream. FileStream
layout is similar, except that the values in the DataLog
are pointers to files that contain the actual data.

To reduce the memory footprint of the index, which
can grow large over time, streams in Bolt can be
archived. This snapshot of a stream is called a seg-
ment, where each segment has its own DatalLog and cor-
responding index. Hence, streams are a time ordered list
of segments. If the size of the index in memory exceeds
a configurable threshold (index;,.s,), the latest segment
is sealed, its index is flushed to disk, and a new segment
with a memory resident index is created. Writes to the
stream always go to the latest segment and all other seg-
ments of the stream are read-only entities. The index for
the latest segment of the stream is memory resident and
backed by a file (Figure 1); As shown in Figure 2 all other
segments are sealed and store their indices on disk with



Compact Index

[person,

animal, ]’ car,
ts1, ts8 || ts6, ts8)| ts2, ts6 .
(in memory,
g disk backed)
Item identifiers
[ ts1, ] ts5, [ ts7, ] ts8, ]
|offsetl | offset6 | offset7 | offset8
ts6, Index
offset6 | offset8 (on disk)
ts2, 1 ts3, [ tsd, l ts6, ]
o offsetZ/ offset3 offset4 offset6
/ /// B e
Val | Val | Val | val | val \/al Val | Val Datalog
1 2 3 4 5 6 7 8 (on disk)
{ Chunk#, Chunk#2, i cChunk#3, ~ ChunkList
Hash(Chunk #1) Hash(Chunk #2)  Hash(Chunk #3) (on disk)

Figure 2: Data layout of a sealed segment in Bolt.

a compact in-memory index header that consists of the
tags, the timestamp for the first and last identifier in their
corresponding item identifier list, and the location of this
list in the index file.

4.3 Uploading stream data

Each principal (<HomeID, AppID> pair) in Bolt is as-
sociated with a private-public key pair, and each stream
in Bolt is encrypted with a secret key, K..,, generated
by the owner. When a stream is synced or closed, Bolt
flushes the index to disk, chunks the segment Datalog,
compresses and encrypts these chunks, and generates the
ChunkList. The per-segment ChunkList is an ordered
list of all chunks in the segment’s Datal.og and their cor-
responding hashes. Bolt has to do this for all mutated
segments: new segments generated since the last close
and the latest segment which may have been modified
due to data appends; All other segments in the stream are
sealed and immutable.

Bolt then generates the stream’s integrity meta-
data (MD;,;). Let n denote the number of segments
within the stream. Then, MD;,; is computed as follows:
Sigg,, e [H[TTL|[H[L]||...|[H[L,]
Bolt uses TTL to provide guarantees on data freshness
similar to SFSRO and Chefs [23], ensuring any data
fetched from a storage server is no older than a con-
figurable writer-specified consistency period, and also

TTL: tﬁeShslarta tfreshend

H[x]: Cryptographic hash of x

Sigx[x]: Digital signature of x with the key K

Kpup ™", Kpriy """ a public-private key pair of owner
CL;: ChunkList of the /" segment

I;: Index of the i segment

||: Concatenation

A e il e

Table 3: Glossary

[[H[CL|l...| [HICL,11.

metadata for H1/A1/S1
Enc-H1/a1(Kcon),
Enc-H2/81(Kcon),

Step 1: Request
content key for Data
Stream H1/A1/S1

Segment Info List,
Location of MDint

Metadata Server

—

Home: H1

Step 2: Fetch
index

Step 3 (local):
Verify integrity &

Stream: H1/A1/S1

freshness
Read: Fetch chunks, decrypt locally
Storage
Write: Encrypt chunks locally, store index & data Server

Figure 3: Steps during reads and writes for applica-
tion A1 in home H1 accessing stream H1/A1/S1

no older than any previously retrieved data. As shown
in Table 3, MD;,; is a signed hash of the duration for
which the owner guarantees data freshness (TTL) and
the per-segment index and ChunkList hashes. For all
mutated segments, Bolt uploads the chunks, the updated
ChunkList, and the modified index to the storage server.
Chunks are uploaded in parallel and applications can
configure the maximum number of parallel uploads.
Bolt then uploads MD;,. Finally Bolt uploads the
stream metadata to the meatadata server if new segments
were created.’

4.4 Granting and revoking read access

A metadata server, in addition to maintaining the princi-
pal to public-key mappings, also maintains the following
stream metadata: (i) a symmetric content key to encrypt
and decrypt data (K,.,), (ii) principals that have access
to the data (one of them is the owner), (iii) the location
of MD;,,, and (iv) per-segment location and key version.
K.on 1s stored encrypted — one entry for each principal
that has access to the stream using their public key.

To grant applications read access, the owner updates
stream metadata with K., encrypted with the reader’s
public key. Revoking read access also involves updating
stream metadata: owners remove the appropriate princi-
pal from the accessor’s list, remove the encrypted content
keys, roll forward the content key and key version for all
valid principals as per key-regression [24]. Key regres-
sion allows readers with version V of the key to generate
keys for all older versions 0 to V — 1. On a revocation,
Bolt seals the current segment and creates a new one. All
chunks in a segment are always encrypted using the same
version of the content key.

2In our initial design, we assume that stream metadata is stored on
a trusted key server to prevent unauthorized updates. In Section 8 we
discuss how this assumption can be relaxed.



4.5 Reading stream data

Figure 3 shows the steps during reads; Owners also fol-
low these steps when they reopen their streams. Bolt
opens a stream (step 1) and fetches stream metadata. Us-
ing this information, Bolt then fetches the stream’s in-
tegrity metadata (M D;,,,) from untrusted storage. On ver-
ifying M D;y,,’s integrity using the owner’s public key, and
freshness using the TTL in MDjy,, the reader fetches in-
dex & ChunkList for every segment of the stream (step
2) and verifies their integrity using MD;,; (step 3).

Owner can store new data record in the stream on ver-
ifying the integrity of index data. For readers, once in-
dex & ChunkList integrity verifications for all segments
complete (step 3), Bolt uses the index to identify chunks
that need to be fetched from remote storage to satisfy
get requests. Chunk level integrity is checked lazily;
Bolt downloads these chunks and verifies their integrity
by using the segment’s ChunkList. Bolt decrypts and de-
compress the verified chunk and stores these chunks in a
local disk-based cache for subsequent reads.

S Implementation

We have implemented Bolt using C# over the .NET
Framework v4.5. Our implementation is integrated into
the HomeOS [20] platform, but it can also be used as an
independent library. In addition to the applications we
evaluate in the next section, several other HomeOS ap-
plications have been ported by others to use Bolt. The
client-side code is 6077 lines of code, and the metadata
server is 473 lines. Our code is publicly available at
labofthings.codeplex.com.

Our client library uses Protocol Buffers [8] for data
serialization and can currently use Windows Azure and
Amazon S3 for remote storage. It uses their respective li-
braries for reading and writing data remotely. On Azure,
each segment maps to a container, the index & DatalLog
each map to a blob, and individual chunks map to parts
of the DatalLog blob (blocks). On S3, each segment maps
to a bucket, the index maps to an object, and chunks of
the DatalLog map to individual objects.

The communication between the clients and the meta-
data server uses the Windows Communication Founda-
tion (WCF) framework. The server is hosted in a Win-
dows Azure VM with 4-core AMD Opteron Processor
and 7GB RAM and runs Windows Server 2008 R2.

6 Evaluation

We evaluate Bolt in two ways: 1) microbenchmarks,
which compare the performance of different Bolt stream
configurations to the underlying operating system’s per-
formance, 2) applications, which demonstrate the feasi-
bility and performance of Bolt in real-world use cases.
Table 4 summarizes the major results.

Finding Location
Bolt’s encryption overhead is negligible, mak-  §6.1.1
ing secure streams a viable default option.

Chunking in Bolt improves read throughput by ~ §6.1.2
up to 3x for temporal range queries.

Bolt segments are scalable: querying across 16 ~ §6.1.3
segments incurs only a 3.6% overhead over a

single segment stream.

Three applications (PreHeat, DNW, EDA) im-
plemented using Bolt abstractions.

Bolt is up to 40x faster than OpenTSDB. 86.2

Bolt is 3-5x more space efficient than
OpenTSDB.

Table 4: Highlights of evaluation results

All Bolt microbenchmark experiments (Section 6.1)
are run on a VM on Windows Azure. The VM has a 4-
core AMD Opteron Processor, 7GB RAM, 2 virtual hard
disks and runs Windows Server 2008 R2. All application
experiments (Section 6.2) are run on a physical machine
with an AMD-FX-6100 6-core processor, 16 GB RAM,
6 Gbps SATA hard disk, running Windows 7.

6.1 Bolt microbenchmarks

Setup. In each experiment a client issues 1,000 or 10,000
write or read requests for a particular Bolt stream con-
figuration. The size of the data-value written or read is
one of 10B, 1KB, 10KB or 100KB. We fix the chunk size
for these experiments at 4MB unless otherwise specified.
We measure the throughput in operations/second and the
storage space used (for writes). To compare Bolt’s write
performance we bypass Bolt and write data directly to
disk (referred to as DiskRaw)—either to a single local
file (baseline for ValueStream), to multiple files, one for
each data value (baseline for FileStream), or upload data
directly to Azure (baseline for remote ValueStream and
FileStream). Similarly, for data reads i.e., Get (tag)
and GetAll (tag, timegyy, timeyy) queries, we
compare Bolt’s read performance to data read directly
from a single local file (baseline for ValueStream), data-
values read from separate files (baseline for FileStream),
and data read by downloading an Azure blob (baseline
for remote ValueStream). We report the mean and stan-
dard deviation across 10 runs of each experiment.

6.1.1 Write performance

ValueStream: Figure 4 compares the write throughput at
the client for three different data-value sizes (10B, 1KB
and 10KB). Writes to local ValueStreams are slower than
DiskRaw because of the overhead of three additional
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Figure 4: Write throughput (appends/second) for
Bolt ValueStreams (local, remote, remote encrypted)

subtasks: index update/lookup, data serialization, and
writing index & Datalog to disk. Table 5 shows these
breakdown for 10,000 appends of 10B values. As the
size of individual records inserted goes up, the through-
put, measured in MBps, goes up; DiskRaw and local Val-
ueStreams saturate the local disk write throughput. For
supporting the new abstractions, the storage space taken
by Bolt streams is 0.1x (for large values) to 2.5x (for
10B values) compared to DiskRaw for local writes.

For remote streams, we find that the absolute time
taken to perform the above mentioned subtasks is sim-
ilar, however, a high percentage of the total time is spent
uploading the DatalLog and index to the cloud. For exam-
ple, Table 5 shows that 64% of the total time is taken to
chunk & upload the DatalLog; uploading the index took
close to 3% of the total time. Chunking and uploading
involves the following six major components: (i) read-
ing chunks from the Datal.og and computing the hash of
their contents, (ii) checking the blob’s existence on the
storage server and creating one if not present, (iii) com-
pressing and encrypting chunks if needed, (iv) uploading
individual chunks to blocks in a blob, (v) committing the
new block list to Azure reflecting the new changes, and
(vi) uploading the new chunk list containing chunk IDs
and their hashes. For remote-encrypted streams, the time
taken to encrypt data is less than 1% of the total time.
FileStream: Figure 5 compares the write throughput for
1000 appends at the client, for three different data-value

Component Local Remote Remote
Encrypted
Lookup, Update Index 5% 2.1% 0.6%
Data Serialization 14.3% 2.3% 1.7%
Flush Index 39.8% 9.9% 10.2%
Flush Data 33.2% 7.3% 10.5%
Uploading Chunks - 63.6% 61.9%
Encrypting Chunks - - 0.6%
Uploading Index - 2.8% 2.6%

Table 5: Percentage of total experiment time spent in
various tasks while appending 10,000 items to a Val-
ueStream for 10B value sizes.
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Figure 5: Write throughput (appends/second) for
Bolt FileStreams (local, remote, remote encrypted)

sizes (1KB, 10KB, and 100KB). Unlike ValueStreams,
the latency for writes in FileStreams is influenced pri-
marily by two tasks: writing each data record to a sep-
arate file on disk and uploading each file to a sepa-
rate Azure blob. As a result, the performance of lo-
cal FileStream is comparable to DiskRaw. For remote
streams writing to local files matches the performance of
local streams, but creating a new Azure blob for every
data record in the stream dominates the cost of writes
(over 80% of the total time). Encryption has an overhead
of approximately 1%.

Storage overhead: Table 6 shows the storage overhead
of Bolt’s local ValueStreams over DiskRaw for 10B,
1KB, 10KB value sizes. In DiskRaw tag-value pairs
and timestamp are appended to a file on disk. Val-
ueStream’s overheads are primarily due to offsets in the
index, and index & DatalLog serialization data. Bolt
stores each unique tag only once in the index, benefiting
streams with large tags. We define storage overhead as
the amount of additional disk space used by ValueStream
compared to DiskRaw, expressed as a percentage. Stor-
age overhead decreases with larger value sizes, but re-
mains constant with increasing number of data records
for a given value size. Stream metadata overhead does
not change with value size and is small.

6.1.2 Read Performance

ValueStream: Figure 6 compares the read throughput
at the client for three different data-value sizes (10B,
1KB and 10KB) using three ValueStream configurations.
The client issues 10,000 Get (tag) requests with a ran-
domly selected tag on every call.

In DiskRaw, values are read from random parts of

Value Size % overhead
10B 30.6
1 KB 0.86
10 KB 0.09

Table 6: Storage overhead of local ValueStreams over
DiskRaw. This percentage overhead is independent of
the number of data items inserted.
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the DataLog. Despite random reads, for both DiskRaw
and ValueStream streams, the effect of file system buffer
cache shows up in these numbers. Local ValueStreams
incur an overhead of index lookup and data deserial-
ization. For example, for 1KB sized data values, lo-
cal ValueStreams spend 5% of the total time in index
lookup, 60% reading records from the Datal.og (match-
ing DiskRaw speeds), and 30% deserializing data. Re-
mote reads in ValueStream are dominated by the cost of
downloading chunks from Azure and storing them in the
chunk cache (90% of the read latency).

FileStream: Compared to DiskRaw, FileStreams incur
the overhead of index lookup, downloading individual
blobs from remote storage, and reading the data record
from the file. Figure 7 shows the effect of these on
throughput. For remote streams most of the time (99%)
is spent downloading individual blobs from remote stor-
age. For remote-encrypted streams, the time taken to de-
crypt data is less than 1% of the total time.

Effect of chunking on temporal range queries: Fig-
ure § shows that chunking improves read throughput as
it batches transfers and prefetches data for range queries
with locality of reference. We experiment with two range
queries that retrieve the same amount of data, one with a
narrow window of 10 records, and another with a larger
window of 100 records; the start times of the windows
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Figure 8: Effect of chunking on reads. Chunking im-
proves throughput because of batching transfers and
prefetching data for queries with locality of reference.
In this experiment, the stream contains 10,000 data
items each 10KB in size.

are picked randomly from the time range of data stored.
Larger chunks cause higher read throughput by reducing
the number of chunk downloads as chunks are cached
locally. For a fixed chunk and value size, queries with
a wider window have comparatively larger throughput.
This is because wider queries cause fewer downloads by
leveraging caching to answer queries. Whereas narrow
queries are comparatively dispersed across the Datal.og,
hence causing more chunk downloads.

6.1.3 Scalability of Bolt ValueStream segments

Figure 9 shows the effect of scaling the number of seg-
ments for a local ValueStream on opening the stream
(one time cost), index lookup, and reading data records.
Each segment has 10,000 keys, and 10,000 Get(key) re-
quests are issued for randomly selected keys. The time
taken for opening a stream is dominated by the time to
build the segment index in memory and it grows lin-
early with the number of segments. Query time across
segments with compact memory-resident index headers
grows negligibly with the number of such segments.
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Figure 9: Open, index look-up, and DatalLog record
retrieval latencies scale well as a function of the num-
ber of segments of the stream, while issuing 10,000
Get(key) requests for random keys. Each segment has
10,000 keys.



6.2 Applications

We demonstrate the feasibility and performance of three
real-world applications using Bolt: PreHeat, Digital
Neighborhood Watch, and Energy Data Analytics. For
comparison we also evaluate the performance of these
applications using OpenTSDB [10]. It is a popular sys-
tem for time-series data analytics. It is written in Java
and uses HBase to store data. Unlike Bolt’s library that is
loaded into the client program, OpenTSDB allows query-
ing only over HTTP endpoints. Further, unlike Bolt,
OpenTSDB neither provides security guarantees nor the
flexibility offered by policy-driven storage.

6.2.1 PreHeat: Occupancy prediction

PreHeat [36], is a system that enables efficient home
heating by recording and predicting occupancy informa-
tion. We described PreHeat’s algorithm in Section 2.1.
In implementing PreHeat’s data storage and retrieval us-
ing Bolt, we identify each slot by its starting timestamp.
A single local unencrypted ValueStream thus stores the
(timestamp, tag, value) tuples where the fag is a string
(e.g., “occupancy”). We instantiate two different PreHeat
implementations that optimize for either disk storage or
retrieval time, and hence store different entities as values:

Naive: In this implementation the value stored for
each slot is simply the slot’s measured occupancy (0 or
1). Thus for computing predicted occupancy for the nth
slot on day d, POVs are obtained by issuing d temporal
range queries [getAll (k, f;, t.)].

Smart: Here the value stored for a slot is its POV con-
catenated to its measured occupancy value. Thus com-
puting predicted occupancy for the nth slot on day d
requires one get(k) query for POV and (d — 1) tempo-
ral range queries that return a single value for POV",_,,
POVY_,, ..., POV'. As compared to the naive imple-
mentation, range queries over time are replaced with
simple get queries for a particular timestamp. The stor-
age overhead incurred in this approach is larger than the
naive approach, but retrieval latency is reduced due to the
reduced number of disk reads.

Naive + OpenTSDB: We implement the naive Pre-
Heat approach to store and retrieve data locally from
OpenTSDB. It groups occupancy values spanning an
hour into one row of HBase (OpenTSDB’s underlying
datastore). That is, 4 PreHeat slots are grouped into a
single HBase row. OpenTSDB’s usability is limited by
values being restricted to real numbers. Bolt allows byte
arrays of arbitrary length to be stored as values. Conse-
quently, an analogous implementation of the smart Pre-
Heat approach is not possible with OpenTSDB.

Of all the 96 slots in a day, the 96th, or last, slot has
the maximum retrieval, computation, and append time,
as POV is longest POV, Vi € [1,96]. Thus to compare
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the approaches we use the retrieval, computation, and ap-
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Figure 10: Time to retrieve past occupancy data with
increasing duration of a PreHeat deployment.

pend times for the 96th slot of each day. Figure 10 shows
a comparison of time taken to retrieve data for the 96th
slot. We observe that as the number of days increase the
retrieval latency for both the naive and smart approaches
grows due to increasing number of range and get queries.
However, the smart approach incurs less latency than
naive as it issues fewer random disk reads. As compared
to OpenTSDB, Bolt performs approximately 40x faster
for the naive approach in analysing 100 days of data.
Lastly, as expected, the time taken to perform compu-
tation for occupancy prediction is unchanged across the
three implementations.

Table 7 shows the disk footprint incurred by the im-
plementations for 1000 days of operation. We observe
that the smart approach uses 8x the storage compared
to naive as it stores slots’ POVs in addition to occu-
pancy values. Using Bolt’s compressed streams, the
naive scheme achieves up to a 1.6x reduction, and the
smart scheme achieves up to a 8x reduction in stor-
age overhead, as compared to their uncompressed stream
counterparts. OpenTSDB incurs 3x larger disk footprint
than its corresponding implementation using Bolt with
uncompressed streams. Row key duplication in HBase is
one potential source of storage inefficiency.

To understand the effect of chunk-based prefetching
on application performance, we run naive PreHeat for 10
days using a remote ValueStream, clear the chunk cache,
and measure the retrieval time of each slot on the 11th
day. Figure 11 shows the average of all 96 slot retrieval

Configuration Naive Smart
ValueStream 238MB 19.10 MB
ValueStream using GZip 1.51MB 3.718 MB
ValueStream using BZip2 148 MB  2.37 MB
OpenTSDB 8.22 MB -

Table 7: Storage space for a 1000-day deployement of
PreHeat.
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Figure 11: Average retrieval time for all 96 slots on
the 11th day of a PreHeat deployment, with a remote
ValueStream, decreases with increasing chunk size.

times on the 117 day, for different chunk sizes. As the

chunk size increases, the average slot retrieval time de-
creases, as newly downloaded chunks prefetch additional
occupancy values used in subsequent slots’ queries.

6.2.2 Digital Neighborhood Watch (DNW)

DNW helps neighbors detect suspicious activities (e.g.,
an unknown car cruising the neighborhood) by sharing
security camera images [16]. We implement DNW’s data
storage, retrieval and sharing mechanisms using Bolt and
OpenTSDB. Due to Bolt’s (timestamp, tag, value) ab-
straction, objects can be stored (and retrieved) in a sin-
gle remote ValueStream (per home), with each object
attribute in a separate tag e.g., type, ID, feature-vector,
all bearing the same timestamp. Queries proceed by
performing a getAll (feature-vector, f, )
where time window (w)=[fs,t.], and then finding a match
amongst the retrieved objects. Similarly, in OpenTSDB,
each home’s objects are recorded against its metric (e.g.,
home-id), and OpenTSDB tags store object attributes.
We run OpenTSDB remotely on an Azure VM. The
DNW clients that store and retrieve data, for both Bolt
and OpenTSDB, run on our lab machines.

To evaluate DNW, we instrument each home to record
an object every minute. After 1000 minutes, one ran-
domly selected home queries all homes for a matching
object within a recent time window w. We measure the
total time for retrieving all object summaries from ten
homes for window sizes of 1 hour and 10 hours.

Figure 12 shows that, for Bolt, larger chunks improve
retrieval time by batching transfers. For queries that span
multiple chunks, Bolt downloads these chunks on de-
mand. Range queries return an iterator (Section 4.1);
When applications uses this iterator to access a data
record, Bolt checks if the chunk the data record resides in
is present in the cache, and if not downloads the chunk.
Hence queries that span many chunks, like the DNW
run for 10 hours with a 100KB chunk size, cause these

11

DNW EDA
Bolt 4.64 MB 37.89 MB
OpenTSDB 1442MB 212.41 MB

Table 8: Disk space used for 10 homes in DNW for
1000 minutes, and 100 homes in EDA for 545 days.

chunks to be downloaded on demand, resulting in multi-
ple round trips and increasing the overall retrieval time.
This can be improved by prefetching chunks in paral-
lel, in the background, without blocking the application’s
range query. For larger chunks, fewer chunks need to be
downloaded sequentially, resulting in fewer round trips
and improving the overall retrieval time. OpenTSDB has
no notion of chunking. Hence OpenTSDB retrieval times
are independent of chunk size.

For Bolt, beyond a certain chunk size, additional data
fetched in the chunk does not match the query and the
benefits of batched transfers on retrieval time plateau
out. In fact, because chunk boundaries don’t necessar-
ily line up with the time window specified in queries,
data records that don’t match the query may be fetched
even for small chunk sizes. Figure 12(right) shows that
as chunk size increases, the data overhead i.e., the per-
centage of data records in chunks downloaded, that don’t
match the query’s time window w, also increases. Bolt
allows applications to chose chunk sizes as per their
workloads, by trading overhead for performance.

Lastly, Table 8 shows that Bolt incurs a 3x smaller
disk footprint than OpenTSDB.

6.2.3 Energy Data Analytics (EDA)

In this application (Section 2.1), we study a scenario
where a utility company presents consumers with an
analysis of their consumption on their monthly bill, with
a comparison with other homes in the neighborhood, city,
or region within a given time window e.g., one month.

In the implementation using Bolt, we use a single re-
mote ValueStream per home which stores the smart meter
data. For each hour, the energy consumption value is ap-
pended to the ValueStream with the mean ambient tem-
perature value of the hour (rounded to the nearest whole
number) as the tag. This enables quick retrieval of energy
values for a given temperature. In the OpenTSDB based
implementation, we create one metric for each tempera-
ture value, for each home; i.e. Metric home-n-T stores
values recorded at T° C, for home n. For each home we
retrieve data in the time interval [f,7,] for each temper-
ature 7' between -30° C and 40° C. The median, 10th,
and 90th percentile values computed using one home’s
data are compared to all other homes. Data for multiple
homes is retrieved sequentially.
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Figure 13 shows the average time, with 95% confi-
dence intervals, taken to retrieve data for two time win-
dows of 1 month, and 1 year, as we increase the num-
ber of homes. Bolt uses Windows Azure for storage.
We use a home energy consumption dataset from a util-
ity company in Waterloo. Retrieval time for Bolt and
OpenTSDB increases proportionally at approximately
1.4 sec/home and 11.4 sec/home respectively, for a
one month window; 2.5 sec/home and 12 sec/home
respectively for one year window. Bolt outperforms
OpenTSDB by an order of magnitude primarily due to
prefetching data in chunks; A query for 10° C might be
served from the local chunk cache as queries for previous
temperature values might have prefetched this data.

Finally, as shown in Table 8, we find that OpenTSDB
incurs a 5x larger disk footprint than its corresponding
implementation using Bolt.

7 Related Work

Our work is related to three strands of other works: i)
sharing and managing personal data, ii) securing data
stored in untrusted remote storage, and iii) stream pro-
cessing systems for temporal data. We discuss each in
turn below.
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Personal and home data management: Perspec-
tive [35] is a semantic file system to help users manage
data spread across personal devices such as portable mu-
sic players and laptops in the home. It exposes a view
abstraction where a view is an attribute-based descrip-
tion of a set of files with support for queries on file at-
tributes. It allows devices to participate in the system
in a peer-to-peer fashion. Security and access control
are not a focus of the work. HomeViews [25] eases the
management and sharing of files among people. It ex-
poses database-style views over one’s files and supports
access-controlled sharing of views with remote users in a
peer-to-peer manner. Both systems target user-generated
data (e.g., photos, digital music, documents) rather than
device-generated time series data which is our focus.

Secure systems using untrusted storage: SUNDR [30]
is a network file system that provides integrity and con-
sistency guarantees of files stored in untrusted remote
storage. SPORC [21] is a framework for building group
collaboration services like shared documents using un-
trusted servers. Venus [38] and Depot [32] expose a key-
value store to clients on top of untrusted cloud storage
providers. Chefs [23] enables replicating an entire file
system on untrusted storage servers in order to support
a large number of readers. Farsite [13] uses a loosely
coupled collection of insecure and unreliable machines,
within an administrative domain, to collaboratively es-
tablish a virtual file server that is secure and reliable. It
supports the file-I/O workload of desktop computers in a
large company or university. All these systems expose a
storage interface atop untrusted storage; however, none
is suited for supporting semi-structured time series data.

These systems also do not provide configurability on
where to store data: local versus remote for privacy
concerns, partitioned across multiple storage providers
for cost-effectiveness, and replicated across multiple
providers for reliability and avoiding vendor lock-in (as
in RACS [12] and HAIL [15]). Bolt does not need to deal
with file system concurrency control and consistency is-
sues, but instead leverages the nature of time series data
to provide these capabilities.



A related line of work focuses on accountability and
auditing (see Cloudproof [34]) of cloud behavior but
again they are not suitable for the home setting and re-
quire server-side changes. Ming et al. [31] store patient
health records (PHR) on the cloud and support attribute-
based access control policies to enable secure and effi-
cient sharing of PHR’s. However, their system again re-
quires cooperation from storage servers. Goh et al. [26]
propose a security overlay called SiRiUS that extends
local file systems with untrusted cloud storage systems
with the support of data integrity and confidentiality.
SiRiUS supports multiple writers and readers per file but
does not provide any freshness guarantee.

Stream processing systems: Data access in database
management systems is pull-based: a user submits a
query to the system and an answer is returned. For appli-
cations that perform time series data analytics, traditional
databases such as PostgresSQL, have made way for
specialized time series databases like OpenTSDB [10]
(which uses HBase as the backing datastore). In contrast,
in stream-based systems, application’s data is pushed to
a processing system that must evaluate queries in real-
time, in response to detected events — these systems
offer straight-through processing of messages with op-
tional storage. Some stream based systems are central-
ized (e.g., Aurora [18]), and others distributed (e.g., Bo-
rialis [11]), but they assume an environment in which all
nodes fall under a single administrative domain. Bolt
supports a pull-based model where there is no centralized
query processing node, and end points evaluate the query
and retrieve relevant data from storage servers in poten-
tially different and untrusted administrative domains.

An early version of our work appears in a workshop
paper [27] that outlined the problem and presented a ba-
sic design. The current paper extends the design (e.g.,
with chunking), implements real applications, and eval-
uates performance.

8 Discussion

We discuss two promising ways to extend Bolt to im-
prove the overall reliability and sharing flexibility.

Relaxing the assumption on the trusted key server:
Bolt’s current design includes a trusted metadata/key
server (i) to prevent unauthorized changes to the prin-
cipal to public-key mappings and (ii) to prevent unautho-
rized updates (rollback) of the key version stored in each
segment of a stream. The violation of (i) may trick the
owner of a stream to grant access to a malicious prin-
cipal whereas the violation of (ii) may cause the owner
to use an invalid content key to encrypt data, potentially
exposing the newly written content to principals whose
access has been already revoked. Bolt also relies on the
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metadata/key server to distribute the keys and the meta-
data of a stream. Moving forward, we are looking into
ways to minimize this trust dependency and improve the
scalabilty of the metadata server. One approach is to
replicate the information stored at the metadata server at
2f+ 1 servers and go by majority, to tolerate up to f ma-
licious servers. An alternate solution would be to employ
a Byzantine quorum system, similar to COCA [40], to
tolerate up to a third of servers being compromised at any
given time. Partitioning can be used to implement a scal-
able distributed metadata service; For example, a set of
geographically distributed metadata servers can be used
to group the metadata for streams generated at homes in
the same geographical locality.

Supporting finer-grained sharing: Currently, readers
are granted access to the entire stream. Once their read
access has been revoked, they cannot access any new seg-
ments of the stream created since the revocation although
they could still access all the previous segments. Bolt can
potentially support finer-grained read access, by creating
a different key for each segment. This approach trades
off metadata storage space for segment-level sharing.

9 Conclusion

Bolt is a storage system for applications that manipulate
data from connected devices in the home. Bolt uses a
combination of chunking, separation of index and data,
and decentralized access control to fulfill the unique and
challenging set of requirements that these applications
present. We have implemented Bolt and ported three
real-world applications to it. We find that for these ap-
plications, Bolt is up to 40 times faster than OpenTSDB
while reducing storage overhead by 3-5x.
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