
Analyzing Protocol Implementations for Interoperability

Luis Pedrosa† Ari Fogel‡ Nupur Kothari∗

Ramesh Govindan† Ratul Mahajan∗ Todd Millstein‡

University of Southern California† University of California, Los Angeles‡ Microsoft∗

Abstract— We propose PIC, a tool that helps devel-

opers search for non-interoperabilities in protocol imple-

mentations. We formulate this problem using intersec-

tion of the sets of messages that one protocol partici-

pant can send but another will reject as non-compliant.

PIC leverages symbolic execution to characterize these

sets and uses two novel techniques to scale to real-world

implementations. First, it uses joint symbolic execution,

in which receiver-side program analysis is constrained

based on sender-side constraints, dramatically reducing

the number of execution paths to consider. Second, it in-

corporates a search strategy that steers symbolic execu-

tion toward likely non-interoperabilities. We show that

PIC is able to find multiple previously unknown non-

interoperabilities in large and mature implementations of

the SIP and SPDY (v2 through v3.1) protocols, some of

which have since been fixed by the respective developers.

1 Introduction

Nodes in distributed systems communicate using proto-

cols such as TCP, HTTP, SPDY, and SIP. For robust oper-

ation, it is critical that the implementations of these pro-

tocols interoperate effectively, i.e., they should be able to

correctly parse and interpret messages sent by each other.

Protocol interoperability is difficult to engineer and

ensure because the protocols are complex, and often con-

tain many mandatory and optional features. Moreover,

protocol standards documents can be imprecise or am-

biguous, leading different developers to make different

implementation choices about protocol interactions and

semantics of message header formats and values. Thus,

in practice, it is neither possible nor sufficient to simply

“certify” that an implementation adheres to a standard.

Instead, pairs of implementations must be pitted against

one another to test for interoperability.

Today, protocol developers spend significant manual

effort [17, 18, 30, 31, 36] in testing interoperability. They

identify test inputs that can test specific features of the

protocol (e.g., options negotiation). But, because the

space of test inputs is large, such manual testing is often

incomplete. As a result, interoperability issues continue

to frustrate developers, as well as users, even years after

protocols have been fully deployed [35, 39].

Our goal is to automate the search for test inputs that

trigger non-interoperabilities between two implementa-

tions. In this paper, we formulate the problem of non-in-

teroperability of protocol implementations and develop

a tool called PIC (Protocol Interoperability Checker)1 to

identify non-interoperabilities. To our knowledge, PIC is

the first tool that addresses this problem.

We say a message m exhibits a non-interoperability

when certain inputs cause message m to be sent by one

protocol participant but rejected as non-compliant by the

receiver. Message m need not be the first message in a

protocol interaction; PIC can be used to analyze the i-th

message (e.g., a data transfer message sent after the con-

nection establishment handshake). Conceptually, PIC

characterizes the set of messages that a sender-side im-

plementation can generate, and the associated inputs that

generate those messages. Similarly, it characterizes the

set of messages a receiver-side implementation considers

non-compliant. Messages in the intersection exhibit non-

interoperabilities. Thus, unlike manual testing where de-

velopers specify test inputs that may trigger non-interop-

erabilities, PIC uses symbolic execution [22] to automat-

ically derive test inputs by analyzing protocol code.

A key challenge with this approach is that symbolic

execution of protocol code, which tends to be low-level,

is invariably incomplete and imprecise, and is hard to

scale to real-world implementations. As originally de-

signed, symbolic execution explores as many paths as

possible, while we are interested only in exploring paths

that produce elements of the sets described above. While

we cannot overcome symbolic execution’s inherent in-

completeness, we address the scaling challenge using

two novel techniques.

First, we introduce joint symbolic execution, in which

the receiver-side symbolic execution is directed based

on the sender-side analysis results, dramatically reduc-

ing the number of execution paths to consider. Specif-

ically, the only receiver-side paths considered are those

that are compatible with messages that can be sent from

the sender. As we discuss later, in the absence of joint

symbolic execution, an independent analysis may not

even be feasible for some protocol implementations. We

believe that joint symbolic execution is of general inter-

est for scalable protocol analysis beyond the use case of

searching for non-interoperabilities.

1PIC is available at https://github.com/USC-NSL/SPA

1

Second, PIC employs new search techniques that di-

rect the analysis toward execution paths more likely to

add new messages to the sets being characterized, and

therefore to identify interoperability errors. Our exper-

iments show that PIC’s search strategies help find 25×

more instances of non-interoperabilities than existing

strategies within a given time.

We apply PIC to four mature implementations of

two qualitatively different protocols: SIP [40] and

SPDY [1]. For each protocol, we find thousands of non-

interoperable messages spread across different features

of the protocol. To understand the causes that lead to

these, we group messages that arise from the same un-

derlying problem (e.g., a failure to correctly validate API

inputs). For SIP we find 9 distinct causes, and for SPDY

we find 13 distinct causes, which fall into several high-

level classes: liberal senders, conservative receivers, am-

biguous specifications, specifications with optional fea-

tures and so forth. We reported these to the developers,

and several have been fixed.

2 Problem and Background

Protocol implementations cannot easily be validated for

compliance against protocol specifications. Such spec-

ifications are typically expressed in a natural language

and have inherent ambiguities, so ensuring compliance

would first require formalizing the specifications in some

way, a process which itself can be error prone and open to

multiple interpretations. The ambiguity of protocol stan-

dards is well-documented, for instance, for BGP [26].

Therefore, instead of compliance to a specification, we

focus on checking interoperability of implementations.

Specifically, two implementations are considered non-

interoperable when there exists at least one protocol mes-

sage on which they disagree. The disagreement could be

about whether the message is protocol compliant (e.g.,,

the values of header fields are formatted correctly, or take

the range of values expected by the receiver) or about

what the message means. The work in this paper focuses

on the former notion of disagreement. The latter notion

of semantic interoperability poses additional challenges

in extracting meaning and intention from protocol mes-

sages, which we leave to future work.

Protocol interactions. To more precisely define our no-

tion of interoperability, consider client-server or peer-

to-peer communication between two implementations.

Such communication is usually triggered by a call to a

protocol API function that implements a specific func-

tionality. This API function initiates a protocol inter-

action: a sequence of message exchanges that perform

the desired functionality. For example, a protocol inter-

action to initiate a call in SIP begins with a client re-

quest message, followed by a server response message.

TCP involves several types of protocol interactions: sep-

arate API functions initiate connection setup, data trans-

fer, and teardown. In general, a protocol interaction can

involve a sequence of messages m1, . . . ,mn, some going

from client to server (or one peer to another), and some

the other way. Each message exchange may update the

sender or receiver state, which consists of the values as-

signed to variables in the protocol implementation.

Now, consider a message mi in a protocol interaction.

The sender prepares mi based on the contents of mi−1 and

on its current state; the first message m1 is prepared af-

ter processing the arguments passed to the API function

that initiated the current interaction. At the receiver, mi

is first validated for protocol-compliance. If mi does not

pass these checks, it may be discarded (or an error mes-

sage sent in response). If it does, subsequent steps of the

interaction are invoked.

On the sender side, let Si denote the set of all pos-

sible i-th messages that can be generated (i.e., consid-

ered protocol-compliant) given the sender’s state after

the first i− 1 messages in the protocol interaction. On

the receiver side, let Ri denote the set of all possible i-

th messages that the receiver would consider protocol-

compliant given its state after the first i− 1 messages.

Defining non-interoperability. Let Si−Ri denote the set

of messages that are in Si but not in Ri. Then, the sender

and receiver are said to exhibit a non-interoperability if

Si −Ri 6= ∅, that is, there are messages that the sender

can send but the receiver will not deem compliant.

If a sender and receiver are non-interoperable, then

we know that the two entities implement the specifica-

tion inconsistently. However, we cannot directly deter-

mine which entity deviates from the protocol specifica-

tion: non-interoperability can occur either because the

sender is too liberal in interpreting the specification, the

receiver is too conservative, or both.

An example. Figures 1 and 2 list the code for NetCalc, a

simple networked calculator protocol that we use to illus-

trate our approach later. (Functions with pic * names

are explained in §3.) At the client, the Compute() API

function initiates an interaction with the server, sending

a message containing an operator and two operands. At

the server, the handleMessage() function processes

the received message. This example has two non-inter-

operabilities: the client incorrectly expects the server to

implement multiplication, and the client does not test for

division-by-zero while the server does. So, the set Si−Ri

consists of all messages sent by the client with the mul-

tiply operator or messages with zero divisor.

Interoperability testing today. The current practice for

testing interoperability of protocol implementations is

largely manual and ad hoc. Developers of different im-

plementations participate in physical or virtual interoper-

ability events. They test how well two implementations

2

1 Compute(char operator[8], int32 operand1, int32 operand2) {

2 // buffer, buffer size, name

3 pic_api_input(operator, 8, "operator");

4 pic_api_input(operand1, 4, "operand1");

5 pic_api_input(operand2, 4, "operand2");

6

7 byte[] message = new byte[9];

8 if (operator == "plus")

9 message[0] = 0;

10 else if (operator == "minus")

11 message[0] = 1;

12 else if (operator == "divide")

13 message[0] = 2;

14 else if (operator == "multiply")

15 message[0] = 3;

16 else

17 throw exception;

18 message[1..4] = operand1;

19 message[5..8] = operand2;

20

21 // buffer, length, buffer size, name

22 pic_msg_output(message, 9, 9, "message");

23 sendMessage(message);

24 }

25

26 testHarness() {

27 pic_api_entry();

28 char o[8];

29 Compute(o, 0, 0); // Dummy arguments

30 }

Figure 1: NetCalc client. The pseudo-code parses API inputs

and populates a message before sending it. PIC annotations

declare API inputs (l. 3-5), and message outputs (l. 22). A sim-

ple test harness initiates a protocol interaction (l. 26-30).

1 handleMessage(byte[] query) {

2 // buffer, buffer size, name

3 pic_msg_input(query, 9, "message");

4

5 int32 operand1 = query[1..4];

6 int32 operand2 = query[5..8];

7 switch (query[0]) {

8 case 0:

9 print(operand1 + operand2);

10 break;

11 case 1:

12 print(operand1 - operand2);

13 break;

14 case 2:

15 if (operand2 == 0)

16 throw exception;

17 print(operand1 / operand2);

18 break;

19 default:

20 throw exception;

21 }

22 pic_valid_path();

23 }

24

25 void testHarness() {

26 pic_msg_handler_entry();

27 handleMessage(new byte[9]);

28 }

Figure 2: NetCalc server. The pseudo-code parses and vali-

dates the incoming message and acts on it. PIC annotations

are used to declare the message input (l. 3) and the point in the

code where the message has been considered valid (l. 22). In-

valid messages generate an exception and are detected by not

reaching the validity assertion. A simple test harness allocates

a message and launches the message handler (l. 25-28).

interoperate in order to uncover undesirable interactions

resulting from code bugs or ambiguities in the standard.

During testing, developers specify and execute a series

of interoperability tests on each pair of participating im-

plementations. This is done by configuring those imple-

mentations to communicate with each other in a specific

manner, by selecting a network topology for the test, and

(optionally) by injecting failures or packet losses. Fi-

nally, the participants document testing results in event

reports [17, 18, 30, 31, 36].

There are two conceptually different components to

specifying an interoperability test: which protocol inter-

action (e.g., connection setup and termination, options

negotiation, data transfer, and control commands) to test,

and what specific test inputs to use. Specifying the pro-

tocol interaction is conceptually straightforward, since

there is usually a small number of such features. How-

ever, specifying good test inputs (e.g., the call parame-

ters in a SIP connection setup) is difficult. The space of

potential protocol inputs can be very large (e.g., all possi-

ble URLs). To detect a non-interoperability, the specified

test inputs must generate a message in Si−Ri. Today the

developer gets essentially no help in this task, resorting

to a random search, perhaps guided by intuition, expe-

rience, and an understanding of potential ambiguities in

the specification. Once a non-interoperability is found,

developers converge on a mutually consistent reading of

the specification in order to fix it.

Further, given the size of the search space, develop-

ers are able to consider only a very small fraction of

the possible inputs; as one of the interoperability reports

acknowledges, “the test parameters were limited” [18].

As a result, many corner cases go undiscovered during

testing and are discovered after implementations are de-

ployed in production [35, 39].

This paper explores methods to derive test inputs that

generate messages in Si−Ri using program analysis, and

instantiates these methods in a tool called PIC. Program

analysis simultaneously removes a large burden on de-

velopers and improves the effectiveness of interoperabil-

ity testing via targeted search and increased coverage.

3 PIC Design and Implementation

In this section, we first describe PIC’s high-level ap-

proach and then detail its design.

3.1 PIC Approach

Our goal is to develop methods that, with low developer

effort, can uncover non-interoperabilities in real-world

protocol implementations. We seek methods that are in-

dependent of a specific protocol implementation or type

and can therefore be applied to a wide range of protocols.

Symbolic execution. We use symbolic execution [22],

a program analysis technique that simulates the execu-

tion of code using a symbolic value σx to represent the

value of each variable x. As the symbolic executor runs,

it updates the symbolic store that maintains information

about program variables. For example, after the assign-

ment y = 2*x the symbolic executor does not know

the exact value of y but has learned that σy = 2σx. At

branches, symbolic execution uses a constraint solver to

determine the value of the guard expression, given the

information in the symbolic store. The symbolic execu-

tor then only explores branches when the corresponding

boolean guard is satisfiable. For example, it will explore

both then and else branches of an if-then-else statement

if the condition can be either true or false given the sym-

bolic state of the system. In this way, a tree of possible

3

program execution paths is produced. Each path is sum-

marized by a path constraint that is the conjunction of

branch choices made to go down that path.

Key insight. In a protocol implementation, the set Si of

messages that can be sent and the set Ri of messages that

would be accepted as the i-th message in a protocol inter-

action can be succinctly represented by the symbolic val-

ues of the message header fields generated by the sender

and accepted by the receiver, when they are both sym-

bolically executed. Thus, Si−Ri can be computed by de-

termining if there exist concrete values for the message

header fields that would match the symbolic constraints

on the sender, but not on the receiver (and vice versa).

In theory, we can use an existing symbolic execution

tool to compute the sets Si and Ri, in order to then pro-

duce the set Si−Ri of non-interoperabilities. In practice,

however, we face two difficulties. First, symbolic execu-

tion is invariably incomplete, since real code can have a

large (often unbounded) number of possible executions

due to loops, recursion, etc. Thus, what we are bound to

get are subsets S′i ⊂ Si and R′
i ⊂ Ri. Using the difference

of these subsets S′i−R′
i to determine whether Si−Ri 6=∅

will lead to many false positives, since many relevant el-

ements of Ri may be missing from R′
i.

To address this limitation, we recast our analysis to ask

a question that can be answered precisely even with in-

complete sets. Instead of trying to compute Ri, we com-

pute ¬Ri, the set of messages that the receiver rejects.

Given the limitations of symbolic execution, we will ac-

tually obtain some set R̂i such that R̂i ⊂¬Ri. This results

in computing S′i ∩ R̂i ⊂ Si −Ri, by which non-interoper-

abilities are found when S′i ∩ R̂i 6= ∅, i.e., there are mes-

sages that are generated by the sender but rejected by the

receiver. This formulation of interoperability is mathe-

matically identical to the original one when the sets are

complete but trades false positives for false negatives in

the presence of partial information. This is more useful,

since any message that belongs to both S′i and R̂i is in fact

non-interoperable but does, however, limit PIC’s ability

to certify interoperability as S′i ∩ R̂i =∅; Si −Ri =∅.

The second difficulty is that, as originally designed,

symbolic execution attempts to cover as many paths as

possible, without regard to where they lead. Given the

already difficult task of scaling symbolic execution to

protocol code, as well as the inherent incompleteness de-

scribed above, such a blind search is less likely to pro-

duce useful results than one directed toward likely non-

interoperabilities. Later in this section, we describe our

techniques to address this difficulty.

3.2 PIC Architecture

The PIC workflow has four stages, shown in Figure 3. Its

input is the intermediate code representation generated

������
���	
���
�

�������
���	
���
�

��	���
�

�����������������

�������������

������������
�
��

������������
�
��

�����
�����	��
������

�	�������

���������������������������

Figure 3: PIC Analysis Work-Flow

���������� ��	
�������

�����������	
��

�����������������	����	
��

����������������	������������ ���������������	��������������

����������������	����������������������� ���������������	������������������

���������������	������������

��������������������	������ ������������	������������
���������

����������������

 �	!�� �������� ��������� ��� ����� ��	�����
��	�����������	�

 �	!�� �������� ��������� ��� ����� ��	�����
��	��������������	�

���������� ��������������� �����	� ���
���������������

 �	!�� ����� ������ ���"������������ ���
�������	���������

Table 1: PIC Annotations

from annotated source (i.e., LLVM [2] bitcode).

Analysis annotations. As with today’s interoperability

tests, a developer using PIC has to specify (a) the proto-

col interaction to test for interoperability, (b) what consti-

tutes a non-interoperability, and (c) the API input param-

eters. These are specified using code annotations (Ta-

ble 1). In a crucial departure from today’s practice, the

developer does not need to specify concrete values for

the test inputs: rather, PIC derives test inputs that trigger

non-interoperabilities as described below.

The pic api entry() and pic msg handler -

entry() annotations identify test harnesses at the

client (lines 26-30, Figure 1) and server (lines 25-28,

Figure 2), respectively. The pic api input() anno-

tation (lines 3-5, Figure 1), specifies which inputs are of

interest; other inputs are bound to a single concrete value

during analysis (limiting its scope to trade completeness

for complexity). In Figure 1, these annotations cover all

arguments to the client API, but in practice, some of them

can be omitted, focusing the analysis only on the speci-

fied inputs. Finally, two annotations convey the seman-

tics of non-interoperability. pic msg output() on

the client indicates the codepoint at which a message is

transmitted (line 22 in Figure 1). pic valid path()

on the server indicates the codepoint at which a message

is considered protocol-compliant (line 22, Figure 2).

Symbolic execution of sender and receiver. The anno-

tated sources are compiled into LLVM bitcode and fed to

PIC. The first stage of PIC uses the sender-side annota-

tions to analyze the sender code and generates paths, de-

fined by a path constraint and the symbolic value of the

resulting message. The second stage uses these paths, in

a technique we call joint symbolic execution, to perform

a similar analysis of the receiver, using receiver-side an-

notations. This results in a set of path constraints that

represent non-interoperabilities, which are subsequently

passed to a constraint solver. The solver determines a

satisfying model: an assignment of concrete values to

symbols that satisfies the formula. As such, the output is

a set of concrete instances of non-interoperabilities.

4

The first two stages use the KLEE [9] symbolic ex-

ecution engine, modified to use a novel guided search

strategy (described below). Being based on KLEE and

LLVM, PIC can analyze any language that can be trans-

lated to LLVM, which currently includes many popular

languages such as C, C++, Objective-C, and C#.

Validation using concrete execution. The third stage

removes false positives from the output of the second

stage. False positives can arise because the first two

phases may produce path constraints that do not in fact

represent feasible paths to the target program points.

This happens due to the conservative nature of symbolic

execution in the face of code that is either not available

(e.g., system calls and external libraries) or that cannot be

analyzed precisely (e.g., complex heap manipulations).

Therefore, we concretely execute the protocol code,

to rule out infeasible paths. The annotations used to de-

clare API inputs are now used to inject concrete input

values directly into the running program. At the receiver,

whether a validity annotation is reached is now used to

confirm or refute the non-interoperability. While a test

harness is used to exercise the protocol API during the

symbolic execution stage, in the validation stage the ap-

plication may be used in a setting closer to an actual de-

ployment, including the use of more elaborate network

topologies, if needed. The validation stage scales well in

our experience: as we show later, it is feasible to validate

every produced concrete non-interoperability in our eval-

uation (some generate 70,000+ non-interoperabilities). n

Clustering. To help developers interpret the results, the

final stage clusters the potentially many non-interoper-

ability instances produced post-validation. PIC provides

an extensible technique for this purpose.

3.3 Joint Symbolic Execution

Independent symbolic execution, in which S′i and R̂i are

independently computed, can miss many interoperabil-

ity bugs, for two reasons. First, the receiver-side analy-

sis will waste a lot of time analyzing messages that the

sender would never send, for example because it per-

forms its own validation. Second, without any coordi-

nation, the sender and receiver are likely to explore dif-

ferent subsets of the space of possible messages, and by

definition interoperability bugs will only surface in the

intersection of these subsets.

PIC’s joint symbolic execution modifies the receiver-

side symbolic execution as follows. Initially, symbolic

execution proceeds normally, up until the point where a

message is received. The symbolic execution state is then

forked multiple ways, one for each sender path. The path

constraint on each of these forked states is then manipu-

lated, AND-ing the path constraints from the respective

sender path as well as connecting constraints that bind

the sent message to the received message. Binding is

done by declaring a byte-for-byte equality of the received

message buffer to the symbolic value established for the

message buffer on the sender. Symbolic exploration then

proceeds as usual. By construction then, the output of

the receiver-side analysis is a set of path constraints that

characterize non-interoperabilities (i.e., S′i ∩ R̂i).

Joint symbolic execution has the effect of driving

receiver-side symbolic execution only along paths con-

sistent with messages the sender can send. This tech-

nique solves the two problems of independent symbolic

execution described above. Any non-compliant message

that the sender would never send is not explored by the

receiver. More importantly, any symbolic message from

the sender that represents an interoperability bug will

definitely be explored by the receiver, without needing

to be independently discovered. For example, in Net-

Calc, if the symbolic executor has only enough resources

to produce a path for one of the two non-interoperabili-

ties on each side, independent symbolic execution could

produce different ones on each side, with the result that

neither interoperability is detected (since the intersection

would be empty). For these reasons, as we show in §4,

joint symbolic execution is significantly more effective

than independent symbolic execution.

3.4 Guiding Symbolic Execution, To and Fro

The original goal of symbolic execution is to explore

as many code paths as possible for the purpose of pro-

gram testing. Real-world protocol implementations have

a huge number of paths, and a direct application of sym-

bolic execution can be extremely inefficient.

In our setting, we require a form of guided symbolic

execution that preferentially explores paths that satisfy

certain properties of interest. Specifically, interoperabil-

ity testing requires two different kinds of guidance. On

the sender side, we need to explore paths that reach one

of the few program points where a message is sent, which

we call convergent exploration. This goal is similar to the

notion of directed symbolic execution described by Ma et

al. [28]. On the receiver, we need to explore paths that

avoid a few points where the message is considered valid,

which we call dispersive exploration. To our knowledge,

there is no prior work on achieving this goal.2

Convergent and dispersive exploration. To achieve

both convergent and dispersive exploration in a common

framework, we reduce the problem of directed symbolic

execution to a specialized instance of graph search. In-

deed, choosing which paths to further explore is analo-

gous to picking which node to visit next in a graph traver-

2One could avoid dispersive exploration by annotating invalidity as-

sertions at the receiver and then doing convergent exploration. But that

greatly increases the annotation burden, thereby increasing the possi-

bility of erroneous annotations. One of the SPDY implementations we

explore requires 2 validity assertions but 28 invalidity assertions.

5

Figure 4: Dispersive symbolic execution preprocessing. The

black dispersive target on the left is converted to two convergent

ones on the right using a reverse control-flow analysis (gray).

sal. Convergent exploration is a matter of using search

strategies for efficiently reaching a target set of program

points. This translates into computing a distance function

that determines an ordering of paths to explore. Different

distance functions embody distinct search strategies.

Dispersive exploration, on the other hand, is not so

straightforward. A potential approach is to negate the

distance function, but that merely guides exploration

away from undesirable points. Absent further guid-

ance, this could easily get stuck in endless loops go-

ing nowhere. Instead, we conduct an initial pass on the

CFG (control flow graph) to map dispersive targets to be

avoided into convergent targets to be reached (Figure 4),

in effect deriving invalidity assertions from the user spec-

ified validity ones. This preprocessing stage starts with a

reverse control-flow analysis, finding all points that can

reach the dispersive target. Any remaining points cannot

reach the dispersive target and are subsequently desig-

nated as targets for a convergent exploration.

Fast search. By default, symbolic execution engines use

depth-first-search (DFS), which is memory-efficient, but

is unaware of the targets. DFS makes early branching de-

cisions, leading to a point deep in the control-flow graph.

Once there, it exhaustively explores nearby branches, be-

fore backtracking. DFS can waste a lot of time in this

localized exploration, or if it finds a non-interoperabil-

ity, it will find many instances or small variants of the

same underlying non-interoperability before discovering

a qualitatively different non-interoperability (§4.5).

Ma et al. [28] propose three new strategies: call-chain

backward symbolic execution (CCBSE), shortest-dist-

ance symbolic execution (SDSE), and mixed-chain ba-

ckward symbolic execution (Mix-CBSE), a hybrid of the

first two. CCBSE works backward from the target point,

performing (forward) symbolic execution from the near-

est enclosing function, and repeats this process back-

wards until reaching the entry point. This goal-directed

approach does not work well when there are a large num-

ber of possible targets, as is the case with dispersive

exploration, since it requires managing and prioritizing

among the several independent analyses for each target.

SDSE, which is similar to the technique in ESD [44],

is analogous to greedy best-first search (GreedyBestFS),

based on a control-flow distance metric. Unlike CCBSE,

it can naturally accommodate multiple targets. But we

found that, because of its greediness, it sometimes suffers

from stubbornly sticking to potentially bad early branch-

ing decisions. This can lead to local minima. An exam-

ple is the case where one branch of a conditional has a

shorter control-flow distance to the target than the other,

but may require significantly more symbolic execution

(e.g., unraveling loops).

In PIC, we therefore use a strategy based on the A*

heuristic search algorithm [41]. A* is a variant of best-

first-search that also considers the cost of the path tra-

versed so far. This approach allows the search to quickly

exit local minima since local exploration increases the

path cost, making other paths more attractive. Further,

since the control-flow distance metric can be just as eas-

ily calculated for many points as for a few, this heuristic

permits both convergent and dispersive exploration.

Basic distance heuristic. A good distance heuristic is

key to the efficient use of A*. A* does not allow overesti-

mating and significantly under-estimating approximates

a breadth-first search, potentially leading to state explo-

sion. The basic distance heuristic that we use is based on

a work-list based inter-procedural analysis on the CFG

(done before symbolic execution) [12, 37, 38]. In the

CFG, nodes represent program points and directed edges

connect each node to its possible control-flow succes-

sors. Some edges connect two program points in the

same function, while others represent function calls and

returns. We assign a distance to each node, intuitively

representing distance to a target node. For simplicity in

the discussion we assume a single target.

Consider a node n, that is an ancestor of the target

node. If the path from n to the target does not traverse

a function return, then the distance of n is defined to be

one more than the minimum distance of any of n’s direct

successors in the CFG. We call this an absolute distance.

However, the distance metric is less clear for program

points within functions that are called and returned from

on the path toward the target, since different call sites to

these functions can have very different distances to the

target. One could naively work with the minimal distance

from any call site to statically compute an absolute dis-

tance but, without the context of a call stack, this could

significantly underestimate distances during earlier calls.

Therefore, for such functions our algorithm computes a

relative distance for each program point, which is simply

the distance to a return point in the function, and we later

compute a final distance metric for these nodes on the fly

during symbolic execution. Specifically, to compute the

distance metric for a node reached during symbolic exe-

cution, we traverse the current call stack backward, sum-

ming all of the relative distances encountered and stop-

ping when reaching the first absolute distance, which is

included in the final sum (Figure 5).

Return normalization. The basic distance metric above

works well under most circumstances, but we encoun-

tered a problem that occurs frequently in input-parsing

6

� � �

�� � �

� �

� �

�

�
	

��
	
�
�

Figure 5: Calculating inter-procedural distances: absolute

distances from each program point to the black target are cal-

culated on the direct call path (solid circles) and relative dis-

tances (dashed circles) are computed to exit points in called

functions. The final distance from the gray node is calculated

as as the sum of relative distances along the stack up to and

including the first absolute one: 1+1+5 = 7.

1 int entry(char *input) {

2 if (checkInput(input) == SUCCESS)

3 target();

4 return SUCCESS;

5 } else {

6 return FAIL;

7 }

8 }

9

10 int checkInput(char *input) {

11 int i = 0; // Distance: 6

12 while (input[i] == ’ ’) // Distance: 5

13 i++; // Distance: 6

14 if (input[i] != ’g’) // Distance: 4

15 return FAIL; // Distance: 3

16 if (input[i+1] != ’o’) // Distance: 3

17 return FAIL; // Distance: 2

18 if (input[i+2] != ’o’) // Distance: 2

19 return FAIL; // Distance: 1

20 if (input[i+3] != ’d’) // Distance: 1

21 return FAIL; // Distance: 0

22

23 return SUCCESS; // Distance: 0

24 }

Figure 6: Example showing the importance of equally priori-

tizing all exits.

code, where the particular return point from a function

affects the ability of the path to eventually reach the tar-

get. Figure 6 shows an example. The entry func-

tion reaches the target and calls function checkInput

along the way. A naive approach would guide execution

within checkInput to the nearest return instruction.

However, it’s clear from the code that only the instruc-

tion that returns SUCCESS can actually lead to the tar-

get point; the other return points signal an error that gets

propagated back up the call stack until the message is

rejected as invalid.

Augmenting the CFG analysis with the necessary

value sensitivity to address this problem would require a

much more sophisticated and computationally intensive

algorithm (akin to symbolic execution itself!). Instead,

we modify our metric for return points to prioritize them

equally. This will not prevent exploration from taking the

wrong ones at some point, but it will mitigate the patho-

logical case in Figure 6 by exploring each return point

before unraveling the loop on line 12 one more iteration,

instead of unraveling all iterations with the first return

before trying the next one. This adaptation is achieved

by taking into account each exit point’s depth, i.e., its

minimum control-flow distance from the entry point, in

relation to the function’s maximum depth. Using this

notion, instead of initializing each exit point’s distance

to 0, each one is assigned a custom distance metric cal-

culated as maxDepth−depth(node), effectively making

� �

�

� �

�

�

� �

�

� �

�

� �

�

� �

�

Figure 7: Normalizing the costs to exit nodes: the initial cost

of exit nodes (black) is adjusted when computing relative dis-

tances to avoid favoring any particular one. This is equivalent

to adding virtual NOPs (dashed) to early returns so that all

return statements appear as if they were at the same depth.

them all look equidistant (Figure 7). The resulting rela-

tive distances are annotated in Figure 6.

3.5 State Initialization

PIC provides support for finding non-interoperabilities

on a message that occurs somewhere “in the middle” of

a protocol. For instance, a developer may want to de-

tect non-interoperabilities for a data transfer, which oc-

curs only after proper connection establishment. For this,

PIC provides a lightweight form of message record and

replay. During test runs of a protocol, PIC automatically

logs the concrete values of messages as well as client

and server API inputs at each protocol interaction. Sup-

pose there are m messages in a protocol interaction, and

a developer wishes to analyze the k-th message (k ≤ m).

The developer invokes PIC with the log and k as inputs,

and PIC begins symbolic execution by feeding in the first

k−1 messages as concrete values. This sets up the initial

state for symbolically executing the k-th message, which

proceeds exactly as described above.

This approach enables PIC to symbolically explore the

space of k-th messages, predicated on the sets of k − 1

concrete recorded messages. In future work, we intend

to explore scalable iterative joint symbolic execution, ex-

ploring all possible combinations of k messages.

3.6 Clustering Non-interoperabilities

During exploration, it is not uncommon for PIC to find

many non-interoperable messages or API inputs that

stem from the same underlying issue (e.g., improper vali-

dation of an API input). It can be difficult for a developer

to manually sift through each of these. We implemented

an optional analysis step that allows developers to clas-

sify the resulting instances into separate clusters.

The developer uses this capability as follows. She first

picks one instance and defines a clustering function for

it. The function indicates whether a given instance be-

longs to the cluster. It can use as input any attribute of

the instance, such as the protocol API that was called,

conditions on the API input, or even a regular expres-

sion on the message content. Then, she runs the clus-

tering function(s) defined thus far, at the end of which

there are several unclassified test cases. She picks one

of these, and repeats the steps above until no unclassified

test cases remain. In one of our evaluations, PIC pro-

duced over 17,000 non-interoperability instances, which

7

were eventually clustered into 6 or 7 groups. The devel-

oper effort is proportional to the number of clusters, not

the number of instances and, from our experience, is not

significant. The most elaborate such function we devel-

oped copied a state-machine from the original code and

detected a particular transition. With such an iterative

process, clustering becomes intertwined with debugging

and can be seen as a means of filtering instances of non-

interoperabilities that have already been classified. We

have left automating this process to future work.

3.7 Stage Pipelining and Parallelism

Despite our optimizations, analyzing real protocol im-

plementations can take a significant amount of time. Our

implementation uses pipelining between the sender-side

and receiver-side analyses and between the receiver-side

and the validation stages. It also uses parallelism within

the receiver-side analysis stage and the validation stage.

We omit the details of these optimizations for brevity.

4 Evaluation

To evaluate PIC, we selected two different protocols

to uncover non-interoperabilities: the Session Initiation

Protocol (SIP), a signaling protocol for Internet tele-

phony systems; and SPDY, a widely-deployed protocol

for accelerating Web transfers. SIP was chosen due to its

prior history of interoperability problems [35, 39], and

SPDY was chosen because it is a recently developed, but

rapidly evolving, protocol that is already implemented in

the latest versions of browsers and servers and deployed

on many major content providers. There is one addi-

tional important difference between the two protocols:

whereas SIP headers are human readable text-based mes-

sages, SPDY is a binary protocol where messages have

a more rigid structure. That PIC is able to analyze both

classes of protocols demonstrates its generality.

We analyzed two SIP implementations (eXoSIP and

PJSIP), and two versions each of two SPDY implementa-

tions (spdylay and nginx), using the following procedure.

We first defined use cases, defining the client-server roles

and assumptions regarding network state (e.g., a SPDY

client fetching content from a server on localhost). We

then created simple test harnesses that essentially exer-

cised a concrete example of a protocol interaction match-

ing the selected use case (e.g., invoking the SPDY re-

quest API with a partially symbolic URL in the form

of “http://127.0.0.1/*”). Using a debugger, we then fol-

lowed the code as it processed API and message inputs

in order to determine where the message was sent and re-

ceived and where the message passes validation and be-

gins to be handled. These steps helped determine where

to annotate the code. When analyzing later messages in

an interaction, we used the annotations to record and re-

play inputs and messages from a test run, before initi-

ating symbolic execution. After this, the analysis pro-

�����������	
� �	��� ���
���	
�� �����������

��������	
	� ��� �� ��

�������	�� ���
 �� �

���������	�	� ���� �� ���

���������	�	� ���� �� ���

�������	�	� ��
 � �

�������	�	� ����
� � �

Table 2: Source lines of code for library, annotations and test

harnesses.

ceeded as described in §3.1.

Table 2 shows that PIC scales to implementations that

involve tens of thousands of SLoC. Moreover, we see

that the effort of adding the annotations is small, espe-

cially compared to the size of the original code base. For

example, for nginx, since we analyzed only one message,

only 4 annotations were needed. For PJSIP and nginx, a

separate test harness was not needed as we could sim-

ply re-use its command-line application. As an aside,

although PIC was designed for protocol developers, we

(the authors) did not develop any of the analyzed code;

that we were able to find significant non-interoperabili-

ties in these large implementations is an example of how

automating the search for test inputs can reduce reliance

on developer insight and intuition.

4.1 SPDY results

We evaluate two implementations of SPDY. The first is a

modular SPDY stack called spdylay [42], for which we

analyze versions v0.3.7 and v1.3.1. spdylay offers both

client and server functionality. The second implemen-

tation is spdylay, a popular open-source Web server, for

which we analyze versions v1.5.5 and v1.7.4. The former

version supports only SPDY v2, but the latter includes

support for v3 and v3.1.

Our analyses explore all 4 client-server combinations

across these versions. Certain components of SPDY

(data encryption and compression) are challenging for

symbolic execution, since analyzing them can be anal-

ogous to reversing one-way functions. State-of-the-

art techniques usually treat these as uninterpreted func-

tions and then use developer-supplied invariants (e.g.,

Decrypt(Encrypt(data,key),key) = data) to simplify

the resulting expressions (e.g., cancel out the encryption

once the client has decrypted the cypher-text with the

same key). Since KLEE doesn’t support this kind of eval-

uation, we abstracted these into identity functions dur-

ing analysis (but not during validation). This of course

limits PIC’s ability to detect non-interoperabilities that

originate in these functions, but was necessary to enable

analysis of the remaining protocol code.

Our experiments focused on the Stream Creation

(SYN STREAM) message and the Stream Response

(SYN REPLY) message (the second message in the pro-

tocol interaction). The non-interoperabilities discovered

for the latter message are a subset of those for the former,

so we focus on describing results for the former.

The results are summarized in Table 3. To obtain

8

�
������ �	��
 �
����

� ��������	
� �

� �

� �����
��� � � ��

� ���������� � � ����������������������������������� ��������������

� � � � ��	���!���������"##$������������������
�%��&��������'$()�

� �����
����� � � � ��	�������������*��������+,����-.����������������������������

� ���������� � �

� �������/� �

� � 0

� ��������%%� � � ��	������&���������!����������������������������1-�����������������������

� � � ��	�������������*�����#,2+��"##$��������

� �����������3 �

� � �

����	��� ! "
����	��� ! "

����	��� ! "
�#��$�% & &

����	��% ! %
����	��% ! %

����	��% ! %
�#��$�% " '

#�������������&&�������������������2$4�����5�����*�� ������������������������������
������� #��� ������� ����6�� &��� ���� ��!����� ������ ������������ #��� ������� 2$4�
������&�����&����� ������������������&����

-�7�����
'����������
���	
�

#��������������������*��������������������������������������&����
#�����*������������*�����������������������������

��������
�"##$�%�8�

+�����������
,�������

� ��	� ����&���� ������� ���� ����� ���������� ���� ��������� 7���6�� � ��� &���� ����
*�7������

� ��	����������*�� ���� ���� �/�������5� �/�����5� �/��������5� �/�����5� ���� �/��������
�����������������*�����/��

�����
���
�����9���

4�� ����� ������������5� ���� ������� ����*�� ������ ������� �����5� *������� ����
����������������2����&&�7����������������6����������6���������������*���������
���� ����� ������� ����� ��� ������� #��� ������� ��� �����*���� �������� ��� �������*�� �
������ ������� �����5� 7�� ������ ����� ����6� ���� ����� �������� #��� ������� 2$4�
������&�����&�����������������&����

:��������
.�����

�������
�#,2+��

#�������������&�� ��	��������������������'$()�3�����&������������������� ���
4���������������������� �����������&���������� �*�������������&����������

1����������
������������������9

�����������3

4�� ���� �������� 2$4� ���� ������� ������������ ���� �����&�� ���� ��������� ��������
;������ �� �������� 7�� ''-<�� =���� ��� ���������� ��� ���� *��� � �����	�� ����
���������#����������������&�������������� ������ ���������7��������������

Table 3: Interoperability issues in SPDY.

these results, we constrained the PIC analysis to ex-

plore a subset of the protocol inputs for SPDY, namely

the client version or cliVersion, the server ver-

sion srvVersion, header names and values hName

and hValue, and the HTTP path, method, and

version. PIC found several tens of thousands of in-

stances of non-interoperabilities, which we classify into

12 clusters; for brevity, we omit exact counts per clus-

ter. A cross indicates that the cluster manifested in the

corresponding client-server combination.

To gain insight into the underlying issues that cause

non-interoperabilities, based on our reading of the spec-

ification, we classified the non-interoperability clusters

into 5 qualitatively different sub-categories, discussed

below. Because PIC has a general definition of non-in-

teroperability (§2), it can discover non-interoperabilities

that stem from many different underlying issues.

Liberal sender. A long-standing guideline for pro-

tocol developers has always been: be conservative in

what you send, and liberal in what you receive. Non-

interoperabilities can arise when senders are more lib-

eral than receivers. For example, the spdylay client per-

mits control characters in header names, but the spdylay

server does not (A in Table 3). We reported this error

to the spdylay developer, who fixed it in the newer ver-

sion of spdylay. However, in fixing this error, spdylay

added newer code to validate control characters in head-

ers and values, but the developer appears to have forgot-

ten to validate values for control characters on the client

side, introducing a new non-interoperability where there

was none previously (B). When we contacted the devel-

oper about this new bug, he was hesitant to fix it because

he thought clients using the spdylay library may already

be leveraging the library’s lax checking of control char-

acters; in effect, the developer seems inclined to preserve

“bug compatibility.” This fear of breaking compatibility

once non-interoperability has been released into the wild

motivates systematic checking prior to the release.

Similarly, the spdylay client is liberal in permitting

empty header values, while the server rejects requests

with empty headers (C). In analyzing the test cases for

this non-interoperability, and discussing them with the

spdylay developer, we discovered an implementation er-

ror, which we describe below. Finally, the spdylay client

does not escape non-ASCII characters correctly in the

path, which the nginx server appropriately rejects (D).

Implementation error. This non-interoperability (J) be-

tween spdylay client and server in the older version is

more subtle and is unlikely to have been found by man-

ually designed test inputs. The spdylay client allows

empty values in name-value pairs, and the server usu-

ally checks for these and correctly skips them except in

one corner case. The assumption that the beginning of

a header value cannot happen at the last position of the

decompressed packet payload masks the check, in what

looks like an “off-by-one” error. The spdylay developer

fixed it in the newer version of spdylay.

Conservative receiver. Non-interoperability can also

arise when receivers are more conservative than what the

specification requires, either because the specification is

ambiguous, or for security reasons. One such non-in-

teroperability is between spdylay and nginx. Although

the nginx web server supports HTTP v0.9, it disallows

tunneling HTTP 0.9 over SPDY (E). This non-interoper-

ability is subtle because it occurs within a tunneled pro-

tocol, and demonstrates the power of the kind of system-

atic analysis that PIC performs. The SPDY specification

does not require servers to prevent HTTP 0.9 tunneling

within SPDY: the nginx developers appear to have made

an undocumented assumption that clients are unlikely to

9

be using SPDY to tunnel HTTP 0.9. While this may be

true, it is another instance of the benefit of systematic

analysis to uncover such undocumented assumptions.

A second non-interoperability in this category occurs

because nginx prevents paths that traverse up the direc-

tory hierarchy using “/..” (G): this is a security fea-

ture designed to prevent attackers from breaking out of

the web root and accessing files from elsewhere in the

filesystem hierarchy. The nginx code for determining

this involves a fairly sophisticated state machine and PIC

was able to symbolically traverse the state machine to

uncover the non-interoperability.

A third non-interoperability in this category occurs

with SPDY v3 on nginx. This version of SPDY merges

normal HTTP headers with new ones added for tunnel-

ing, requiring tunneling headers to be prefixed with ‘:’

(H). The specification is silent on whether other head-

ers may be colon-prefixed, and nginx conservatively only

permits a specific set of headers to be colon-prefixed.

Finally, nginx conservatively rejects header values

containing carriage returns and linefeeds; the SPDY

specification is silent on this point (F).

Optional features. Non-interoperabilities can also oc-

cur because specifications permit optional features. One

example in this category is that a spdylay client can gen-

erate a SPDY request with an HTTP TRACE method

(a valid HTTP method defined in the spec), which ng-

inx does not support in either of its versions because of

a cross-site scripting vulnerability (L). A second non-

interoperability in this category is that spdylay permits

generation of URL paths with a NUL character (escaped

using ’%’, K). The specification for URI generation per-

mits receivers to be conservative and reject paths with

NUL characters in them; however, URIs with arbitrary

binary characters (including the NUL character) are used

in RESTful APIs, so some Web servers permit them.

Unsupported versions. The first non-interoperability in

this category occurs between a spdylay client and server.

Spdylay permits server applications to specify a version

number, and incoming messages from clients are pro-

cessed in that context, even if a client specified a different

version number (M). While this is a relatively obvious

error, with a simple fix—ensure that incoming messages

are processed using the embedded version number—it

was still surprising to see this error in a stack against

which a client, a server, and a proxy have been devel-

oped. In discussions with the developer, it became clear

there is an undocumented assumption that spdylay will

be used with SSL, which negotiates the protocol version

out-of-band. PIC, being a systematic tool, can unearth

such undocumented assumptions.

A second non-interoperability, between the older

spdylay and the older nginx, occurs because the older

nginx does not support SPDY v3 (N). While this doesn’t

match a colloquial notion of interoperability, it matches

our definition: spdylay generates a v3 request, but nginx

rejects that message. As expected, this disappears in the

newer nginx which supports SPDY v3.

Discussion. Several of the spdylay non-interoperabili-

ties have been fixed. We have communicated the nginx

non-interoperabilities to the developers and are awaiting

their feedback. To quantify the complexity of these non-

interoperabilities, we counted the number of path con-

straints minus the connecting constraints (§3.3) in the re-

sults reported by PIC: all of these non-interoperabilities

contained between 60 and 80 path constraints. Roughly

speaking, a blind search for these non-interoperabilities

would have required searching a space of at least 260

message-header combinations. Developer intuition can

likely reduce this search space, but that alone is not suf-

ficient. That is why we find many non-interoperabilities

in our analysis, even when the client and server code was

developed by the same developer (spdylay).

4.2 Session Initiation Protocol (SIP) results

SIP includes several messages for features such as es-

tablishing, answering, forwarding, and terminating calls;

sending instant messages; and subscribing to events (e.g.,

user presence). For our analysis we chose two mature

and well-known SIP stacks: eXoSIP, an extension of the

GNU oSIP library, as sender and receiver, and PJSIP, as

a receiver. Our experiments with SIP implementations

bring out two capabilities of PIC not highlighted above:

PIC can be used to analyze later messages in a protocol

interaction, and to iteratively uncover non-interoperabil-

ities that reveal themselves only after existing non-inter-

operabilities are fixed.

Table 4 shows the 9 clusters of non-interoperabilities

generated while running eXoSIP as client and PJSIP as

server. We also ran eXoSIP as client and server, which

does not exhibit any of these non-interoperabilities.

The discovered non-interoperabilities span different

message types: call establishment (INVITE), feature

discovery (OPTIONS) and event subscription (SUB-

SCRIBE). For each of these messages, we analyzed in-

teroperability for three headers: from, to, and event.

Most of the SIP non-interoperabilities fall into a lib-

eral sender category. The eXoSIP sender permits control

characters in the from (P, S), to (Q, T) and event

fields (W), which the PJSIP server rejects. The eX-

oSIP sender also permitsto header inputs where the URI

schema is confused with other parts of the URI (such as

the display name); PJSIP rejects these malformed URIs

(Q). The eXoSIP developer acknowledged these non-in-

teroperabilities, but pointed out that eXoSIP is a library

that performs minimal input validation. However, this

appears to place an undue burden on the developer who

10

������� � ��	
�� ��
�� ������

�

�

� �����������	
����������������

�

�

� ����������������������

 �����������

� ������������

� �����������

��
�
�
!

"#
�
$$�
��

�

�
�

�
�
%

��������&����������������
�'�(�)�
�	*��
+
���$,� ��$
����	�-)��
�.*�/� �$$�0
�1� +�����$� +����+���	�
�� ���� ������� �
�$���)2(�)�
	� *��3$�� ��� .��	�� ����
��	*$�
�1�45��� ����..$
+��
���	��*$��.�������	*+��+���	������3�
�1�*	���

6
3���$
(�����

����	
.���+����������������
 ����'�(�)�.��	���	���	����+���*	������(�)�45��	+�����0
���������.���	��������45��"��1�/������
	.$�,7����%��)2(�)�
	�
*��3$�����.��	��������	*$�
�1�45���-���3*	��	+���������+�
�����+���
	��
�������..$
+��
���+�*$��.�������	*+��
		*�	�

�'�(�)�	���	� ����$$�0� ����(�)�45��	+����� "�	
.��%� ���3����
����/�0�����	�)2(�)� ��8*
��	�
��� ���	������
	�*��3$�� ���
.��	��������	*$�
�1�45��� ����..$
+��
���	��*$��+��+9����������3	��+���������	+�����������������0������+�		��,�

:
)

�:
�
(

";
�
�
�*
��
�

<

	
+
�
�
�
�,
% �����������&�����������������

�'�(�)���*	�	�+��������������������
�$��
��3����:) �:�(��������� !���		�1�	�
����$
��+����+���	�����	�
$$�����+��+9�������

�����(�)�������������������
�'�(�)���*	�	�+������������������
�$��
��3����:) �:�(��������� !���		�1�	�
 ���45��	+�����
	�	�
$$��
	
����.������

�'�(�)���*	�	�+��������������������
�$��
��3����:) �:�(��������� !���		�1�	�
 ���45��	+�����
	�	�
$$��.�
���$�

:
)

�:
�
(
�

5
�
	
.
�
�
	
�

";
�
�
�*
��
�

<

	
+
�
�
�
�,
%

�'�(�)�������	� 	
1�
�
+���� �$�&
3
$
�,�
�� 1������
�1� ��0� ������	�
�� ��	.��	����		�1�	/� 3*�� ���	�=�� ��$
����� �..$
+��
���

�.*�� ��� ���������������/��$$�0
�1�+�����$� +����+���	� ������1$�� ������		�1���)2(�)�
	�*��3$�� ���.��	�� ���� ��	*$�
�1�
��		�1��� ����..$
+��
���	��*$��3��+����*$��������
�>�+��	,���+�
+�$$,�
�+����+��������	�

(
4
?
(
#
5
�?
!

"!
�
�
�
��

(
*
3
	
+
�

.
�

�
�
%

�'�(�)����	�=����$
������..$
+��
���
�.*���������������������/��$$�0
�1�+�����$�+����+���	�������1$��������		�1���)2(�)�

	�*��3$�����.��	��������	*$�
�1���		�1��� ����'�(�)�-)��	��*$����
$�
��
$$�1�$�+����+���	�������*���

-�����
�.$�����
�1� 	
�.$�� +����+���� +��+9
�1� 	�����
+	/�)�#� +�����	� ��$
�� ��9��	��)2(�)/� ��0����/�
�.$�����	������
�����+���������	�����
+	�������$,��$$�0	�	*3	+�
.�
������9��0���������,.�	�

:.�
���$�
;���*��

Table 4: Interoperability issues in SIP with spdylay as client and spdylay as server.

uses the eXoSIP library to understand the details of the

protocol standard. Furthermore, eXoSIP validates some

inputs but not others, with no documented guidance for

developers on what input validation is left to the applica-

tion and what eXoSIP performs. In these circumstances,

PIC can be used by library or application developers to

discover the types of input validation that need to be per-

formed at the application level to avoid non-interoper-

ability issues when used with another implementation in

production. eXoSIP also exhibits another liberal sender

non-interoperability, omitting the “sip:” URI scheme (R,

U). This truncated URI is permitted by eXoSIP, so it ap-

pears to be an undocumented assumption that permits a

deviation from the standard for the case when eXoSIP

clients talk to eXoSIP servers.

Later messages in a protocol interaction. We used PIC

to analyze the OPTIONS response; this experiment exer-

cised PIC’s ability to analyze deeper messages (§3.5).

In our experiment a valid OPTIONS request was gener-

ated in PJSIP and replayed into eXoSIP prior to analysis.

When eXoSIP receives an OPTIONS request, it returns

an OPTIONS response with a set of features specified

by the application; however, as a liberal sender, eXoSIP

does not validate this application input (V).

Iterative testing for non-interoperabilities. SIP allows

applications to subscribe for specific “events” (e.g., sta-

tus changes in a buddy list). The eXoSIP stack permits

control characters in event names, which PJSIP rejects.

We then fixed this non-interoperability in eXoSIP, and

re-ran PIC. This time, PIC generated another non-inter-

operability caused by the fact that although now eXoSIP

generates syntactically correct event tokens, it does not

check if these match valid event tokens that are known to

the remote end (X). In this case, the PJSIP server returns

an error in response to the SUBSCRIBE message; cor-

rectly so, since supporting new client-defined features is

an optional feature in the protocol. Given enough time,

analyzing the unpatched eXoSIP would have found this

issue. However, applying fixes such as this one can ac-

celerate the process of finding deeper issues.

4.3 Joint vs. Independent Symbolic Execution

We compared joint and independent symbolic execution

on our protocol implementations. On the newer versions

of spdylay (as client) and nginx (as server), we find that

joint symbolic execution produces over 100,000 paths in

half a day, while independent symbolic execution pro-

duces none in the same time. This performance gap ren-

dered independent symbolic execution completely inef-

fective for these implementations. On SIP and the older

version of spdylay (client and server), independent sym-

bolic execution is able to find the non-interoperabilities,

but is slower than joint symbolic execution by orders of

magnitude. There appears to be a performance cliff for

independent symbolic execution with the newer versions

of spdylay and with nginx, which support multiple SPDY

versions and are more complex implementations. Be-

yond this cliff, independent symbolic execution cannot

be used, and joint symbolic execution is needed.

4.4 Impact of Search Strategy

Figure 8 compares three search strategies from

§3.4: depth-first-search (DFS), best-first-search

(GreedyBestFS, which is equivalent to SDSE from

[28]), and our customized A*. It also evaluates A*

without the return normalization heuristic. Without a

reference implementation to work with, we are unable to

compare with CCBSE and Mix-CCBSE. The results in

Figure 8 indicate a clear performance advantage of A*

with return normalization: within an hour, it discovers

25× more test inputs than state-of-the-art approaches.

Further, within this time, A* found 5 of the 8 clusters

of non-interoperabilities affecting the older nginx, while

both A* without return normalization and GreedyBestFS

detect only 3, and DFS none.

For this particular scenario, A* without return normal-

ization performed as well as GreedyBestFS. This sug-

gests that, for these implementations, early returns rep-

resent the most important cause of local minima. In other

11

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60

V
al

id
 p

at
hs

Elapsed time (minutes)

DFS
GreedyBestFS

A* w/o return normalization
A*

Figure 8: Performance analysis of four search strategies: DFS,

GreedyBestFS, and A* with and without return normalization.

The plot illustrates the number of non-interoperabilities pro-

duced over time, while analyzing spdylay with nginx. The trials

were performed on 10 servers totaling 216 CPU cores.

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200

V
al

id
 p

at
hs

CPU cores
Figure 9: Scaling analysis showing the number of non-interop-

erabilities found after 1 hour of analyzing spdylay with nginx,

while varying the number of cores.

settings, we believe A*’s local minima avoidance could

outperform GreedyBestFS, even without return normal-

ization.

4.5 Performance Micro-benchmark

To micro-benchmark PIC’s performance, we measure the

computation time for the main analysis stages, in isola-

tion, for the newer spdylay against the newer nginx. This

setup represents the most complex protocol combination

we have tested to date. The results show that the client-

side analysis took just over 5 hours to generate 60,000

paths, while the server took a little over half a day to

generate more than twice that number.

We also ran a scaling analysis in Figure 9. The server-

side analysis is pleasantly parallelizable as each client-

path is independent but the client-side uses one core and

bottlenecks the server at around 132 cores. Scaling out

symbolic execution has been done [8], but we leave inte-

grating such an approach for future work.

5 Related Work

Protocol analysis: Prior work has used high-level

specifications, using finite state machines, higher-order

logic [3, 4], or domain-specific languages [19] to per-

form a formal verification of protocols. While such

specifications are powerful tools to reason about proto-

col behavior, they do not ensure correctness of imple-

mentation. PIC focuses on protocol implementations

rather than manually derived formal specifications. Re-

searchers have also explored the use of explicit-state

model checkers to find bugs in protocol implementa-

tions [20, 21, 27, 32, 33, 43]. To our knowledge, model

checking has not been used to discover non-interoper-

abilities. Like model checking, PIC faces similar chal-

lenges in path explosion and uses execution steering

techniques to scale the analysis.

Symbolic execution: Godefroid et al. [15] and Cadar

and Engler [10] developed a general technique for com-

bining symbolic execution with concrete execution to

generate test inputs. Since then, researchers have built

mature tools using this approach [9, 16], have used it for

finding program errors [6, 11], and have enhanced the ba-

sic technique in various ways [14, 28, 29]. Others have

focused on making symbolic execution more efficient ei-

ther by directing the search process [13, 28, 34, 44], or by

merging states to reduce the search space [24]. We have

compared PIC’s approach to existing directed symbolic

execution techniques (§4.4). State merging, on the other

hand, is an orthogonal approach that could potentially be

useful in merging paths exchanged during joint symbolic

execution, and we have left to future work an exploration

of this technique. Further, researchers have used sym-

bolic execution to analyze protocols, but for properties

other than interoperability: to determine equivalence be-

tween two implementations playing the role of the same

network service [5, 25], to uncover manipulation attack

vectors [23], and to discover bugs in layered server im-

plementations [7]. While this body of work uses tools

similar to those used by PIC, it focuses on fundamen-

tally different problems. PIC’s focus on interoperability

between senders and receivers is unique to the best of our

knowledge and motivates new techniques.

6 Conclusion

We presented PIC, which discovers interoperability

problems in real protocol implementations. It uses pro-

gram analysis to infer the sets of messages that one im-

plementation can send but the other rejects. To scale

the analysis, it uses joint symbolic execution, in which

the receiver-side analysis is seeded by results from the

sender. This technique was crucial for PIC and may be

generally useful for analyzing interacting protocol im-

plementations. On mature implementations of two proto-

cols, PIC found thousands of instances of non-interoper-

abilities, across multiple message types and fault causes.

Many of the issues have been acknowledged as undesir-

able by developers and some have already been fixed.

Acknowledgements: We thank the NSDI reviewers and

our shepherd Petros Maniatis for helpful feedback on this

paper. This work is supported in part by the US National

Science Foundation (grant CNS-1161595) and by Cisco

Systems.

12

References

[1] SPDY Protocol - Draft 3.1. http://www.chromium.

org/spdy/spdy-protocol/spdy-protocol-draft3-1.

[2] The LLVM Compiler Infrastructure Project. http://

llvm.org/.

[3] BHARGAVAN, K., OBRADOVIC, D., AND

GUNTER, C. A. Formal verification of standards

for distance vector routing protocols. J. ACM 49, 4

(July 2002).

[4] BISHOP, S., FAIRBAIRN, M., NORRISH, M.,

SEWELL, P., SMITH, M., AND WANSBROUGH,

K. Rigorous specification and conformance test-

ing techniques for network protocols, as applied to

TCP, UDP, and sockets. SIGCOMM ’05.

[5] BRUMLEY, D., CABALLERO, J., LIANG, Z.,

NEWSOME, J., AND SONG, D. Towards automatic

discovery of deviations in binary implementations

with applications to error detection and fingerprint

generation. SS’07.

[6] BRUMLEY, D., POOSANKAM, P., SONG, D. X.,

AND ZHENG, J. Automatic patch-based exploit

generation is possible: Techniques and implica-

tions. In Security and Privacy (2008).

[7] BUCUR, S., KINDER, J., AND CANDEA, G. Mak-

ing Automated Testing of Cloud Applications an

Integral Component of PaaS. In APSys 2013.

[8] BUCUR, S., URECHE, V., ZAMFIR, C., AND

CANDEA, G. Parallel symbolic execution for au-

tomated real-world software testing. EuroSys ’11.

[9] CADAR, C., DUNBAR, D., AND ENGLER, D.

Klee: unassisted and automatic generation of

high-coverage tests for complex systems programs.

OSDI’08.

[10] CADAR, C., AND ENGLER, D. R. Execution gen-

erated test cases: How to make systems code crash

itself. In SPIN (2005), vol. 3639, Springer.

[11] CADAR, C., TWOHEY, P., GANESH, V., AND EN-

GLER, D. Exe: A system for automatically gener-

ating inputs of death using symbolic execution. In

CCS (2006).

[12] FÄHNDRICH, M., REHOF, J., AND DAS, M. Scal-

able context-sensitive flow analysis using instantia-

tion constraints. In PLDI 2000.

[13] GE, X., TANEJA, K., XIE, T., AND TILLMANN,

N. DyTa: Dynamic symbolic execution guided

with static verication results. In ICSE 2011,

Demonstration.

[14] GODEFROID, P. Compositional dynamic test gen-

eration. POPL ’07.

[15] GODEFROID, P., KLARLUND, N., AND SEN, K.

DART: directed automated random testing. In

PLDI (2005).

[16] GODEFROID, P., LEVIN, M. Y., AND MOLNAR,

D. Automated whitebox fuzz testing. In NDSS

2008.

[17] GUNASINGHE, H. SCIM interop

event at IETF 83rd meeting. http://

hasini-gunasinghe.blogspot.com/2012/03/

scim-interop-event-at-ietf-83rd-meeting.html,

Mar. 2012.

[18] HALEPLIDIS, E., OGAWA, K., WANG, W., AND

SALIM, J. H. Implementation report for forward-

ing and control element separation (ForCES). RFC

6053 http://tools.ietf.org/html/rfc6053, Nov. 2010.

[19] Information processing systems – Open Systems

Interconnection – LOTOS – A formal description

technique based on the temporal ordering of obser-

vational behaviour, 1989.

[20] KILLIAN, C., ANDERSON, J. W., JHALA, R.,

AND VAHDAT, A. Life, death, and the critical

transition: finding liveness bugs in systems code.

NSDI’07.

[21] KILLIAN, C. E., ANDERSON, J. W., BRAUD, R.,

JHALA, R., AND VAHDAT, A. M. Mace: language

support for building distributed systems. PLDI ’07.

[22] KING, J. C. Symbolic execution and program test-

ing. CACM 19, 7 (1976).

[23] KOTHARI, N., MAHAJAN, R., MILLSTEIN, T.,

GOVINDAN, R., AND MUSUVATHI, M. Finding

Protocol Manipulation Attacks. In SNAP (August

2011).

[24] KUZNETSOV, V., KINDER, J., BUCUR, S., AND

CANDEA, G. Efficient state merging in symbolic

execution. In PLDI 2012.

[25] KUZNIAR, M., PERESINI, P., CANINI, M., VEN-

ZANO, D., AND KOSTIC, D. A SOFT way

for OpenFlow switch interoperability testing. In

CoNEXT (2012).

[26] LABOVITZ, C., AHUJA, A., ABOSE, A., AND JA-

HANIAN, F. An Experimental Study of Delayed In-

ternet Routing Convergence. In SIGCOMM 2000.

13

http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://llvm.org/
http://llvm.org/
http://hasini-gunasinghe.blogspot.com/2012/03/scim-interop-event-at-ietf-83rd-meeting.html
http://hasini-gunasinghe.blogspot.com/2012/03/scim-interop-event-at-ietf-83rd-meeting.html
http://hasini-gunasinghe.blogspot.com/2012/03/scim-interop-event-at-ietf-83rd-meeting.html
http://tools.ietf.org/html/rfc6053

[27] LEE, H., SEIBERT, J., KILLIAN, C., AND NITA-

ROTARU, C. Gatling: Automatic attack discovery

in large-scale distributed systems. NDSS 2012.

[28] MA, K.-K., KHOO, Y. P., FOSTER, J. S., AND

HICKS, M. Directed symbolic execution. In SAS

(September 2011), vol. 6887 of Lecture Notes in

Computer Science.

[29] MAJUMDAR, R., AND XU, R.-G. Directed test

generation using symbolic grammars. ASE ’07.

[30] MASINTER, L. WebDAV interop report. http://

www.webdav.org/users/masinter/interop/report.

html, July 1999.

[31] MOME interoperability testing event. http://www.

ist-mome.org/events/interop/, July 2005.

[32] MUSUVATHI, M., AND ENGLER, D. R. Model

checking large network protocol implementations.

NSDI’04.

[33] MUSUVATHI, M., PARK, D. Y. W., CHOU, A.,

ENGLER, D. R., AND DILL, D. L. Cmc: a

pragmatic approach to model checking real code.

SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002).

[34] PERSON, S., YANG, G., RUNGTA, N., AND

KHURSHID, S. Directed incremental symbolic ex-

ecution. In PLDI 2011.

[35] RAO, A., AND SCHULZRINNE, H. Real-world

SIP interoperability: Still an elusive quest.

http://www.sipforum.org/component/option,com -

docman/task,doc view/gid,124/, 2007.

[36] RCS VoLTE interoperability event 2012. http://

www.msforum.org/interoperability/RCSVoLTE.

shtml, Oct. 2012.

[37] REHOF, J., AND FÄHNDRICH, M. Type-base

flow analysis: from polymorphic subtyping to cfl-

reachability. In POPL 2001.

[38] REPS, T. W. Program analysis via graph reachabil-

ity. In International Symposium on Logic Program-

ming.

[39] ROSENBERG, J. Basic level of interoperability for

session initiation protocol (SIP) services (BLISS)

problem statement. Internet draft http://tools.ietf.

org/html/draft-ietf-bliss-problem-statement-04,

Mar. 2009.

[40] ROSENBERG, J., SCHULZRINNE, H., CAMAR-

ILLO, G., JOHNSTON, A., PETERSON, J.,

SPARKS, R., HANDLEY, M., AND SCHOOLER, E.

SIP: Session Initiation Protocol. RFC 3261, June

2002.

[41] RUSSELL, S. J., AND NORVIG, P. Artificial Intelli-

gence - A Modern Approach (Third Edition). Pear-

son Education, 2010.

[42] TSUJIKAWA, T. Spdylay - SPDY C Library. http://

spdylay.sourceforge.net/.

[43] YABANDEH, M., KNEZEVIC, N., KOSTIC, D.,

AND KUNCAK, V. Crystalball: Predicting and pre-

venting inconsistencies in deployed distributed sys-

tems. NSDI ’09.

[44] ZAMFIR, C., AND CANDEA, G. Execution synthe-

sis: A technique for automated software debugging.

In EuroSys 2010.

14

http://www.webdav.org/users/masinter/interop/report.html
http://www.webdav.org/users/masinter/interop/report.html
http://www.webdav.org/users/masinter/interop/report.html
http://www.ist-mome.org/events/interop/
http://www.ist-mome.org/events/interop/
http://www.msforum.org/interoperability/RCSVoLTE.shtml
http://www.msforum.org/interoperability/RCSVoLTE.shtml
http://www.msforum.org/interoperability/RCSVoLTE.shtml
http://tools.ietf.org/html/draft-ietf-bliss-problem-statement-04
http://tools.ietf.org/html/draft-ietf-bliss-problem-statement-04
http://spdylay.sourceforge.net/
http://spdylay.sourceforge.net/

	Introduction
	Problem and Background
	PIC Design and Implementation
	PIC Approach
	PIC Architecture
	Joint Symbolic Execution
	Guiding Symbolic Execution, To and Fro
	State Initialization
	Clustering Non-interoperabilities
	Stage Pipelining and Parallelism

	Evaluation
	SPDY results
	Session Initiation Protocol (SIP) results
	Joint vs. Independent Symbolic Execution
	Impact of Search Strategy
	Performance Micro-benchmark

	Related Work
	Conclusion

