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Abstract— We present Footprint, a system for deliver-
ing online services in the “integrated” setting, where the
same provider operates multiple elements of the infras-
tructure (e.g., proxies, data centers, and the wide area
network). Such integration can boost system efficiency
and performance by finely modulating how traffic enters
and traverses the infrastructure. But fully realizing its
benefits requires managing complex dynamics of service
workloads. For instance, when a group of users are di-
rected to a new proxy, their ongoing sessions continue
to arrive at the old proxy, and this load at the old proxy
declines gradually. Footprint harnesses such dynamics
using a high-fidelity model that is also efficient to solve.
Simulations based on a partial deployment of Footprint
in Microsoft’s infrastructure show that, compared to the
current method, it can carry at least 50% more traffic and
reduce user delays by at least 30%.

1 Introduction

The emergence of cloud computing is reshaping how
online services and content are delivered. Historically,
the three types of infrastructure required for service
delivery—i) data centers (DC) that host application logic
and state; ii) edge proxies that terminate TCP or HTTP
connections and cache content close to users; iii) wide
area networks (WAN) that connect DCs and proxies—
were owned and operated by different organizations (Fig-
ure [Th). But now, large cloud providers such as Ama-
zon, Google, and Microsoft operate all three types of
infrastructures for their own and their customers’ ser-
vices [6, 7, 9] (Figure ). Infrastructure integration
is also ongoing for massively-popular service providers
such as Facebook as they leverage their scale to amortize
infrastructure cost [8]], and for large ISPs as they begin
offering content distribution services [10]].

Infrastructure integration allows one to take a holis-
tic view of the system to improve both performance and
efficiency. For instance, the state of the WAN (e.g. resid-
ual capacity of proxy-to-DC path) can be factored into
deciding which proxies serve which users.

But to our knowledge, current systems for deliver-
ing online services do not take such a holistic view.
Many such systems were designed for the traditional set-
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Figure 1: Online service delivery infrastructures.

ting [13} 4, [11} 29]]. Even those that operate in integrated
settings fail to leverage its unique opportunities. For ex-
ample, currently, in Microsoft’s network [14], WAN traf-
fic engineering (TE) operates independently, with no ad-
vance knowledge of load placed on it by edge proxies
and has no ability to steer load to a different proxy or DC
to relieve hotspots. At the same time, the edge proxies
have no knowledge of WAN TE. When they select DCs
for a user session, they need to know the quality of the
WAN paths to different DCs. They do so by probing the
paths, which is akin to looking in the rear view mirror:
it can detect congestion only affer it occurs and cannot
guarantee congestion-freedom when load is moved.

This paper describes Footprint, a system for deliver-
ing services that exploits the opportunities offered by the
integrated context. Using an SDN-like centralized con-
trol model, it jointly coordinates all routing and resource
allocation decisions, to achieve desired objectives. It de-
cides how to map users to proxies, proxies to DC(s), and
traffic to WAN paths, and configures all components used
for service delivery, including network switches, proxies,
load balancers, and DNS servers to achieve this mapping.

While it is not surprising that coordination among sys-
tem components (e.g., joint optimization of WAN TE and
proxy load management) can help, we show that fully re-
alizing the potential of infrastructure integration requires
faithful modeling of system dynamics. A major issue is
that after we change system configuration, its impact is
not immediate but manifests only gradually.

The reason is that ongoing user sessions will continue
to use the proxy that they picked at session start. Thus,
when the controller changes the proxy (or the DC) map-
ping for a group of users, traffic from those users will
not move immediately. Instead, the load on the second



proxy (or the second DC) will increase as new sessions
arrive and that on the first proxy (or DC) will decrease
as old sessions depart. The system model and control
algorithms must correctly account for this lag. Tradi-
tional network TE controllers such as SWAN [18] and
B4 [19] do not have to deal with this lag, since they op-
erate at packet granularity, and the impact of a configu-
ration change is immediate.

In this paper, we illustrate the modeling challenge us-
ing data from Microsoft’s service-delivery infrastructure,
and we devise techniques to address it. To capture tem-
poral variations, we model system load and performance
as a function of time. Solving time-based models can be
intractable (e.g., time is continuous), but we show how
all load and performance constraints can be met by con-
sidering a small number of time points. The basic issue
tackled by our model—gradual impact of configuration
changes—arises in many other systems as well, such as
session-based load balancers, middleboxes, and even tra-
ditional CDNs. Our model is flexible and can be adapted
to improve the efficiency of these systems too.

In addition to the modeling challenge, we address a
number of practical issues to design a scalable and robust
system. For example, we need to estimate the latency
to various edge proxies from different user groups in a
scalable manner. We will discuss these issues, and our
solutions for them in more detail later in the paper.

We implement our model and other techniques in a
Footprint prototype. This prototype is deployed fully in a
modest-sized testbed, and its monitoring aspects are de-
ployed in Microsoft’s infrastructure. We evaluate Foot-
print using these deployments and trace-driven simula-
tions. We find that it enables the infrastructure to carry at
least 50% more traffic, compared to Microsoft’s current
method that does not coordinate the selection of proxies,
DCs, and WAN paths. At the same, it improves user per-
formance by at least 30%. We also show that Footprint’s
system model is key to achieving these gains.

2 Background and Motivation

Figure [T] shows a high-level view of online service de-
livery infrastructure. DCs, which usually number O(10),
host application logic and hard state. Users connect to
DCs via edge proxies. The proxies help boost perfor-
mance by terminating TCP and HTTP connections (com-
ing over possibly lossy last mile paths) close to the user
and by caching some content (so it does not need to be
fetched from a distant DC).

In the traditional architecture, the DCs, the edge prox-
ies and the WAN that connects them are operated by dif-
ferent entities. For example, the DCs may be owned by
a hosting service, the edge proxies may be owned by
a company like Akamai and various ISPs may provide
connectivity between the DCs, and to the edge proxies.

Figure 2: Spatial modulation via joint coordination. (a)
Path between P2 and DC2 is congested. (b) WAN TE
alone cannot resolve this congestion because other paths
between P2 and DC2 have low available capacity. (c)
Congestion is resolved when user-to-proxy mapping and
WAN TE are done jointly, moving users to other proxies
with uncongested paths to DCs.

As discussed earlier, large cloud providers like Microsoft
and Google, are moving toward a more integrated archi-
tecture, where a single entity owns and operates the DCs,
the WAN connecting the DCs, and the edge proxies.

Regardless of the architecture, any online service de-
livery system makes three decisions for user requests:
(i) selecting the proxy for the request (ii) selecting the
DC(s) for user sessions at a proxy, and (iii) selecting
WAN path(s) for traffic between proxies and DCs.

In the traditional setting, the three decisions are made
largely independently of one another, and typically with-
out the benefit of global knowledge. A third-party like
Akamai makes a decision about which proxy the user
selects, and which DC the request will be served from.
Various ISP routing policies decide how the traffic flows
between the DCs and the proxies.

Even in an integrated online service provider (OSP),
these decisions are often made independently. For exam-
ple, in Microsoft’s FastRoute system, anycast routing is
used to direct clients to nearby proxies [14]. The proxies
independently decide which DCs to route the request to,
and the WAN TE is performed independently as well.

In this paper, we argue for making service-delivery de-
cisions jointly. Joint decisions can significantly improve
efficiency, not only because of global information, but
also by offering new knobs that were previously unavail-
able. For example, consider Figure [2| where congestion
appears between P2 and DC2. In the traditional setting,
WAN TE cannot change how traffic enters and exits the
network as that is determined by proxy and DC selection.
To relieve congestion, it must rearrange how traffic flows
within the network. However, sometimes that may not
be sufficient (Figure 2b). Joint decisions can “spatially
modulate” the traffic (i.e., change where it enters or exits
the WAN) by simultaneously controlling the proxy and
DC selection. As shown in Figure 2k, such spatial mod-
ulation can help relieve congestion.

Spatial modulation is especially helpful when a large
fraction of WAN traffic is for user-facing services. This
situation holds for large cloud providers; they have a
separate WAN for non-user-facing traffic [[18, [19]) To
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Figure 3: Overview of Footprint.

[3

evaluate the benefit of spatial modulation in practice,
we analyze traces from Microsoft’s infrastructure, which
runs WAN TE and service delivery controller indepen-
dently [[14]. We identified congestion events in the WAN
as those where the utilization of at least one link is over
80% during a 5 minute window. We find that all of
these events could be resolved using spatial modulation
of service traffic. We also repeated the study by artifi-
cially scaling traffic by 50%: the number of congestion
events went up by 1200% (because our WAN is heav-
ily utilized), but all of them could still be resolved. This
advantage of spatial modulation underlies the efficiency
and performance improvements of Footprint (§7).

While joint decisions can help, we will see that accu-
rate modeling of system dynamics is necessary to realize
its benefits. Next, we provide an overview of the Foot-
print architecture, and outline key challenges.

3 Overview of Design and Challenges

Figure [3] shows an overview of Footprint. The controller
is bootstrapped with infrastructure and service profiles.
Infrastructure profile describes the topology, capacity in
terms of multiple resources (e.g., CPU, memory, band-
width), and latency of each component. A service’s pro-
file describes which proxies and DCs host it—not all ser-
vices may be hosted everywhere—and any constraints
on mapping users to proxies and DCs (e.g., Chinese
users must be served from China). When running, the
controller gets up-to-date information on system health,
workload, and user-to-proxy delays. Periodically, or af-
ter a failure, the controller computes and deploys new
system configuration based on this information. This
configuration determines, for the next period, how user
requests map to proxies, which DCs are used by proxies,
and which WAN paths are used.

Our design must address three categories of chal-
lenges: obtaining the necessary inputs, computing the
desired configuration, and implementing the computed
configuration. We provide a brief overview of these chal-
lenges in this section. Future sections provide more de-
tail, with a focus on the system model.

Obtaining dynamic inputs: In addition to static in-
puts such as WAN topology, the controller needs up-to-
date information about user-to-proxy delays, the load on
the system (i.e. load on WAN links, data center and
proxy utilization), and information about system health
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(b) Gradual configuration change
in session-level overlay routing.

(a) Instantaneous configuration
change in traditional TE.

Figure 4:  Session affinity results in gradual load
changes in session routing on top of server overlays.

(e.g. which links or proxies have failed). We have scal-
able infrastructure in place to collect the needed informa-
tion about WAN and proxy load and health [30].

A key challenge lies in scalably collecting information
about user-to-proxy delays. We address it in two ways.
First, we group users into groups—a user group (UG) is
a set of users that are expected to have similar relative
latencies to edge proxies (e.g., because they are proxi-
mate in Internet topology). Second, we measure delays
between UGs and proxies in a probabilistic manner. §5|
describes these aspects in more detail.

Computing the configuration: We initially believed
that we could compute system configurations using a
linear program (LP) similar to TE controllers such as
SWAN [18]]. However, we realized that the Footprint con-
troller faces qualitatively different problems. The key
issue is that service sessions last longer than individual
packets and these sessions stick to their originally cho-
sen proxies and DCs during their lifetime.

More specifically, online services rely on DNS to di-
rect different users to different proxies—IP addresses of
the desired proxies are returned when the user looks up
the name of the service. The mapping of name to IP
addresses is changed to move load from one proxy to an-
other. The problem is that DNS changes cannot change
traffic distribution instantaneously. In addition to DNS
mappings being cached at the LDNS servers for the TTL
duration, there are two other problems. First, DNS map-
pings may be cached at the client well beyond the TTL
value (e.g., many browsers will not look up the same
hostname again within a tab, as long as the tab is open).
Second, persistent TCP connections used by HTTP 1.1
and 2.0 can last well beyond DNS TTL as well.

This caching means that even after the Footprint con-
troller updates a DNS mapping to point a UG to a new
proxy, the traffic from ongoing sessions from that UG
continues to arrive at the old proxy. The proxy must con-
tinue to send traffic from ongoing sessions to the same
DC. Otherwise, those sessions may be abruptly termi-
nated whenever system configuration is changed (e.g.,
every 5 minutes).

Session stickiness makes it harder to compute robust
system configurations compared to traditional TE. For
instance, in Figure a), traffic from R1 to R4, is ini-
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Figure 5: Session life time.

tially routed via R2. When the link R2-R4 is congested,
TE controller configures R1 to forward the traffic via
R3. This change is near instantaneous, and more impor-
tantly, largely transparent to the applications. However,
the Footprint controller does not have this luxury. Fig-
ure [(b) shows an example. Initially, a group of users
(UG) use proxy P1 to access the service S hosted in the
data center (DC). When the path P1-DC is congested,
we need to reroute the traffic via P2. This can be done
by changing the DNS mapping; i.e. the name for service
S resolves to the IP address of proxy P2. However this
change only affects new user sessions, and traffic from
old sessions continues to arrive at P1.

The severity of the problem is illustrated in Fig-
ure [5fa). Using data logged across all our proxies, it
shows the CDF of the lifetime of TCP connections for
the Bing search service. We see that 5% of the connec-
tions last longer than 100 seconds. In our current imple-
mentation, Footprint adjusts DNS mappings every 5 min-
utes. Since new HTTP sessions arrive roughly uniformly
in a five minute interval, a large fraction TCP connec-
tions continue to send data to the “old” proxy after the
mapping is updated. Figure 5(b) shows that the num-
ber of sessions that are still active as a function of time.
Even if the DNS mapping is changed at the end of the
5 minute period, over 20% of the sessions will continue
to send data to the previous proxy. The previous proxy
must continue to handle this “old” traffic, and send it to
the same DC as before.

We deal with this challenge by incorporating session
lifetime and workload migration dynamics into our sys-
tem model, as described in the next section. The reader
may wonder why we simply do not kill the old connec-
tions, which would obviate the need for modeling tem-
poral behavior. But, as shown above, a large number
of “old” connections are active on each epoch bound-
ary. It is unacceptable to kill so many connections every
five minutes. We may alleviate the problem by updating
system configuration less frequently (e.g., an hour). But
we need our system to be responsive and react quickly
to demand bursts (e.g., flash crowds) and faster updates
lead to greater efficiency [18]]. We may also alleviate the
problem by updating the client code to gracefully handle
changes to proxy mappings. But Footprint must accom-
modate a large number of already-deployed applications.

Implementing the computed configuration:  The
computed configuration is implemented by updating
DNS mappings, proxy-to-DC mappings, and weights on
WAN paths. One issue that we face here is that changing
UG-to-proxy mappings (e.g., in response to WAN con-
gestion) can force user traffic onto paths with unknown
capacities. While we monitor UG-to-proxy path delays,
we are not reliably aware of path capacities. We thus pre-
fer that UGs continue to use current paths to the extent
possible. To ensure this, Footprint uses load balancers at
network edge that can forward user requests to remote
proxies. These load balancers allow us to decouple how
users reach our infrastructure and how their traffic flows
internally. We omit details due to lack of space.

4 System Model

The Footprint controller periodically decides how re-
quests and responses from each UG are going to traverse
the infrastructure. For example, in Figure |3 suppose it
makes a fraction of sessions from UG2 go through edge
proxy P2 and data center DCI, it also simultaneously
computes how to route request traffic in network from
P2 to DC1 and response traffic from DC1 to P2.

The controller computes how to assign new sessions
from each UG to a collection of end-to-end paths (or e2e-
paths) which includes two “servers”—an edge proxy y
and datacenter c—and two WAN paths—request and re-
sponse paths between y and c.

Each network path is a pre-configured tunnel, i.e., a se-
ries of links from the source to destination switch; there
are usually multiple tunnels between a source-destination
pair. Once a session is assigned to an e2e-path, it will
stick to the assigned proxy and DC; the WAN paths taken
by the traffic may change.

The assignments from sessions to e2e-path impacts
system efficiency as well as the latency experienced by
users. The controller must enable the infrastructure to ac-
commodate as much workload as possible, while ensur-
ing that the proxies, DCs and network paths are not over-
loaded and that traffic prefers low-latency paths. The key
to meeting these goals is to model the load on resources
with high fidelity, which we do as described below.

4.1 Preliminaries

Table [T] shows key notations in our model, including its
inputs and outputs. The outputs contain routing decisions
for two types of traffic. The first type is unsettled edge
traffic due to new user sessions for services hosted on the
edge proxies. Here, the routing decision wg , denotes the
fraction of new sessions from UG g assigned to e2e-path
6. The second type is settled traffic, due to existing edge
sessions that stick to their servers and all non-edge traf-
fic carried by the WAN. Here, the routing decision @), s 4
denotes the fraction of non-edge (i.e., non-service) traffic



Inputs

g A user group (UG)

aj  |Session arrival rate of g in jth epoch
q(t) |CDF of session lifetime

6 An e2e-path

©, |E2e-paths that can selected by UG g

A “server” on an e2e path:

i.e. an edge proxy or a datacenter

p, 1 | p: network path; [: a network link

bw; |Bandwidth of link /

All network paths that starts from server s
and ends with server d

e

Ps.d

;v o+ |Non-edge traffic demand from s to d

hg ¢ |Latency experienced by g when going through 6
A resource (e.g. CPU, memory etc.)
at an edge proxy or a datacenter
My . |Capacity of resource ¢ at (e)
Creq» Crsp |Bandwidth consumption of a request, response
T Length of an epoch
Intermediate variables
e (1) [Resource a’s utilization on z
) |Number of sessions on 6 from g
) |Number of sessions on e from g: Yvg..co 16,4(f)
ag 4 (t) |Session arrival rate on 6 from g
)
)

o

Session arrival rate on e from g: Yyg..co a9,¢(f)
Traffic of settled sessions s to d
CCDF of session lifetime
Outputs
Wwq, |Weight of new sessions of UG g on 6
Wy a4 | Weight of traffic from s to d on network path p

Table 1: Key notations in Footprint model.

from source s to destination d assigned to network path
p- Note that s and d represent WAN endpoints connected
to datacenters, edge proxies, or neighboring ISPs. For in-
stance, for non-edge traffic s and d may be a neighboring
ISP and a datacenter; for service request traffic generated
from UGs, s is the proxy, while d is the datacenter.

Constraints: Because the sessions from g can only be
assigned to a subset of e2e-paths ®, whose proxies are
close enough to g, and similarly traffic from s to d can
only traverse a subset of network paths F; 4 that connect
s and d, we have the following constraints on routing:

Vg:  Tveweg=1,if 0 ¢ @, thenwg, =0 )
V‘Y’d : ZV[) wp.s,d =1, lfp ¢ Ps,d7 then wp.s,d =0 (2)

Before describing the system model based on which
we compute these routing decisions, we list the assump-
tions made in our modeling.

Assumptions: We assume that a DC is involved in
serving each user request. This assumption does not im-
ply that there is no caching or local logic at the proxy;
it just means that the request cannot be completely ful-
filled by the proxy. All our services require personalized
responses based on state that is only maintained in DCs.
It is straightforward to modify our model when used with
services where this behavior does not hold.

We assume that the session arrival rate for a user group
gin j-th epoch ay, is known and fixed. In §5| we describe

how arrival rate is estimated. We have empirically veri-
fied that the arrival rate is fixed during each epoch, as the
epoch length that we use (5 minutes) is short. Our model
can be extended to account for errors in the estimated ar-
rival rate [22]. Similarly, we assume that the distribution
of session lifetimes, denoted by ¢(¢), is known.

‘We model proxies and datacenters as monolithic enti-
ties, ignoring their internal structure (and hence we refer
to them as “servers”). Without this simplifying assump-
tion, the model will become intractable as there will be
too many individual servers.

For ease of exposition, we assume that the infrastruc-
ture supports only one type of service. This service
generates request-response traffic, and the average band-
widths consumed by requests and responses is known
(Creg> Cresp)- We define the capacity My . of resource o
(e.g., CPU, memory) of server e in terms of number of
sessions. That is, we say that the CPU on a proxy can
handle a certain number of sessions. We assume that this
number is known, and fixed for a given o and a given
e. Since links can be viewed as a “server” with a sin-
gle resource—bandwidth—we will occasionally lever-
age this view to simplify notation. We can extend our
model to multiple services and a more detailed view of
resource and bandwidth consumption [22].

Finally, we assume the system’s objective is to find
end-to-end paths that minimize user delays. We do not
consider properties such as throughput or loss rate, but
we model the impact of high utilized resources on delay.

4.2 Temporal system dynamics

To model resource utilization, we first model the number
of active sessions consuming that resource. Let z denote
any element of an end-to-end path - a “server” or a link.
The number of active sessions on z is:

nz(t):Z Z ng ¢ (1) 3)

Vg V0:ecO

where, ng ,4(t) is the number of active sessions from UG g
on e2e-path 6 at time ¢, and thus n,(t) is the total number
of active sessions on element z. ng 4(t) evolves with time,
as new sessions arrive and old ones depart.

Consider epoch k, which lasts from time ¢ € [kT, (k+
1)T], where T is the epoch length. At the beginning of
the epoch (# = kT'), there are n‘é’f;(kT) pre-existing ses-
sions that will terminate per the pattern defined by the
distribution of session life time. Simultaneously, new
sessions will continuously arrive, some of which termi-
nate inside the current epoch and others will last beyond
the epoch. At any given time, the total number of ses-
sions in the epoch is:

ng.o(1) = niy (1) +nglg (1) ©
We must faithfully model how nfy'(¢) and n‘él‘;,(t) evolve
with time to provide high performance and efficiency.
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Figure 6: The pattern functions derived from the session life time distribution of Bing in an epoch. The time (x-axis)

on each graph is relative to the start of the epoch.

New sessions: The new session arrival rate on 6 from

UG g is:

V0,g: a9 =a; x Wo g )
Recall that ag is the total arrival rate of sessions from UG
g, and we assume it to be fixed within an epoch.

At any given time 7 within the epoch k, nf’y'(t) is the
sum of the number of sessions which arrived in interval
[kT, t] and are still alive at . From the session life time
CDF distribution g(¢'), we can easily derive f(¢') =1 —
q(t"), which is probability that a session is still alive after
duration ¢’ since it started. Figures a) and Eka) show
examples of g(¢') and f(t'), respectively.

Therefore, at any given time 7 € [kT,¢], the number
of new sessions that arrived in the interval [T, T+ AT]
is ag , x AT. Among these sessions, there will be f(r —
T)ag,q X AT sessions left at time . When AT — 0:

t t—kT
(1) = /k (1= a0, T = g % /O f(1)dt ©)
=agg X F(t 7kT)
where F(t) = [¢ f()dt, which represents the number of
sessions alive at 7 assuming unit arrival rate. Figure [f[b)
shows F (), obtained from Figure [6]a).

Pre-existing sessions: At time ¢ in epoch k, the number
of pre-existing sessions that arrived in epoch j (j < k) is:

i G+1)T )
ngl;'j(t):'/ﬂ fle—1) xdf d &

i —jT
=aj X
b8 ./t—(j+l)7‘ K

where aé ¢ is the observed arrival rate in epoch j and
G(t) = F(t) — F(t — T). Therefore, the total number of
pre-existing sessions is:

7)dT = “’é.g x G(t— jT)

k—1 .
ngin =y ap % G(t—jT) ®)
=0

Figures [6|c) and (d) show examples of G(r — jT) in two
epochs prior to current one, i.e., j = (k— 1)T and j =
(k—2)T, respectively when T = 300 seconds.

Server utilization: Given the number of active ses-
sions, the utilization of resource ¢ on server e is:

loe(r) = ;’V‘I’g), ©)

Combining Eqns. 3} @] [6] [8] and [} the utilization of a
resource O on server e is:

N
=]

p=10001—900
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Figure 7: Penalty function.
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=)

F(t —KT) X @o g + X520 G(t — jT) x al g
Ma.e

Hae(t) = (10)
Link utilization: To model link utilization, we account
for non-edge traffic and the fact that requests and re-
sponses consume different amounts of bandwidth, ¢,
and ¢y, respectively.

An e2e-path 0 contains a request path 6,., from UG
to DC and a response path 6,5, from DC to UG. Thus,
the total edge traffic load generated by new sessions on a
network link / is:

Yv6:1c6,, ng™ (t)creq + Yve:1c0,,, ng™ (t)crsp
bW[

an

’J'],)w,l (l) =

Pre-existing sessions stick to their originally assigned
servers, but the WAN paths they use can be adjusted. All
such sessions from site s to site d generates traffic de-
mand &; 4

é.r,d (I) = Z[ Z

Vg V0:5,d€breq

n‘élfé (1)Creq + Z
V0:5,d€brs)p

O] (12)

Links are shared by edge and non-edge traffic. Let &/,
be the traffic demand from source router s to destination
router d, the link load by non-edge traffic on link / is:

- Ysa ZVp:lEp[&S,d(t) + é;d] X Wp s.d

n : — 13
M (2) by (13)

Thus, the total utilization of network link / should be:
Hiwd (7) = B (1) + i (1) (14)

4.3 Optimization objective

Equations [T0] and [I4] model the impact of routing deci-
sions on resource utilization. For computing the final
decisions, resource utilization is only half of the story.
Our goal is not to exclusively minimize utilization, as
that can come at the cost of poor performance if user ses-
sions start traversing long paths. Similarly, the goal is



not to exclusively select shortest paths, as that may cause
overly high utilization that induces delays for users.

To balance the two concerns, as is common in TE
systems, we penalize high utilization in proportion to
expected delay it imposes [1]. Figure [/| shows the
piece-wise linear approximation of the penalty function
P(Uq.) we use. The results are not sensitive to the exact
shape—which can differ across resource types—as long
as the function has monotonically non-decreasing slope.

Thus, our objective function is:

i Z/Tp( (t))dH—Z/Th (1)dt (15)
min. = o Hoe = o 9,072.0
The first term integrates utilization penalty over the
epoch, and the second term captures path delay. The
variable h, ¢ represents the total latency when sessions
of UG g traverse e2e-path 0. It is the sum of UG-to-
proxy and WAN path delays.

4.4 Solving the model

Minimizing the objective under the constraints above
will assign values to our output variables. However, our
model uses continuous time and we must ensure that the
objective is limited at all possible times. To tractably
guarantee that, we make two observations. First, ng’y’ (1)
monotonically increases with time and is also concave.
The concavity is valid if only ’H;ft) = f(¢) is monotoni-
cally non-increasing with ¢, which is always true because
f(t) is a CCDF (complementary cumulative distribution
function). Hence, we can use a piecewise linear con-
cave function F’(t) that closely upper-bounds F(¢). For
instance, the red, dashed line in Figure @) shows a two-
segment F’ (1) we use for Bing.

The second observation is that n§(r) is monotoni-
cally decreasing and convex, e.g. Figure[5{b). The con-
vexity depends on both the shape of f(¢) and the length
of epoch T we choose. We found the convexity of n‘é";f(t)
is valid for all the services in our infrastructure. This, in
this paper, we assume for simplicity that ng{g (¢) is always
convex. Otherwise, one can may use a piecewise linear
function to upper-bound n‘é{’é(r).

Therefore, when we use F'(¢) instead of F(¢), from
Eqn. [I0] we derive:

F'(t = kT )aeq + YX2§ Gt — jT)al 4

uaﬁe(t) S .aa,e(t) = M(x — (16)

where [y .(7) is upper-bounding g () all the time, so
that we can limit iy .(¢) by limiting flg . (¢).

Since le‘.;(l)G(t — jT) is also convex with time ¢, and
let ty,...,Ty, where 71 = 0,7, = T, be the conjunc-
tion points of linear segments in F’(r), fig . (f) becomes
a piecewise convex function and each convex piece i
(1 <£i<m—1) has boundary 7; and 7;11. Because
the maximum value of a convex function must be on

the boundary, the maximum value of convex piece i in
fo.(t) happens on either t = 7; or t = 7;4,. Hence, over-
all, the maximum value of fly (f) always happens at a
collection of particular moments which are 7i,...,Ty.
Formally, we have:

Roe = max{flg (T)|i=1,...,m} 17)
Similarly, for link utilizations and number of sessions,
we also have:

~max

By = max{fp; (%)|i=1,...,m} (18)
figy =max{iigo(%)|i=1,....,m} (19)

where [ip,;(t) and 7ig 4(t), similar to fig .(?), is also de-
rived from replacing F(¢) with F'(¢) in Eqns. [14|and

Therefore, we can transfer our original objective func-
tion Eqn. |15|into following formulation:

min. Y P(aye)x T+ Y heoftye x T (20)

Vae ' Vg.0 '
We can now obtain an efficiently-solvable LP com-
bining the new objective in Eqn 20] with constraints in

Eqns. and The penalty function P(u) can

also be encoded using linear constraints [[15]].

S Footprint Design

We now describe the design of Footprint in more detail.

Defining UGs: We start with each /24 IP address prefix
as a UG because we find experimentally that such users
have similar performance. In the presence of eDNS,
where LDNS resolvers report users’ IP addresses when
querying our (authoritative) DNS servers, this defini-
tion of UGs suffices. However, eDNS is not widely de-
ployed and our DNS servers tend to see only resolvers’
(not users’) addresses. This lack of visibility means
that we cannot map /24 prefixes that share LDNS re-
solvers to entry point(s) independently. Thus, we merge
non-eDNS UGs that share LDNS resolvers, using IP-to-
LDNS mapping from our entry point performance mon-
itoring method (described below). We find that such
mergers hurt a small minority of users; 90% of the time,
when two /24 prefixes have the same LDNS, their rela-
tive performance to top-3 entry points is similar.

Entry point performance monitoring: We leverage
client-side application code to monitor performance of
UGs to different entry points. Our measurement method
borrows ideas from prior work [24} 5]. After a query
finishes, the user requests a URL from current and alter-
native entry points. It then reports all response times to
a measurement server, which allows us to compare entry
points head-to-head, without worrying about differences
across users (e.g., home network performance).
However, because there can be O(100) entry points,
requesting that many URLs will take a long time and



place undue burden on users. We thus perform measure-
ments with a small probability and limit each to three re-
quests. Each URL has the form http://<guid>.try<k>
.service.footprint.com/monitor, where guid is a
globally unique identifier and k € (1..3).

What sits behind monitor is a service-specific transac-
tion. For a browsing-type service (e.g., search or social
networking) it may correspond to downloading its typi-
cal Web page; for a video streaming service, large objects
may be downloaded. This way, the response time reflects
what users of the service experience.

The measurement mechanics are as follows. Because
of the GUID, the URL hostname does not exist in DNS
caches and each request triggers a lookup at our DNS
server. We resolve the name based on the user’s UG and
k. For k=1, we resolve to the current-best entry point;
for k=2, to a randomly selected entry point from the ten
next best; and for k=3, to a random selection from the
remaining entry points. Each response-time triplet yields
the relative performance of the best and two other entry
points. Aggregating across triplets and users provides a
view of each entry point’s performance for each UG.

This view is more up-to-date for better entry points
for a UG as they are sampled from a smaller set (of 10).
When a UG’s entry point is changed, it is likely mapped
to another nearby entry point; up-to-date view of such
entry points is important, which would be hard to obtain
with unbiased sampling of all entry points.

Finally, we learn the mapping from users’ IP addresses
to LDNS resolvers by using GUIDs to join the logs at
HTTP transaction servers (which see users’ addresses)
and DNS servers (which see resolver addresses).

Clustering UGs: After LDNS-based grouping, we get
O(100K) UGs, which poses a scaling problem for our LP
solver. To reduce the number of UGs, we aggregate UGs
at the start of each epoch. For each UG, we rank all entry
points in decreasing order of performance and then com-
bine into virtual UGs (VUG) all UGs that have the same
entry points in the top-three positions in the same order.
We formulate the model in terms of VUGs. The perfor-
mance of a VUG to an entry point is the average of the
aggregate, weighted by UGs’ number of sessions. For
our infrastructure, this clustering creates O(1K) VUGs,
and we observe only a marginal decline in efficiency
(=3%) due to our inability to map individual UGs.

System workload: The controller estimates the work-
load for the next epoch using workload information from
previous epochs. DNS servers report the arrival rates of
new sessions for each UG and each service; proxies re-
port on resource usage and departure rate of sessions; and
network switches that face the external world report on
non-edge traffic matrix (in bytes/second). Edge work-
load is captured in terms of all resource(s) that are rel-

evant for allocation (e.g., memory, CPU, traffic). We
use exponentially weighted moving average (EWMA)
to estimate workload for the next epoch. We also use
linear regression to infer per-session resource consump-
tion (e.g., CPU cycles) for each service, using overall re-
source usage and number of active sessions per service.

System health: When failures occur, health monitor-
ing services at proxy sites and DCs inform the controller
how much total site capacity is lost (not which servers).
This information granularity suffices because the con-
troller does not allocate sessions to individual servers at
a site and relies on local load balancers for that. In con-
trast, network failures are exposed at link-level, so that
the controller can determine network paths.

Because it may take a few seconds for the controller to
react to server or link failures (, instead of waiting
for the controller to update the configuration, load bal-
ancers and routers react to failures immediately by mov-
ing traffic away from failed components. Such move-
ments can cause transient congestion in our current de-
sign, which we plan to address in the future using for-
ward fault correction (FFC) [23]].

Robustness to controller failures: To make the sys-
tem robust to controller or hosting-DC failures, we run
multiple controllers in three different DCs in different ge-
ographic regions. All dynamic information required for
the optimization (e.g., system workload) is reported to
all controllers in parallel. The controllers elect a unique
leader using ZooKeeper [33]. Only the leader computes
the new system configuration and updates the infrastruc-
ture, which ensures that updated system state is not in-
consistent even if different controllers happen to have
different views of the current workload (e.g., due to de-
lays in updating information at a given controller). When
the leader fails, a new leader is elected. The new leader
can immediately start computing new system configura-
tions as it already has all the requisite inputs.

6 Footprint Prototype

We have implemented the Footprint design outlined
above. The client-side functionality for entry point per-
formance monitoring is a JavaScript library that can be
used with any Web service. This library is invoked af-
ter page load completes, so that it does not interfere with
user experience. When fetching a URL in JavaScript,
we cannot separate DNS lookup and object download
times. To circumvent this limitation, before fetching the
URL, we fetch a small object from the same hostname.
Then, because of DNS caching, the response time of the
URL does not include DNS lookup time. In cases where
the browser supports the W3C Resource Timing API, we
use the precise object fetch time. We implemented the
DNS server-side functionality by modifying BIND [3]
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and proxy functionality using Application Request Rout-
ing [2], which works with unmodified Web servers. We
use Mosek [26]] to solve the LP.

Timely processing of monitoring data is critical. A
particularly onerous task is the real-time join between
HTTP and DNS data, to know which endpoints our
JavaScript has measured and to attach detailed network
and geographic information to each measurement. To
help scale, we build our processing pipeline on top of
Microsoft Azure Event Hub and Stream Analytics.

To scale the computation of new configurations, we
limit the number of e2e-paths that a VUG can use.
Specifically, we limit each VUG to its best three en-
try points—the ones on which VUG was clustered—
each load balancer to three proxies, and each source-
destination switch pair to six paths (tunnels) in the WAN.
In our benchmarks, these limits speed computation by
multiple orders of magnitude, without noticeably impact-
ing system efficiency or performance.

We deployed a prototype of Footprint in a modest-
sized testbed. This environment emulates a WAN with
eight switches and 14 links, three proxy sites, and two
DCs. Proxy sites and DCs have one server each. We
have 32 PCs that act as UGs and repeatedly query a ser-
vice hosted in the DC. UG to entry point delays are con-
trolled using a network emulator.

The monitoring aspects of Footprint, but not the con-
trol functionality, are also deployed in Microsoft’s ser-
vice delivery infrastructure. This allow us to collect data
from O(100) routers, O(50) edge sites, and O(10) DCs
worldwide. The JavaScript library is randomly included
in 20% of Bing user requests. We use the data from this
deployment to drive simulations to evaluate Footprint.

7 Experimental Evaluation

We evaluate Footprint along several dimensions of in-
terest. First, we use the testbed to show the viability
and value of jointly controlling all types of infrastructure
components. It is not intended to shed light on efficiency
and performance of Footprint in a real deployment. To
assess those aspects, we conduct large-scale simulations
based on data gathered using the monitoring deployment
of Footprint in our production environment.

7.1 Testbed results

We use a simple experiment on our testbed to demon-
strate the value of spatial traffic modulation. In this ex-
periment, we recreate the example in Figure 2] Recall
that in this example the WAN gets congested such that no
path between the entry point P2 and DC2 is congestion-
free. We create such congestion by injecting non-edge
traffic that uses those paths.

Figure 8| shows the results. It plots the response time
for UGs that are originally mapped to P2 and DC2,
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Figure 8: Testbed experiment: WAN congestion.

with Footprint and with WAN TE alone. WAN TE es-
timates the WAN traffic matrix based on recent history
and routes traffic to minimize link utilization while us-
ing short paths [18]]. We see that soon after congestion
occurs, Footprint spatially modulates the traffic such that
UGs’ performance is restored. But WAN TE is unable to
resolve congestion and performance issues as it cannot
change UGs’ proxy and DC selections.

7.2 Efficiency and performance

To understand the efficiency and performance of Foot-
print at scale, we conduct detailed simulations using data
from Microsoft’s service delivery infrastructure. Our
simulations use a custom, fluid-level simulator.

7.2.1

To understand the benefit of Footprint’s joint optimiza-
tion, we compare it to a system similar to Microsoft’s
current approach, where i) anycast routing is used to map
UGs to their best proxy; ii) each edge proxy indepen-
dently chooses the closest DC for its user sessions based
on up-to-date delay measurements; and iii) WAN TE pe-
riodically configures network paths based on observed
traffic, to minimize maximum link utilization [18]. In
our simulations, the control loops, for DC selection at
each proxy and for WAN TE, run independently every
5 minutes. To mimic anycast routing, we use our moni-
toring data to map UGs to the best proxy, which enables
a fair comparison by factoring out any anycast subop-
timality [S]. We also assume that proxies are not the
bottleneck, to remove the impact of anycast routing’s in-
ability to evenly balance load across proxies, which a
different user-to-proxy mapping system may be able to
achieve. Abusing terminology, we call this system Fas-
tRoute, even though the FastRoute paper [14]] discusses
only user-to-proxy mapping and not WAN TE.

We drive simulations using the following data: i)
timestamps of new sessions obtained from system logs;
i) distribution of session lifetimes; iii) UG to entry point
performance data from our monitoring deployment; iv)
propagation latencies and capacities of all links in the
WAN; v) server capacities at the edge proxies and data
centers; vi) non-edge traffic carried by the WAN; and vii)

Methodology and data
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Figure 10: Efficiency of FastRoute and Footprint for
SLOI (excess traffic on overloaded components).

per-session resource consumption (e.g., CPU) estimated
using linear regression over the number active sessions.

We show results for North America (NA) and Europe
(EU) separately. The infrastructure in the two continents
differs in the numbers of proxies, DCs, and the richness
of network connectivity. The NA infrastructure is bigger
by about a factor of two. The results below are based
on one week’s worth of data from August 2015. Results
from other weeks are qualitatively similar.

To provide a sense of system workload, Figure [9]
shows the distribution of closest user sessions and net-
work bandwidth across proxies. Since proxies are not
bottlenecks in our experiments, network congestion is a
key determiner of performance. While it can occur in
the middle of the network as well, congestion occurs
more often on links close to the proxies because fewer
routing alternatives are available in those cases. We see
that, in aggregate, network bandwidth and user sessions
of proxies are balanced; more bandwidth is available be-
hind proxies that receive more sessions.

7.2.2 Efficiency

We quantify efficiency of a service-delivery system us-
ing congestion-free scale—maximum demand that it can
carry without causing unacceptable congestion that vio-
lates service-level objectives (SLOs). We consider two
definitions of unacceptable congestion: i) SLO1: across
all epochs, the amount of traffic in excess of compo-
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nent capacities should be less than a threshold; i) SLO2:
across all epochs, the total traffic traversing overloaded
(i.e., load greater than capacity) components should be
less than a threshold. The difference in the two SLOs
is that when traffic traverses an overloaded component,
SLO1 considers only the fraction in excess of the ca-
pacity, but SLO2 considers all traffic passing through
it. We study multiple congestion thresholds and compute
congestion-free scale by iterating over demands that are
proportionally scaled versions of the original demand.

Figure [I0] shows the congestion-free scale for Fas-
tRoute and Footprint with SLO1 for two different conges-
tion thresholds. For confidentiality, we report all traffic
scales relative to the congestion-free scale of FastRoute
with SLO1 at 1% threshold. We see that Footprint carries
at least 93% more traffic when the congestion threshold
is 1% and 50% more traffic when the threshold is 5%.

These efficiency gains can be understood with respect
to the spatial modulation enabled by joint coordination
in Footprint. While on average the load on the proxy is
proportional to its network bandwidth (Figure [9), at dif-
ferent times of the day, different regions are active and
get congested. By making joint decisions, Footprint can
more easily divert traffic from currently active proxies to
those in other regions.

Figure [TT] shows that Footprint’s efficiency gains hold
for SLO2 as well, which considers total traffic travers-
ing overloaded components. For 1% and 5% congestion
thresholds, Footprint can carry, respectively, 170% and
99% more traffic than FastRoute.

7.2.3 Performance

We quantify performance of user sessions using end-to-
end path delays. We study its contributing factors: ex-
ternal (UG-to-proxy) delay, propagation delay inside the
WAN, and queuing-induced delays. Queuing delay is
quantified using utilization, per the curve in Figure
Figure |12| shows the performance of the two system for
traffic scales that correspond to 35% and 70% of the
congestion-free scale of FastRoute for SLO1. Each bar
stacks from bottom three factors in the order listed above.

We see that even when the traffic demand is low
(35%), Footprint has 46% (for NA) lower delay. At this
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scale, the infrastructure is largely under-utilized. The de-
lay reduction of Footprint stems from its end-to-end per-
spective. In contrast, FastRoute picks the best proxy for
a UG and the best DC for the proxy. The combination
of the two might not represent the best e2e path. Such
a path may be composed of a suboptimal UG-to-proxy
path but a much shorter WAN path. This effect can be
seen in the graph, where the external delays are slightly
higher but the sum of external and WAN delay is lower.

When the traffic demand is high (70%), both systems
have higher delay. For FastRoute, most of the additional
delay stems from queuing as traffic experiences highly
utilized resources. Footprint is able to reduce queuing
delay by being better able to find uncongested (albeit
longer) paths. Overall, the end-to-end delay of Footprint
is at least 30% lower than FastRoute.

7.3 Impact of system model

To isolate the impact of the system model of Footprint,
we compare it to two alternatives that also do joint
optimization but without the detailed temporal model-
ing of workload. The efficiency of these alternatives
also represents a bound on what existing coordination
schemes [16l 20, 28|, [12]] can achieve when extended to
our setting of jointly determining the proxy, WAN path,
and DC mappings for user sessions.

¢ JointAverage Instead of modeling temporal dynam-
ics, based on session lifetimes, JointAverage uses Little’s
law [21]] to estimate the number of active sessions as a
function of session arrival rate. If the session arrival rate
at a proxy is A per second and the average session life-
time is 10 seconds, on average the proxy will have 10 x A
active sessions. These estimates are plugged into an LP
that determines how new sessions are mapped to proxies
and DCs and how traffic is forwarded in the WAN.

e JointWorst To account for session dynamics, Joint-
Worst makes a conservative, worst-case assumption
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about load on infrastructure components. Specifically,
it assumes that new sessions arrive before any old ses-
sions depart in an epoch. Since we do not do admission
control, it is not the case that traffic that is estimated,
per this model, to overload the infrastructure is rejected.
Instead, the optimization spreads traffic to minimize uti-
lization that is predicted by this model. This model will
do well if it overestimates the traffic on each component
by a similar amount.

For NA infrastructure, figure [I3[a) compares these
two models with Footprint using SLO1 at 5% conges-
tion threshold—the configuration for which Footprint had
least gain over FastRoute. We see that Footprint is sub-
stantially more efficient. It carries 56% and 96% more
traffic than JointAverage and JointWorst.

We find that the gains of Footprint actually stem from
its ability to better model load that will be placed on dif-
ferent infrastructure components. To demonstrate it, Fig-
ure [[4] plots the distribution of estimated minus actual
utilization for WAN links for each model. We see that
JointAverage tends to underestimate utilization and Joint-
Worst tends to overestimate it. With respect to appropri-
ately spreading load through the infrastructure, neither
over- nor under-estimation is helpful.

We also find that, if sessions were much longer, Joint-
Worst performs better because its conservative assump-
tion about existing sessions continuing to load the infras-
tructure becomes truer. On the other hand, JointAver-
age gets worse because it ignores the impact of existing
sessions altogether, which hurts more when sessions are
longer. This is illustrated in Figure [I3[b), which shows
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the impact on efficiency with average session lifetime
multiplied by 10. Because of its modeling fidelity, the
benefit of Footprint is not dependent on session lifetime,
however, and it is able to provide gains even for these
abnormally long sessions.

7.4 Computation time

We measured the time Footprint controller takes to com-
pute system configurations, which includes converting
inputs to an LP, solving it, and converting the output
to system variables. On an Intel Xeon CPU (E5-1620,
3.70GHz) with 16 GB RAM and using Mosek v7, this
time for NA and EU infrastructure is 5 and 0.6 seconds
respectively. This level of performance is acceptable
given that epochs are much longer (5 minutes). With-
out clustering of UGs, the running time was greater than
20 minutes for both NA and EU.

7.5 Preliminary experience

We make two observations based on the deployment of
Footprint’s monitoring components in Microsoft’s infras-
tructure. First, we quantify the fraction of UGs for which
the best proxy changes across epochs. If this fraction is
substantial, optimal user-to-proxy mapping would move
large amounts of WAN traffic, which is better done in
coordination with WAN-TE, rather than independently.

Figure[I5|shows the fraction of UGs, weighed by their
demand, for which the best proxy changes across epochs.
On average, this fraction is 5%. It means that a user-
to-proxy mapping control loop, operating independently,
could move this high a fraction of traffic on the WAN.
Joint coordination helps make such movements safely.
(In Footprint, since we consider WAN-internal capacity
and performance as well, the traffic moved is lower, un-
der 1% in our simulations.)

Second, an unexpected advantage of Footprint’s con-
tinuous monitoring is that we can discover and circum-
vent issues in Internet routing that hurt user performance.
‘We have found several such events. In one case, users in
the middle of the NA started experiencing over 130 ms
round trip delay to a proxy on the west coast, while
the historical delay was under 50 ms. In another case,
the difference in the delay to reach two nearby prox-
ies in Australia, was over 80 ms. Debugging and fixing
such issues requires manual effort, but Footprint can au-
tomatically restore user performance in the meanwhile.
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Anycast-based systems such as FastRoute cannot do that.

8 Related Work

Our work builds on two themes of prior work.

Content distribution systems: Content and service
delivery has been an important problem in the Internet
for almost two decades. Akamai [25] developed the first
large-scale solution, and we borrow several of its con-
cepts such as using edge proxies to accelerate perfor-
mance and mapping users to proxies based on path per-
formance and proxy load. Since then, researchers have
developed sophisticated techniques to tackle this general
problem known as replica selection [13} 4, [11, 29]]. So-
lutions tailored to specific workloads (e.g., video) have
also been developed [27} [17].

Most of these works target the traditional context in
which the WAN is operated separately from the proxy
infrastructure. We target the increasingly common inte-
grated infrastructure context, which provides a new op-
portunity to jointly coordinate routing and resource allo-
cation decisions.

Coordinating decisions: Other researchers have noted
the downside of independent decisions for network rout-
ing and content distribution. Several works [16} 20l 28|
12]] consider coordinating ISP routing and DC selection
through limited information sharing; PECAN develops
techniques to coordinate proxy selection and external
(not WAN) paths between users and proxies [31]; EN-
TACT balances performance and the cost of transit traffic
for an online service provide [32].

Our work differs from these efforts in two ways. First,
it includes the full complement of jointly selecting prox-
ies, DCs, and network paths. But more importantly, prior
works ignore workload dynamics that arise from ses-
sion stickiness. Consequently, the best case result of ap-
plying their techniques to our setting will approach the
JointWorst or JointAverage scheme (§7.3) because, mod-
ulo session stickiness, these two schemes optimally map
workload to infrastructure elements. We showed that, be-
cause it accounts for workload dynamics, Footprint out-
performs these schemes. Extending information-sharing
techniques to account for such workload dynamics is an
interesting avenue for future work.

9 Conclusions

Our work pushes SDN-style centralized control to in-
frastructure elements beyond networking devices. In do-
ing so, we found that, to maximize efficiency and per-
formance, we must handle complex workload dynamics
that stem from application behaviors. This challenge will
likely emerge in other systems that similarly push the
limits of SDN, and the approach we take in Footprint may
inform the design of those systems as well.
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