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Abstract
We develop FLM, a high-level language that enables network
operators to write programs that recognize and react to spe-
cific packet sequences. To be able to examine every packet,
our compilation procedure can transform FLM programs into
P4 code that can run on programmable switch ASICs. It first
splits FLM programs into a state management component
and a classical regular expression, then generates an efficient
implementation of the regular expression using SMT-based
program synthesis. Our experiments find that FLM can ex-
press 15 sequence monitoring tasks drawn from prior litera-
ture. Our compiler can convert all of these programs to run
on switch hardware in way that fit within available pipeline
stages and consume less than 15% additional header fields
and instruction words when run alongside switch programs.

1 Introduction

Many network management tasks involve recognizing and
reacting to a user-defined sequence of packets. Such sequence
monitors can enforce security policies, prioritize traffic, miti-
gate attacks, ensure protocol compliance, and more. For ex-
ample, they can identify and de-prioritize video flows using
a fingerprint based on successive packets to improve the net-
work for other traffic [23, 24] or verify that network clients
faithfully implement protocols such as the Dynamic Host
Configuration Protocol (DHCP) by observing the protocol
exchange [28].

Ideal sequence monitors are i) flexible: can express a broad
range of monitoring tasks; and ii) line-rate: can perform all
processing directly in the data plane (hardware). Being line-
rate allows sequence monitors to analyze all traffic passing
through the switch, without needing the switch CPU or a
remote server. Switch CPUs cannot process all packets at line
rate, and using remote servers incurs high network overhead
and reaction delays.

Existing sequence monitors sacrifice either flexibility or
line-rate processing. Systems such as Aragog [28] can express

most sequence monitoring tasks, but they run entirely in soft-
ware (i.e., are not line rate). Programmable switches based on
Protocol Independent Switch Architecture (PISA) [5] enable
hardware-based sequence monitoring, but are programmed in
languages such as P4 [4, 26] that are too low level, making
it hard to express and debug sophisticated tasks [15, 29, 32].
Hybrid systems like Marple and Sonata [11, 21] run only
partially on switches. Their core abstractions focus on data
transformations such as filter, map, and fold operations rather
than packet sequences. They are line-rate only if strong re-
strictions are placed on the allowed functions or if hardware
could be redesigned [21].

In this paper, we present an abstraction of a packet se-
quence pattern that is both flexible and compiled directly to
PISA-based hardware. It enables line-rate sequence monitor-
ing without mirroring traffic to the switch CPU or a central
controller. Recognizing patterns for sequence monitors di-
rectly in hardware is difficult due to stringent data access
constraints in current programmable switches. PISA-based
switches process packets using a series of stages. Each stage
contains its own local memory and a number of arithmetic
and logic units (ALUs) to perform computation. While some
sequence monitors such as packet counting fit this architecture
naturally, others that require tracking state across multiple
packets are significantly more challenging to realize.

Our system, called FLM, allows programmers to write se-
quence monitors using a high-level, pattern-based language.
Patterns are specified as regular expressions over packets,
with the added ability to record packet parameters for later
use. FLM programs can trigger local switch actions immedi-
ately upon matching a pattern, and they can monitor packets
at any desired granularity (e.g., flow, host).

We convert FLM programs into imperative code using a
novel core data structure, which represents a state machine
maintaining a variable environment. We transform operations
on this data structure into operations on PISA switch registers
by carefully dividing them into variable update and transition
code for a deterministic finite automaton (DFA), reflecting
the pattern’s match progress. Our implementation prioritizes



line rate execution on existing network hardware like the
Intel Tofino [13], for any accepted packet sequence. We have
formally proven that our compilation process from patterns
to pipeline stages preserves the original pattern semantics.

We evaluated FLM by encoding 15 monitoring tasks drawn
from prior work [10, 15, 18, 21, 24, 25, 28, 29, 31, 32]. We find
that we can express all of these tasks in 10-41 lines of FLM
code, which demonstrates the flexibility of FLM. We also
find that we can compile all of these tasks to the Intel Tofino
switch, which demonstrates FLM’s ability to provide line-
rate monitoring. All of these tasks fit within the number of
stages on the switch and consume less than 15% of additional
metadata memory or instruction words when run alongside
switch programs.

In summary, this work makes three main contributions:

• FLM, a language to express sequence monitors that can run
at line-rate on a switch with a novel definition of a pattern
syntax and semantics.

• Provably correct compilation from an FLM program to a
state machine representation that runs on PISA hardware
using a minimal number of stages.

• Evaluation that shows that FLM can express a wide variety
of sequence monitoring tasks and compile them to existing
network hardware.

2 Background

Our programming abstractions are broadly applicable to con-
texts where real-time recognition of event sequences is useful,
(programmable ASICs, FPGAs, NICs, or software switches).
Our implementation is designed for the PISA model. PISA
architectures rely on a series of stages. To achieve a high
processing rate and avoid memory access hazards such as
contention, each stage has its own nearby memory region.
Due to this memory layout, data can only be accessed by a
single stage, and can only flow forward in the pipeline by
changing the packet being processed. Within each stage, the
switch is able to perform a Read-Modify-Write instruction
on a value stored in its memory, where the modify step is
specified by a micro-program called a Register Action. A
core problem we tackled is writing a DFA transition function
in such a way that it fits into one Register Action in order to
be applied to packets at line rate. In this work, we consider
a monitor recognizing patterns in packets passing through a
single switch pipeline. A switch containing multiple pipelines
operating in parallel could contain multiple monitors.

To simplify our implementation, we build on Lucid [25],
an event-driven programming language for PISA switches.
Lucid programs declare events (i.e., notifications of data plane
packet arrival or network control signals) and corresponding
handlers (i.e., code to react to events). Lucid programs are
compiled to P4 code that runs on PISA switches. Both P4 and

Lucid are useful intermediate languages simplify our imple-
mentation, but are not critical for FLM’s key abstractions.

3 Example walk through

In this section, we walk through an example monitoring task
for the DHCP protocol step-by-step to show how FLM enables
network programmers to more easily build flexible, line-rate
packet sequence monitors.

3.1 DHCP Anomaly Detection
Suppose a network operator wants to verify that DHCP,

which enables clients to lease IP addresses from a server, is
not being misused. DHCP begins with the client broadcasting
a "Discover" message, to which the server responds with an
"Offer" message with available IP addresses. The client sends
a "Request" message for an address, which is confirmed with
an "Acknowledge" from the server. The client is then expected
to use the acknowledged IP until the end of its lease.

The operator wants to ensure that clients only use their
assigned IP. This monitoring task can be performed on the
access switch that processes all client communication, includ-
ing that with the DHCP server. Misuse would appear as a
packet sequence belonging to a client, identified by its MAC
(link-layer address), of some number of packets (the DHCP
protocol), a DHCP "Acknowledge," and then a packet whose
source IP does not match the acknowledged one. Below, we
show how FLM’s core abstractions help achieve this goal.

Events. FLM programs are written in terms of events. For
our task, we can define these two events:

event DHCP_Ack(int cip, int cmac);
event IP_Pkt(int sip, int smac);

Events are detected by parsing packets that arrive at the
switch. From the DHCP_Ack packet, the system parses the
DHCP message payload and extracts the client’s MAC and
new IP. Other packets are parsed as generic IP_Pkts, from
which the source IP (sip) and MAC (smac) are extracted.

Patterns. FLM patterns are regular expressions over events,
including concatenation (.) and closure (∗). To begin to tackle
the problem DHCP misuse, a programmer might create the
following pattern, which identifies the presence of a DHCP_Ack
amongst any number of other IP packets:

IP_Pkt∗ . DHCP_Ack . IP_Pkt∗

Recording parameters. The pattern above would match
any use of the DHCP server. It recognizes an event sequence,
but not the event parameters. Including one character for every
possible IP address in the regular expression alphabet would
make it too large. Instead, FLM patterns allow for the binding



FLM Program
1 entry event DHCP_Ack(int cip, int cmac);
2 entry event IP_Pkt(int sip, int smac);
3 spec<2048> dhcp_misuse =
4 IDX = {
5 | DHCP_Ack −> {hash(cmac)}
6 | IP_Pkt −> {hash(smac)}
7 }
8 DETECT {
9 IP_Pkt∗

10 .DHCP_Ack(@int assigned = cip)
11 .(IP_Pkt(sip == assigned))∗
12 .IP_Pkt(sip != assigned)
13 } => {
14 (...Some user response here...);
15 };

FLM Intermediate Representation
1 re<2048> dhcp_misuse =
2 IP_Pkt∗
3 .DHCP_Ack(@int assigned = cip)
4 .(IP_Pkt(sip == assigned))∗
5 .IP_Pkt(sip != assigned);
6 entry event DHCP_Ack(int cip, int cmac) {
7 idx = hash(cmac);
8 if (transition(dhcp_misuse, idx, this)) {
9 (...user−defined response...);

10 }}
11 entry event IP_Pkt(int sip, int smac) {
12 idx = hash(smac);
13 if (transition(dhcp_misuse, idx, this)) {
14 (...user−defined response...);
15 }}

Figure 1: An FLM program that monitors for DHCP misuse, and its translation with explicit state machine transitions.

of parameters to recognize patterns over very large alphabets
(e.g., all IP addresses). The operator can record the value of
the client’s assigned IP in the DHCP_Ack messsage by writing:

DHCP_Ack(@int assigned = cip)

This pattern will match any DHCP_Ack packet, and record the
value of its cip parameter in the new variable assigned. To
check whether future packets use this IP, the operator can add
a predicate over the parameters of an IP_Pkt by writing:

IP_Pkt(sip == assigned)

This pattern will match any IP_Pkt event whose sip param-
eter equals assigned. In our application, we also need the
negation (IP_Pkt(sip != assigned)). Hence, using binding
and predicates, the operator can now construct the following
FLM pattern to detect DHCP misuse from a client:

IP_Pkt∗
.DHCP_Ack(@int assigned = cip)
.IP_Pkt(sip == assigned)∗
.IP_Pkt(sip != assigned)

Arrays of patterns. The above pattern characterizes an
anomaly in the communications with a single client. In reality,
an operator wants to monitor many clients. To track multiple
clients, one specifies an array of patterns (in this case of size
2048), which will all be active simultaneously:

spec<2048> dhcp_misuse = ...

Next, one must specify a mapping of events to patterns, so
all clients with the same MAC are identified and applied to
the same pattern. The operator provides an indexing function,
which computes an array index from the values carried by
each event. For DHCP_Ack events, the index is the hash of
the client MAC. For IP_Pkt events (to catch the outgoing
packets), the index is the hash of the source MAC.

IDX = {
| DHCP_Ack −> {hash(cmac)}
| IP_Pkt −> {hash(smac)}

}

The expressions for each index calculation are user-defined.
If the operator wishes to prevent hash collisions, they can
implement algorithms such as probabilistic data structures or
detect collisions by storing keys and siphoning overflows to a
software controller, as in Sonata and Aragog [11, 28].

Responses. Finally, the operator will want to react to de-
tected misuse somehow—perhaps by blocking the client or
logging the anomaly. FLM allows users to react however they
choose by invoking an arbitrary Lucid subroutine.

Putting it all together. The left side of Figure 1 shows the
combination of all the features above in an FLM program
implementing the DHCP specification. The spec declaration
generates an array of size 2048, where each index represents
one copy of the FLM pattern. The IDX block identifies the
flows, the DETECT block contains the pattern, and the block
after "=>" contains the response.

3.2 Compilation Overview
We compile FLM programs to Lucid and use the Lucid com-
piler to generate P4. While Lucid frees us from defining event
parsers in P4, we must still map our pattern-based programs
to PISA stages. This presents two key challenges:

1. To match a pattern, the program must both update the
register holding the values of the variables stored in the
pattern (for example, storing a particular client IP in the
assigned variable in the DHCP example) and update the
register holding the position in the pattern. However, this
requires too much memory and computation to fit into a
single stage and register, as it must in order to keep the
state of the pattern up-to-date.

2. It is not even clear how to implement an arbitrary pattern
that does not contain variable bindings. For example,
consider a state machine representing a pattern without



1 //Compute the character using the old variables
2 if (event.type == DHCP_Ack) {
3 c = ACK;
4 //On ack, update the store value
5 assigned := event.cip;}
6 if (event.type == IP_Pkt and sip != assigned) {
7 c = IP0;}
8 if (event.type == IP_Pkt and sip == assigned) {
9 c = IP1;}

10 //Synthesized mapping f from character to value
11 f(c){ if (c == ACK) {return 12;}
12 if (c == IP0) {return 0;}
13 if (c == IP1) {return 12;}}
14 //Synthesized mapping g from character to value
15 g(c){ if (c == ACK) {return 2;}
16 if (c == IP0) {return 8;}
17 if (c == IP1) {return 9;}}
18 //Synthesized update function to do transition
19 update_state(curr, x, y) {
20 if(curr + y < 3){
21 return x ⊕ 5;}
22 else{
23 return curr & 3;}}
24 //Update the stored state using the f and g maps
25 state := update_state(state, f(c), g(c));

0 : Start

9 : Acked

1 : Re j

5 : Acc

Ack

IP0, IP1

Ack

IP0

IP1

∗

∗

Figure 2: A DFA representation of the translated DHCP FLM pattern the memop for its transition function, and preamble code
to compute the input character and variable updates. All integers are 4 bits, and the update function uses addition overflow to
model the transitions correctly.

any variable bindings. A simple implementation of its
transitions would take the form of:

transition (state, input):
if(state == s1 and input == i1):

return s2;
else if (state == s1 and input == i2):

return s3;
...

This will contain more branches than are allowed in a
single stage for most machines. However, the transition
must fit into a single stage in order to read and write
at line rate. The reason for this is that the transition de-
pends on the current state of the machine, which is only
available after reading a register. In PISA, registers can
only be accessed once per pipeline pass, so the transition
must occur at the same time as the read.

Solution overview. We solve these challenges by carefully
compiling an FLM program in a series of steps. In a pre-
processing step, we transform the FLM program to an inter-
mediate representation. This step inserts explicit "transition"
statements into each event handler that will be compiled away
later, and keeps the FLM pattern definition as a global def-
inition. In the first step, we break a pattern into a series of
variable updates and predicate computations that computes
an input character from a finite set determined by the event
type and predicate evaluations. This solves the first challenge
above, as we can move all of the variable storage and predi-
cate computation into earlier stages. In the second step, we
transform a pattern without bindings into a classical regular

expression over the input characters from the first step, and
synthesize an implementation of the corresponding DFA in a
single stage. Condensing the transition function into a single
stage solves problem 2, but is difficult as it requires searching
through all possible state numberings and bit-wise ALU op-
erations for one that satisfies all transitions. We offload this
hard work to an automated SMT solver.

Preprocessing on DHCP. We translate the DHCP FLM
program into an intermediate representation that allows for
more control of the inputs to an underlying state machine.
The core data structure is re<size>, which defines an array
of state machines with size indices that match an FLM pat-
tern. The pattern is copied from the high-level program. To
interact with it, the expression transition(name, idx, ev)
applies the event ev to the state machine at index idx, and
evaluates to a boolean indicating whether or not the sequence
of events applied to it so far matches the FLM pattern name.
For the DHCP example, in the handler of each event, we
compute the index using the expressions provided in the high-
level program (hashing the MAC address). Then, we add
transition(dhcp_misuse, idx, this), where this repre-
sents the event for the current handler. If that returns true, we
run the user-defined response code. The right side of Figure 1
shows the intermediate representation with explicit transition
statements in event handlers.

Step 1 for DHCP. The next two steps compile the remain-
ing FLM pattern and transition statements from the inter-



mediate representation into simple assignments and register
operations. We will refer to the pseudocode in Figure 2, which
represents the implementation of one transition statement.
First, we separate out the variable bindings. For the DHCP ex-
ample, it is enough to store the parameter of the first DHCP_Ack
event in the variable assigned. Furthermore, we wish to com-
pute an input character c from a finite alphabet by evaluating
the predicates in the FLM pattern. This alphabet is composed
of all of the event types of the original, followed by bit strings
representing the values of the predicates. Because IP_Pkt
appears with a predicate, it is expanded to the letters IP_Pkt1
and IP_Pkt0. DHCP_Ack does not appear with one, so it stays
as is. These translations are shown in Lines 1–9 of Figure 2.

Step 2 for DHCP. In this step, we will translate the FLM
pattern into a classical regex over the alphabet described
above, and then implement its transition in a single stage.
To translate the pattern, events that appear with a predicate
become unions of any event with the same type where that
predicate is true; similarly, events without a predicate are
unions of any event of their respective type. Other constructs
such as concatenation and closure remain as they are. For
this example, the translated alphabet is the set {DHCP_Ack,
IP_Pkt0, IP_Pkt1} and the classical regex is:

(IP_Pkt0 + IP_Pkt1)∗
.DHCP_Ack
.IP_Pkt1∗
.(IP_Pkt0)

Next, we translate this classical regex into a DFA and syn-
thesize its implementation in a single pipeline stage. This is re-
quired as a naive implementation of the transitions would not
fit in the limited computation available in one stage. Instead,
we search through all of the state numberings and bit-wise op-
erations to find ALU operations that complete all transitions
correctly. On the right side of Figure 2, we show a picture of
the DFA representing the above regex. To implement it, we
take advantage of the fact that a single register read-modify-
write action can take up to two arguments computed in prior
stages. Given a DFA, we search for the following:

• A mapping from states to integers, as shown by numbers
preceding each state in Figure 2 (e.g. Start is numbered 0).

• Two mappings (f and g) from the alphabet to integers that
will be used as inputs to the read-modify-write instruction.
These are shown on lines 11 and 15 of Figure 2. Because
they can be computed in earlier stages, we can use lookup
tables to implement them, which are not available when
updating the DFA state.

• A read-modify-write instruction that implements the tran-
sition function of the DFA using operations available on
the switch and results from the f and g mappings. This is
shown on line 19 of Figure 2.

The code in Figure 2 is laid out on the switch to compute c, f,
and g. In Figure 1, the re definition is replaced with a register

definition, and each transition statement is replaced with
the code in Figure 2: it first reads and updates the variables
at the current index, then computes the input character and
its corresponding mapping values, and finally applies the
transition function to the state register with those values. It
outputs whether the result represents an accepting state in the
DFA (in this example, result was 5 for "Acc").

4 FLM Language Definitions

In this section, we describe the FLM language, provide its
regular-expression-like syntax, and define the language’s se-
mantics over packet traces. In section 6, we prove that our
compiler translations are correct: the low-level switch pro-
gram correctly implements the high-level pattern semantics.

4.1 FLM Language
The FLM language is a wrapper to provide access to the
expressive FLM patterns. An FLM program consists of:

1. A name and size, written spec<i> myname = ... where i
is the number of replicated state machines.

2. An IDX = {...} block which determines which index to
use for each event.

3. Optionally, a DATA {...} block that declares one or more
registers to be used for a stateful response to a sequence
match (for example, counting matches).

4. A DETECT{pat} => {response} block, where pat is an
FLM pattern and response is Lucid code indicating what
to do when the pattern is recognized.

Finally, to recognize properties such as liveness or timeouts,
such as detecting half-open TCP queries [21], we provide a
special event called maintenance. This event is guaranteed
to eventually visit every state machine in a spec, so it acts
as a final event to match a pattern that might never observe
any more packets arriving. More about maintenance events is
included in the Appendix.

4.2 Syntax and Semantics of Patterns
In each FLM program, there is a finite set A of event types,
such as DHCP_Ack and IP_Pkt. An event is a pair of an event
type a ∈ A and an integer z, written a⟨z⟩. While this only
includes events with a single parameter, it generalizes easily
to any number of parameters. The top of Figure 3 shows
the syntax of an FLM pattern. We allow predicates over the
parameters of events (a⟨p⟩) to denote events of type a whose
parameter satisfies p. We also allow binding parameters in
events (a⟨@y; p⟩) for use in predicates.

Patterns (and their contained predicates) are evaluated un-
der an environment. An environment E is a mapping from
variables to integers, with its domain denoted by Dom(E).



FLM pattern R

p predicate

r ::= /0 empty set
| ε empty string
| a⟨p⟩ event
| a⟨@y; p⟩.r1 binding event
| r1.r2 concatenation
| (r1)

∗ closure
| r1 + r2 union
| r1 & r2 intersection

Denotational Semantics JrKE : Set of strings

J /0KE = /0

JεKE = {ε}
Ja⟨p⟩KE =

⋃
z∈Z
{a⟨z⟩|Jp(z)KE}

Ja⟨@y; p⟩.rKE =
⋃
z∈Z

({a⟨z⟩|Jp(z)KE}◦ JrKE,y←z)

Jr+ sKE = JrKE
⋃

JsKE
Jr&sKE = JrKE

⋂
JsKE

Jr.sKE = JrKE ◦ JsKE

Jr∗KE =
⋃

n∈N
JrnKE

Auxillary definitions

R◦S = {r.s | r ∈ R∧ s ∈ S}
r0 = ε

ri+1 = r.ri

Figure 3: Technical cheat sheet. Definitions for FLM patterns
and their derivatives.

The empty environment is denoted by ".". A predicate p is a
function from integer to boolean that may contain one or more
free variables, and is closed under an environment E if the
free variables of p are contained in Dom(E). The evaluation
of a predicate p applied to an integer z under an environment
E is denoted by Jp(z)KE , and exists if p is closed under E.

In this section (except for the DHCP pattern, for continuity),
we use lambda notation to define predicates. For example,
λx.(x ≥ 10) is a predicate that returns true if the given inte-
ger is at least 10. We use the standard semantics of lambda
functions. Finally, an FLM pattern r is closed under an envi-
ronment E if all of its free variables appear in E.

On the bottom of Figure 3, we show the semantics of an
FLM pattern. Each FLM pattern defines a set of strings of
events that belong to its language. A binding has a scope for
its variable. Predicates within the scope can use the variable.
For example, Ja⟨@y;λx.true⟩.(b⟨λx.(x == y)⟩)K. is the set
of any event of type a (the predicate is always true) followed
by one of type b with the same parameter (e.g. a⟨12⟩.b⟨12⟩).
Constructors of FLM patterns are defined similarly to those of
classical regular expressions; Jr+ sKE and Jr &sKE represent
union and intersection of the sets JrKE and JsKE , respectively,
and Jr∗KE represents zero or more copies of JrKE .

4.3 FLM Intermediate Representation
The FLM intermediate representation simplifies the higher-
level language features to leave just the patterns. It includes
two new features not present in Lucid:

1. re<i> myname = pat is a statement that defines an array
of i finite state machines named myname, which each
recognize the FLM pattern pat.

2. transition(myname, idx, ev) is an expression that ap-
plies a transition with the event ev to the state machine
at index idx of myname. It evaluates to true if the state
machine is in an accepting state (the pattern has been
recognized), and false otherwise.

An FLM program is transformed into the definition of a
state machine with the same pattern, size and name. Then, at
the beginning of each event handler, the compiler adds the
following code:

if (transition(myname, idx, this)) {
response;

}

myname is the name of the state machine, this is the event
to transitioned with (the current event for the handler), idx
is computed using the IDX block, and response is the user-
defined response.

5 From FLM patterns to Regular Expressions

We showed in section 3 how to build a DFA and some pream-
ble code for the DHCP example. Here, we describe more
generally how to translate an FLM pattern into a regular ex-
pression, which we translate to a DFA in section 7. Due to
hardware restrictions, we cannot complete all of the actions
necessary to store variables, evaluate predicates, and transi-
tion pattern state machines in one stage, so our plan is to
carefully separate those operations into a series of stages.
First, we lift variable bindings out of patterns, then remove
predicates to reduce the problem to implementing a finite
state machine over a finite alphabet where events are paired
with bits representing the predicates in a pattern.

5.1 Lifting out variable bindings
A binding FLM pattern has the form b⟨@y; p⟩.r. These may
occur deep within a pattern, posing a problem for implement-
ing the variable bindings in a pipeline stage before the pattern
state. In order to place bindings in an earlier stage, binding
occurrences must depend only on the incoming event and en-
vironment, not the state of the pattern. We move the bindings
to the top-level of a pattern while preserving its semantics by
introducing a new form of patterns:

b⟨@y⟩▷ r



Intuitively, this construct binds the first occurrence of an event
with type b’s value to the variable y, and then proceeds with
matching r. The key aspect of the ▷ syntax is that it separates
the binding out from the rest of the pattern. Our goal is to
move these bindings all the way to the top-level using rewrite
rules, to get a pattern that is written as a series of bindings,
followed by a pattern without any variable changes at all. We
show how this works on the DHCP example:

IP_Pkt∗
.DHCP_Ack(@int assigned = cip)
.(IP_Pkt(sip == assigned))∗
.IP_Pkt(sip != assigned)

The first rule converts an "@" binding into a "▷" one in place.
IP_Pkt∗
.DHCP_Ack(@int assigned = cip)▷

(DHCP_Ack
.IP_Pkt(sip == assigned)∗
.IP_Pkt(sip != assigned))

The second rule moves the binding up by one level.
DHCP_Ack(@int assigned = cip)▷

(IP_Pkt∗
.DHCP_Ack
.IP_Pkt(sip == assigned)∗
.IP_Pkt(sip != assigned))

This pattern has the same semantics as the original, but is
in prefix form: a binding followed by a binding-free pattern.

Definition 1. An FLM pattern s is binding-free if it contains
neither ▷ nor @.

In the last DHCP example above, the binding-free pattern
is the portion after the ▷.

Definition 2. An FLM pattern r is in prefix form if it is
written as B ▷ s, where B is a series of bindings (b1⟨@y1⟩ ▷
b2⟨@y2⟩ . . .), and s is binding-free.

The last version of the DHCP pattern above is in prefix
form. FLM patterns in prefix form cannot contain @ bindings,
as they are all converted to the ▷ syntax. The semantics of the
▷ operator is the union of two sets. The first covers cases when
the binding is required. In this case, the binding b⟨@y⟩ ▷ r
should bind the value of the first occurrence of event b to the
variable y. The second covers cases when the variable y is not
used to match the pattern. For example, the pattern:

b⟨@y⟩▷ (a⟨λx.true⟩+(b⟨λx.true⟩.a⟨λx.x == y⟩))

is meant to define either any string with a single event of type
a, or a sequence of an event of type b followed by a where
their parameters match. However, in the case of a single a
event, the binding is not needed. For this case, we quantify
over all possible values for y when defining it, which ensures
the value of y does not matter for matching.

Definition 3.

Jb⟨@y⟩▷ rKE = {w1.b⟨z⟩.w2 ∈ JrKE,y←z | b ̸∈ w1}
∪ {w | b ̸∈ w and ∀z.w ∈ JrKE,y←z}

In section 6, we show that if the rewrite rules can transform
a regular expression into a new one that is in prefix form, it
can always be implemented in a pipeline. A full list of rewrite
rules is contained in the Appendix. For all of these rules, we
show that if r is rewritten to r′, then for all environments E
under which r is closed, JrKE = Jr′KE .

Unimplementable patterns The rewrite rules are not com-
plete. Some patterns cannot be easily rewritten into prefix
form to be recognized in a pipeline. For example, the follow-
ing pattern fails to reach prefix form:

a⟨λx.true⟩.a⟨@y⟩.a⟨λx.x == y⟩

This is meant to define a sequence of three events of type a,
where the parameters of the second and third events match.
This is semantically well defined, but it cannot be imple-
mented easily because the variable updates happen before
accessing the pattern state. When an a event arrives, the deci-
sion to record y must be made without knowledge of previous
events. Our rewrite rules would reject this pattern. This could
arise in some compound monitors: for example, extending
the DHCP example to bind the unassigned sip and check that
it is subsequently used as part of another pattern, such as one
for a generic TCP handshake. This would fail because the
binding would not be with the first IP_Pkt. We included some
explicit rejected patterns in the Appendix.

5.2 Translating events
Now, we will focus on recognizing a binding-free pattern by
translating it into a DFA over a new alphabet.

Alphabet. The alphabet is formed by combining all of the
event types of the pattern with all possible combinations of
values of the predicates. As shown in subsection 3.2, the alpha-
bet for the DHCP example is {DHCP_Ack, IP_Pkt0, IP_Pkt1}.
IP_Pkt appears with a bit representing the value of the associ-
ated predicate, and DHCP_Ack remains as it is because it does
not appear with a predicate.

In general, the alphabet for the translation of an FLM pat-
tern r is defined as follows, where bin(n) is the binary repre-
sentation of a natural n, P(a) is the list of all of the predicates
in r for event type a, and A is all of the event types:

{a.bin(n) | a ∈ A∧n < 2len(P(a))}

Events. We need to take a single concrete event a⟨z⟩ and
output a character in the new alphabet. To do this, we de-
fine the letter translation Tl , which keeps the event type and
appends each predicate’s evaluation under the given envi-
ronment. In our example, consider an IP_Pkt event where
sip = 10.0.0.1. If the environment contains the mapping
from assigned to 10.0.0.1, then the translated letter is
IP_Pkt1. Otherwise, it is IP_Pkt0.



Definition 4. The event translation

Tl(a⟨z⟩,E,P) = aJp1(z)KE ...Jpn(z)KE

5.3 Eliminating predicates from patterns

Now, we translate a binding-free pattern into a classic
regular expression over a finite alphabet by eliminating
all remaining predicates. The translation, called Tre, maps
events with predicates to unions of characters with the
same event and the corresponding predicate being true.
The formal definition is in the Appendix. For exam-
ple, IP_Pkt(sip == assigned) is translated to the pattern
IP_Pkt1. Because IP_Pkt alone specifies no predicates, it is
translated to the pattern (IP_Pkt0 + IP_Pkt1). Union, inter-
section, concatenation, and closure all just apply the trans-
lation recursively. The full translation of the DHCP pattern
is:

(IP_Pkt0 + IP_Pkt1)∗
.DHCP_Ack
.IP_Pkt1∗
.IP_Pkt0

6 Translation Correctness

In this section, we present the theorem of correctness for our
translations. Intuitively, this means that a translated string of
events is accepted by a translated regular expression exactly
when the original string of events is in the language of the
original pattern, assuming that the variable updates are per-
formed correctly. We first introduce the concept of derivatives,
which formalize what should happen when a single event is
processed. Then, we state our main theorem, which relates a
series of derivatives to processing using our translations.

6.1 FLM Pattern Derivatives

Derivatives of FLM patterns formalize what happens when
one event arrives. We will define one for binding-free FLM
patterns and one for lists of bindings. A derivative of a pattern,
Dre, is taken with an event and an environment. It outputs
a new pattern, which represents the remaining pattern to be
matched. We illustrate this by example with the DHCP pattern
matching a string of events on the left of Figure 4. The last
pattern is ε, which means that the original DHCP pattern
accepts the string of events. The full derivative rules used are
shown on the right of Figure 4. This also shows the binding
derivative, which takes a series of bindings, an event, and
an environment, and outputs a new binding and environment
with the correct variable updates.

Formally, we show that the outputted pattern of a derivative
contains all the strings that would form word in the language
of the input pattern when concatenated to the input event:

Theorem 1. For all a,z,s,E where s is binding-free and
closed under E:

JDre(a⟨z⟩;s;E)KE = {w | a⟨z⟩.w ∈ JsKE}

6.2 Correctness Theorem
Our translations are correct if, after we translate an FLM
pattern into a DFA with Tre, and feed it a string of events
translated with Tl , the DFA accepts only when the original
string of events is in the language of the original pattern.

We show that the relation between a pattern s and its trans-
lated DFA via Tre is preserved when transitioning the DFA
using characters translated with Tl . In particular, taking the
FLM pattern derivative of s with an event and then translating
it to a DFA is the same as transitioning Tre(s) with a trans-
lated event. At the end of a string of events, we test whether
the translated DFA is accepting, which is equivalent to string
being in the language of the original pattern.

To state this formally, we define the translation of a word
(a string of events), which repeatedly applies Tl and Dbind to
transform the word into a string of finite-alphabet characters,
given a list of bindings, an inital environment, and a list of
predicates. The translated example word from Figure 4 would
be DHCP_Ack.IP_Pkt1.IP_Pkt0.

Definition 5. The word translation

Tw(a1⟨z1⟩ . . .an⟨zn⟩,B,E,P) =

Tl(a1⟨z1⟩,E,P).Tw(a2⟨z2⟩ . . .an⟨zn⟩,B′,E ′,P)

Where B′,E ′ = Dbind(a⟨z⟩;B;E)

The word translation of ε is ε. The rewrite rules described
in subsection 5.1 preserve the semantics of patterns. They also
preserve a property we call implementability, which means
that the derivative of a pattern with events that are not bind-
ing is semantically equivalent no matter the assignments to
unbound variables. This property holds if input patterns bind
variables using the first occurrence of an event type, and al-
ways use variables after they are bound. We show an unim-
plementable pattern in section 5. For the technical definition,
see the Appendix. Finally, we have our correctness theorem,
which states we can check whether a translated word is in the
language of a translated regular expression to determine if a
word matches a pattern. Asgn0(B) simply assigns 0 to each
variable of B, so that there are never undefined variables. The
proof is by induction on the length of a word and is contained
in the Appendix.

Theorem 2. For any word w, binding list B, pattern s, envi-
ronment E, and predicates P, if B▷ s is in prefix form, closed
under E, and implementable, then:

Tw(w,B,(E,Asgn0(B)),P) ∈ L(Tre(s,P)) ⇐⇒ w ∈ JB▷ sKE



IP_Pkt*
.DHCP_Ack
.IP_Pkt(sip == assigned)*
.IP_Pkt(sip != assigned)

IP_Pkt(sip == assigned)*
.IP_Pkt(sip != assigned)

IP_Pkt(sip == assigned)*
.IP_Pkt(sip != assigned)

ε

assigned=empty

assigned=10.0.0.1

assigned=10.0.0.1

assigned=10.0.0.1

DHCP_Ack(cip=10.0.0.1)

IP_Pkt(sip=10.0.0.1)

IP_Pkt(sip=255.255.0.0)

FLM pattern Derivative Dre : Event→ R→ E→ (R,E)

Dre(a⟨z⟩; /0;E) = /0

Dre(a⟨z⟩;ε;E) = /0

Dre(a⟨z⟩;b⟨p⟩;E) =

{
ε if a == b and Jp(z)KE

/0 otherwise
Dre(a⟨z⟩;r.s;E) = Dre(a⟨z⟩;r;E).s+ v(r).Dre(a⟨z⟩;s;E)
Dre(a⟨z⟩;r+ s;E) = Dre(a⟨z⟩;r;E)+Dre(a⟨z⟩;s;E)
Dre(a⟨z⟩;r &s;E) = Dre(a⟨z⟩;r;E)&Dre(a⟨z⟩;s;E)
Dre(a⟨z⟩;r∗;E) = Dre(a⟨z⟩;r;E).r∗

Nullability v : R→ R

v(ε) = ε

v( /0) = /0

v(a⟨p⟩ = /0

v(r.s) = v(r).v(s)
v(r+ s) = v(r)+ v(s)
v(r&s) = v(r)&v(s)
v(r∗) = ε

Binding update Dbind : Event→ B→ E→ (B,E) Let

B′,E ′ = Dbind(a⟨z⟩,B,E) in the following definitions:

Dbind(a⟨z⟩,ε,E) = ε,E no bindings
Dbind(a⟨z⟩,b⟨@y⟩▷B,E) = b⟨@y⟩▷B′,E ′ i f a ̸= b
Dbind(a⟨z⟩,a⟨@y⟩▷B,E) = B′,(E ′,y← z) i f a = b

Figure 4: The progress of matching a string with the DHCP example. The left column contains the binding-free patterns, and
the right tracks the environment. The arrows indicate the pattern derivative with the incoming event and current environment.
Acceptance is indicated by the empty string, ε.

1 memop template (st, f, g):
2 b1 = [st,0] + [f,g,0] [==, !=, <, >] c1;
3 b2 = [st,0] + [f,g,0] [==, !=, <, >] c2;
4 if (b1 [||, &&] b2):
5 return [st,c3] [|,&,+,⊕] [f,g,c4] ;
6 else:
7 return [st,c5] [|,&,+,⊕] [f,g,c6] ;

Figure 5: A syntax template for a single register action to
be synthesized. Blue-bubbled brackets represent choices be-
tween the expressions in the brackets. Red-bubbled brackets
represent choices between the operators in the brackets. Each
ci represents a constant chosen by the synthesizer.

7 DFA Synthesis

The previous section reduced the problem of matching FLM
patterns to matching specially constructed regular expressions,
but it is still not clear how to do this at line rate. In this section,
we show how to synthesize code to perform the classical regex
derivative (a DFA transition) in order to use theorem 2. We use
SMT-based synthesis to fit a transition function into at most
four register actions, the maximum allowed on the Tofino.

7.1 Synthesis goal

To implement a DFA’s transition function within the allowed
register actions, the synthesizer will attempt to cleverly assign
numbers to the DFA states and alphabet while generating
a short function composed of a fixed number of simple in-
structions like bitwise operations, arithmetic operations, and
conditional branches. The function will calculate the next
state given the current state and input event without the need
to enumerate DFA transitions.

We take as input a DFA and a bitvector length l. A DFA
is a five-tuple (Q,Σ,δ,q0,F), where: Q = {q0,q1, · · ·} is a
finite set of states with initial state q0, Σ = {σ0,σ1 · · ·} is a
finite set of alphabet symbols, δ : Q×Σ→ Q is the transi-
tion function, and F ⊆ Q is the set of accepting states. For
the DHCP example from subsection 3.1, the DFA has Q =
{Start,Acked,Acc,Re j}, Σ = {Ack, IP0, IP1}, F = {Acc},
and δ as shown in Figure 2.

We output a function to implement the state machine’s
transition on the Tofino or any other hardware whose memory
update is at least as expressive. Specifically, we output:

• A mapping R from Q to {0, . . . ,2l−1} that uniquely num-
bers the states, and by convention we fix R(q0) = 0.

• Two mappings f and g from Σ to {0, . . . ,2l−1}. These are
passed as arguments to the register actions.



• A mapping whichop from Σ to {0,1,2,3} that indicates
which register action each character will use.

• Up to four register actions that take the values of the maps
R, f , and g on the current state q and input character σ,
and output R(δ(q,σ)) for all the letters in Σ that use them.
Furthermore, the functions must follow the syntax from
Figure 5 in order to fit into a single register action.

An example of correct outputs for the DHCP example is also
shown in Figure 2 (all characters use the same function).

7.2 Synthesis implementation
To come up with these outputs, we use an SMT solver to do
syntax-guided synthesis [1]. We make one bitvector variable
for each state (the values of R), two bitvectors for each letter
( f and g), and booleans to determine whichop. To make the
templates, we make boolean indicator variables for which
operations, comparisons, and boolean comparisons are used.
Then, we encode the templates as constraints over the state
variables. If a satisfying assignment is found, we read it to get
the output. An interesting problem is to find the best template
for synthesis. This is discussed more in subsection 9.3.

8 Implementation

We implement the FLM compiler atop the Lucid frame-
work [19,25] using approximately 1500 lines of OCaml avail-
able on GitHub1. We implemented DFA synthesis code in
the compiler in OCaml using the z3 SMT solver [30]. It first
transforms each FLM pattern into prefix form and translates
it to a classical regular expression. Then, it converts the pat-
tern into a DFA and runs syntax-guided synthesis to generate
the corresponding mappings and memops, expressed as an
intermediate representation Lucid program. This program is
subsequently compiled using the existing Lucid framework’s
backend and vendor-provided P4 compiler (bf-p4c) to gen-
erate the final data plane program binary. We use ocamlc
4.14.0, z3 4.11.2, and bf-p4c 9.13.0.

9 Evaluation

We evaluate FLM by using it to implement a diverse set of
sequence monitoring tasks of interest to network operators.
We identified 15 such tasks from prior work, and implemented
them alongside a Lucid program that used the same events.
All of the monitored patterns are listed in the Appendix.

Figure 6a shows these programs and summarizes our re-
sults, including the lines of code needed to express the exam-
ples, the synthesized DFA complexity and synthesis time, and
the stages used. We are able to express each of the 15 tasks in
the FLM language, pointing to its flexibility. The table shows

1https://github.com/PrincetonUniversity/lucid/tree/SpecRegex

lines of code as a proxy for ease of use. We see that FLM
programs are short and all tasks are expressed in a few 10s
of lines. In contrast, when translated to Lucid these programs
are 5-10x bigger, which is a proxy for implementation effort
of expressing these tasks directly in P4.

Our compiler is able to compile each of the programs to
the Intel Tofino, which demonstrate the line-rate monitoring
capabilities of FLM.

9.1 Compilation time
Figure 6b shows the compilation time for each program on an
AWS EC2 t3.medium server with 4GB memory and 2 vCPU
(unlimited burst). We break the total compilation time into
the frontend (Lucid compiling) and backend (P4 compiling).
Note that the Lucid time includes the synthesis time from
Figure 6a. We see that most programs need little time (sec-
onds) to complete our compilation steps. Although the DFA
synthesis step depends on the complexity of the pattern and
is theoretically NP-Hard, all tasks finish in a few minutes.

Programs decorated with FLM have slower compilation
time for both the Lucid compiler backend and the vendor P4
compiler. This is caused by the additional statements added to
the IR and the resulting overhead for optimizing the pipeline
layout, and mostly depends on the complexity of the original
program. The complexity of the pattern (aside from additional
variables) does not affect the backend’s and vendor compiler’s
compiling time. All implementations take roughly the same
time to compile once synthesized.

9.2 Hardware Resource Utilization
Figure 6c shows the hardware resource usage of the Tofino
binaries for each program. The three most relevant metrics
for FLM are the number of pipeline stages used (Figure 6a),
the percentage of metadata fields (PHV) allocated, and the
percentage of instruction words (VLIW) allocated.

Depending on the complexity of pre-processing involved in
translating events (packets) to letters in the pattern, FLM com-
piles programs into 6-10 stages, all comfortably fitting within
the Intel Tofino v1 (12 stages). The DFA itself always uses a
single stage, regardless of the complexity of the pattern. The
additional stages take care of the Lucid event handling and
control flow, as well as predicate computation. Because there
are data dependencies between stages arising from control
flow, these stages are not always "full;" additional unrelated
programs can fit alongside them without using more stages,
as the preprocessing steps are parallelized with existing logic.

Meanwhile, FLM programs use reasonable resources:
adding FLM to an existing Lucid program only consumes
1-15% additional PHV and VLIW, much of which is for setup
(parsing and pre-processing). Interestingly, the resourge usage
for some tasks goes down with added FLM monitoring due
to the additional stage usage.



Lines of code DFA FLM StagesLucid IR P4 (Q,Σ) Time(s)
A: Cuckoo Firewall [25] 171 388 1795 - - 10

A1: Cuckoo Insertion +14 +268 +616 (9,5) 7.6 +0
B: Stateful Firewall [25] 34 91 578 - - 6

B1: Firewall Correctness +10 +100 +308 (4,4) .8 +4
C: SipHash [29] 185 260 2072 - - 8

C1: SipHash Rounds +30 +125 +981 (17,3) 19.9 +0
D: Chain Replication [31] 126 223 1319 - - 10

D1: Sequence Numbers +10 +75 +299 (4,2) .5 +0
D2: Double Write +11 +85 +336 (5,2) 1.3 +0

E: Simple RIP [25] 121 219 1158 - - 8
E1: DHCP Anomaly [3] +24 +160 +1184 (4,3) .6 +0
E2: Fingerprint [24] +41 +224 +2264 (10,8) 14.2 +2
E3: Port Knocking [10] +19 +168 +1548 (6,16) 114.4 -1
E4: DNS TTL [21] +15 +118 +830 (4,2) .4 +2
E4: DNS Tunneling [21] +18 +191 +1382 (13,5) 10.7 +1
E6: SwiSh Local [32] +13 +147 +1123 (7,3) 1.0 +0
E7: NetChain [15] +13 +89 +521 (4,2) .4 +0
E8: Paxos Recovery [28] +25 +279 +1048 (5,32) 15.7 +0
E9: ATP Sequence [18] +23 +147 +668 (6,8) 6.0 +0
E10: ATP JobID [18] +35 +140 +662 (19,3) 11.4 +0

(a) The results from compilation of our 15 example monitors. The gray
rows show the base programs. The following white rows show one
or more monitors that we added to the base programs. For the base
programs, we show the lines of code of the source program (Lucid),
the intermediate representation before compiling to P4 (IR), and the
resulting P4 program (P4), as well as the number of stages used. For
the monitoring tasks, we show the additional lines of code and stages
added by FLM as well as the size of the DFA in terms of states (Q) and
the alphabet (Σ) as well as the time required to compile FLM to Lucid.
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(b) The compilation time of each example, with the base programs
in blue and the monitors in orange.
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(c) The PHV and VLIW utilization of each compiled program, with
the base programs in vlue and the monitors in orange.

9.3 DFA Synthesis

We measured the size of each DFA in our examples, noted in
the "DFA" column of Figure 6a as a pair (|Q|, |Σ|) to show
the number of states and the size of the alphabet. These varied
from small automata with only a few states and symbols to
ones with dozens of states and alphabet characters. The step
of synthesizing an implementation, included in the "FLM
Time", was relatively quick for all of them. In prior work [6],
we further evaluated the difficulty of state machine synthesis.

We found that it was possible to generate implementations
for state machines representing simple networking tasks such
as tracking a TCP handshake. We also tested combinations
of state machines via union (tracking multiple at once) or
concatenation (tracking one after another) via video finger-
printing examples. While union was usually easier than con-
catenation, there were many examples of the same size DFA
(as measured by states and alphabet) where some worked and
some did not. There are other qualities of DFA complexity
that show up only in some fingerprinting patterns. For exam-
ple, states with many incoming or outgoing edges place many
constraints on the same variables and make a solution more
difficult to find.

Finally, we tried five different synthesis templates of vary-
ing complexity, ranging from simple assignment to using
Tofino-specific tricks such as representing states with two in-
tegers in a paired array and updating both simultaneously. We

also varied the choices of bitwise operators available in each
template. We found that the template shown in Figure 5 was
the best balance between expressiveness (ability to represent
a wide variety of DFAs) and synthesis time.

10 Related Work

The syntax for FLM programs is inspired by Aragog [28],
a system that focused on recognizing issues in distributed
systems by specifying regex-like patterns. The patterns were
checked by a global verifier that had specific events forwarded
to it by all the systems. Aragog operates entirely in the con-
trol plane, whereas our work focuses on recognizing packet
sequences appearing on a single data plane switch at line rate.

Many works use data plane switches to recognize reg-
ular expressions appearing in packets for the purposes of
content inspection. Some early work appeared before P4
was released [20, 22]. More recent work has built on fur-
ther hardware advances, and includes frameworks specialized
for matching strings in a packet [14, 27]. DBVal [17] fo-
cuses on verifying the data plane execution of a single packet.
DeepMatch [12] focuses on searching for regular expressions
within the payload of packets, and developed some techniques
to hold state between payloads for a single flow. Our work
differs in that it focuses on patterns of sequences of packets,
where all the computation happens in a single stage used once



per packet, rather than a series of stages that can search for
patterns within packet content. We also allow more expressive
patterns with the binding of event values and predicates.

Our patterns draw inspiration from previous work on para-
metric verification [3], as well as studies of various forms of
automata for wide-ranging applications. Timed automata [2]
can record the timing of events and place time constraints on
transitions. Symbolic automata [8, 9] permit a very wide va-
riety of predicates on transitions without memory other than
their state, while register automata [16] can record charac-
ters in registers, and check only equality. Recently, symbolic
register automata [7] were proposed, which combines the two.

Our preliminary paper [6] presented an algorithm for syn-
thesizing DFA transitions using SMT solvers. FLM extends
that core with a new pattern-based language and compiler
that separates bindings and predicates from classical regular
expressions which are turned into DFAs.

11 Discussion

Limitations. One limitation for recognizing FLM patterns,
and the reason for the rewrite rules, is the difficulty of cor-
rectly updating variables under the constraints on PISA
switches. Other hardware or computation models might pro-
vide an easier path to computing the environment derivative
(on a general purpose CPU with unlimited memory, it could
just be computed directly), which would increase the num-
ber of FLM patterns that are recognizable. Still, we show in
our evaluations that the subset of implementable patterns is
expressive enough for many applications. An interesting re-
search question for the future is to characterize which FLM
patterns can be implemented under which computation mod-
els, and how best to do so while minimizing resource use.

Another limitation comes from the amount of computa-
tion available in a single stage, which dictates the size of im-
plementable DFAs. Very long or complicated patterns could
translate to DFAs that are too large to fit into one read-modify-
write action. For more details, see the paragraph on synthesis
hardness above. Our work is only platform-specific in that the
template defined in Figure 5 is tailored to compilation on the
Intel Tofino. Other hardware that has different computation
available in a single stage would likely permit a more or less
expressive template. A solution to this that applies for some
DFAs is to carefully use more than one stage to implement it.
For preliminary details about this approach, see the Appendix.
As hardware improves, we hope to see both more computa-
tion available within a stage and more stages, alleviating this
restriction from two angles.

Scalability and flexibility. In our examples, we used a
variety of indexing functions to represent individual state
machines, including per-flow, per-port, and per-MAC. How-
ever, in some networks, there is not enough memory available

on current hardware to store this many values, risking index
collisions. Other works [21] have dealt with this problem
using complex data structures, sampling, or grouping flows
to be considered together. While FLM does not employ any
of these by default, it is flexible enough that a programmer
could implement any of these techniques to compute an index
before applying transitions to the FLM state machine array.
Furthermore, if the high-level language is too restricting, a
programmer can write code directly in the FLM intermediate
representation, allowing them to intersperse arbitrary code for
how the index is computed, which event is used to transition
the state machine, and where in the control flow to transition.

Monitoring scope. We built our FLM compiler to target
the Intel Tofino, but the core ideas are not reliant on any
particular piece of hardware. The main requirement for an
FLM program is a single pipeline with atomic updates and
persistent memory that is updated per-packet. This applies to
any switch implementing the PISA architecture.

We did not solve the problem of recognizing patterns in a
distributed system of switches, instead focusing on how to
properly compile to a single pipeline. A switch with multiple
pipelines would implement multiple FLM monitors indepen-
dently. For most monitoring tasks, properly configuring how
ports map to pipelines (essentially slicing the index space
across monitors) should preserve the monitor’s reliability by
sending packets intended for the same state machine through
the same pipeline. We consider distributed monitoring an
interesting task for future research.

12 Conclusion

We introduce FLM, a programming language that uses new
abstractions to recognize and react to user-defined packet
and event sequences at a switch. We develop a compilation
procedure that transforms FLM programs into a series of
match-action tables and register update functions, using a
combination of rewrite rules and SMT-based program synthe-
sis. Our evaluation using 15 sequence monitoring finds that
FLM is flexible and supports line-rate processing on current
networking hardware. This work raises no ethical concerns.
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13 Appendix

13.1 Translating patterns

The full definition of translating patterns uses BigOr, which translates an individual event and predicate.

Definition 6. BigOr(b⟨p⟩,P) =∨
({b}◦{bin(i) | i < 2len(P) and the bit representing p is 1})

BigOr(b⟨p1⟩, [p1, p2]) = (b10+b11), as above. Similarly, BigOr(b⟨p2⟩, [p1, p2]) = (b01+b11). The other pattern translations
are defined recursively. All of the constructors (+,&,∗, .) stay the same, as they have similar semantics for classical regular
expressions and patterns, and we translate all of the event patterns with BigOr.

Definition 7. The FLM pattern translation Tre(r,P):

Tre(ε,P) = ε

Tre( /0,P) = /0

Tre(a⟨pi⟩,P) = BigOr(a⟨pi⟩,P)
Tre(s1.s2) = Tre(s1,P).Tre(s2,P)

Tre(s1 + s2) = Tre(s1,P)+Tre(s2,P)
Tre(s1 &s2) = Tre(s1,P)&Tre(s2,P)

Tre(s∗) = (Tre(s,P))∗

13.2 Implementability

The following is a list of the rewrite rules we use:

• b⟨@y; p⟩.r rw−→ b⟨@y⟩▷b⟨p⟩.r. This rule always applies, and is how we introduce the ▷ operator. It splits a binding into two
parts, and removes it from the expression.

• r.(b⟨@y⟩▷ s) rw−→ b⟨@y⟩▷ (r.s). This rule only applies if b and y do not appear in r. This ensures that no word in r contains an
event b, mirroring the semantics of ▷.

• (b⟨@y1⟩▷ s1)+(b⟨@y2⟩▷ s2)
rw−→ b⟨@y1⟩▷ (s1 +[y1/y2]s2). Here [y1/y2]s2 denotes the capture-avoiding substitution of y1 for

y2 in s2. This rule only applies when s2 contains no references to y1. An equivalent rule applies for &.

• (a⟨@y1⟩▷s1)+(b⟨@y2⟩▷s2)
rw−→ a⟨@y1⟩▷b⟨@y2⟩▷(s1+s2). This rule applies if s1 contains no occurrences of y2, s2 contains

no occurrences of y1, and a ̸= b. An equivalent rule applies for &.

• (b⟨@y⟩▷ s1)+ s2
rw−→ b⟨@y⟩▷ (s1 + s2). This rule applies if s2 contains no occurrences of y. An equivalent rule applies for &.

These contain side conditions that ensure rewritten expressions have the same semantics after rewriting. For example, we check
that variables are not contained in out-of-scope expressions before hoisting bindings to an outer scope. However, they also
preserve a key property of FLM patterns that can be written without the new binding form that uses ▷. We call this property
implementability. First, we define a shorthand for an environment defined over the variables in a list of bindings.

Definition 8. An environment G is compatible with a binding list B if Dom(G) = Range(B). That is, G contains one assignment
for each variable in B. We will use the metavariable G for compatible environments to differentiate from general environments
denoted by E.

For example, the environment (y1← 1,y2← 15) is compatible with b1⟨@y1⟩▷b2⟨@y2⟩. We will write Asgn0(B) to mean the
environment that assigns every variable in B to 0. Next, we define implementability, which intuitively means that the pattern
derivatives are not affected by assignments to variables in a binding list for event types that do not appear in the bindings.

Definition 9. An FLM pattern in prefix form B▷ s is implementable if and only if for any event type a ̸∈ B, any integer z, any
environment E where B▷ s is closed under E, and any two environments G1 and G2 which are compatible with B:

JDre(a⟨z⟩;s;E,G1)KE,G2 = JDre(a⟨z⟩;s;E,G2)KE,G2



All of the patterns we introduce in the main paper are implementable. An example pattern which does not have this property is:

b⟨@y⟩▷a⟨λx.(x == y)⟩.b⟨λx.true⟩

This pattern is semantically well-defined: it is the set of events of type a followed by b with equal parameters. However, the value
of y is not known when the event a appears, and so it cannot be implemented at line-rate (in general, this type of pattern would
require some look-back capability). This fails the implementability property because the assignment to y will change the result of
Dre for events of type a. We show that our rewrite rules preserve this property: if r rw−→ r′ and r is implementable, then so is r′.

Now, we define a theorem that captures the semantic meaning of both the binding and pattern derivatives. Intuitively, it is
similar to theorem 1, but uses an environment produced by Dbind instead of a constant one.

Theorem 3. ∀B,s,a,z,E : if B▷ s is in prefix form, closed under E, and implementable, then:

JDre(a⟨z⟩;s;E ′,Asgn0(B′))KE ′,Asgn0(B′) = {w|a⟨z⟩.w ∈ JB▷ sKE}

Where B′,E ′ = Dbind(a⟨z⟩;B;E)

As an example, consider the one from section 5, where p1 = λx.x≥ 10 and p2 = λx.x == y:

b⟨@y⟩▷ (b⟨p1⟩.b⟨p2⟩)

Starting with an empty environment and an event b⟨12⟩, Dbind(b⟨12⟩;b⟨@y⟩; .) = (.;(y← 12)). Taking the pattern derivative
using the new environment:

Dre(b⟨12⟩;b⟨λx.x≥ 10⟩.b⟨p1⟩;y← 12) = b⟨p2⟩

The semantics of this remaining pattern when y← 12 contains just b⟨12⟩, which is correct according to the theorem: the only
string starting with b⟨12⟩ in Jb⟨p1⟩.b⟨p2⟩Ky←12 is b⟨12⟩b⟨12⟩.

13.3 Example patterns
Below is a full list of the example patterns that were used for evaluation. They range from simple checks to more complicated
patterns about high-level protocols.

A1 Cuckoo Firewall [25]
(ip_pkt(@int saved_src=src, @int saved_dst=dst)

.(((cuckoo_insert(fst_src==saved_src) && cuckoo_insert(fst_dst==saved_dst))∗
.(cuckoo_insert(!(fst_src==saved_src)) || cuckoo_insert(!(fst_dst==saved_dst)))

)||((cuckoo_insert(fst_src==saved_src) && cuckoo_insert(fst_dst==saved_dst))
.(cuckoo_insert(fst_src==saved_src) && cuckoo_insert(fst_dst==saved_dst))
.(cuckoo_insert(fst_src==saved_src) && cuckoo_insert(fst_dst==saved_dst))
.(cuckoo_insert(fst_src==saved_src) && cuckoo_insert(fst_dst==saved_dst)))))

This checks whether the cuckoo firewall insertion algorithm is working properly.

B1 Stateful FW Timeout [25]
ip_pkt (@int start_time = Sys.time(); ip#tos == TOS_TRUSTED)

.(ip_pkt(ip#tos == TOS_TRUSTED)
|| ((ip_pkt(!(ip#tos == TOS_TRUSTED))

&& ip_pkt(Sys.time() − start_time < 10000))))∗
.((ip_pkt(!(ip#tos == TOS_TRUSTED))

&& ip_pkt(!(Sys.time() − start_time < 10000))))

This is a general specification of firewall correctness. It checks that packets from inside (TOS_TRUSTED) are allowed out, and
that return packets are not allowed back in past the timeout threshold.

C1 SipHash [29]
iptcp_to_server_syn
.siphash_intermediate
.siphash_intermediate
.siphash_intermediate
.siphash_intermediate



.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.siphash_intermediate

.iptcp_craft_out_dummy

This checks whether or not the siphash implementation is completing the proper number of hashing rounds.

D1 Chain replication 1 [31]

write(@int saved_seq=seq)
.write(seq<saved_seq)

This checks whether there are write events with sequence numbers out of order.

D2 Chain replication 2 [31]

write()
.write()
.ack()

This checks whether there are two write events to the same index before the first one is ACKed.

E1 DHCP Anomaly (section 3)

IP_Pkt∗
.DHCP_Ack(@int assigned = cip)
.(IP_Pkt(sip == assigned))∗
.IP_Pkt(sip != assigned)

This is the example from the paper.

E2 Fingerprint ( [24])

S1.S5.S1.S4.S7.S8.S1.S2

This represents one example video fingerprint. S1 - S8 denote different packet sizes. The fingerprint is 8 packets in sequence,
with the denoted sizes.

E3 Port Knocking (len=4) [10]

ip_in(dport==1234)
.ip_in(dport==5678)
.ip_in(dport==9012)
.ip_in(dport==3456)

This pattern represents an example port knocking sequence. dport is the destination port of a packet.

E4 DNS TTL Change Count [21]

DNS_packet_fwd(@int<<32>> fst_ttl = ttl)
.(DNS_packet_fwd(fst_ttl != ttl))

This checks whether the ttl of packets changes when using DNS by recording the first in a flow and checking the second.
The intent is to count the number of TTL changes.

E5 DNS Tunneling [21]



DNS_resp(@int d1=dip, @int d2=dip2)
.( (ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

.(ip_packet(dip!=d1) && ip_packet(dip!=d2))

This checks that, upon receiving a DNS response, the receiver goes on to contact the requested IP. Tunneling is suspected if
the receiver of a DNS response never uses the information.

E6 SwiSh Local View [32]
(S1||S2||S3)∗
.( (S2.S1)||

(S3.S2)||
(S1.S3))

This denotes any of the switches in a chain of 3 SwiShMem switches forwarding an update to the wrong neighbor.

E7 NetChain [15]
NetChainUpdate(@int v=version)
.NetChainUpdate(version < v)

This shows an algorithm running improperly, as detected by having an earlier version after a newer one.

E8 Paxos Recovery [28]
Paxos(@int a=l1,@int c=l2,@int e=l3; ty==RECOVER).
(

(Paxos(l1<a) && Paxos(ty==RECOVER)) ||
(Paxos(l2<c) && Paxos(ty==RECOVER)) ||
(Paxos(l3<e) && Paxos(ty==RECOVER))

).
Paxos(ty==RECOVERED)

This shows the sequence of exchanges of a Paxos recovery.

E9 ATP sequence [18]
ATP_add(@int x = cnt)
.ATP_add(cnt==x+1)
.ATP_add(cnt==x+2)
.ATP_add(cnt==x+3)

This shows a sequence of 4 consecutive add events with an increasing count variable.

E10 ATP JobID [18]
ATP_add(@int saved_jobid=jobid)
.(ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)
.ATP_add(jobid==saved_jobid)



.ATP_add(jobid==saved_jobid)

.ATP_add(jobid==saved_jobid)

.ATP_add(jobid==saved_jobid)

.ATP_add(jobid==saved_jobid)

.ATP_add(jobid==saved_jobid)

.ATP_release(jobid==saved_jobid))

This shows a sequence of 16 consecutive add events with the same job ID.

Unimplementable patterns Below are a few patterns that are rejected:

R1 DHCP Example Reject

IP_Pkt∗
.DHCP_Ack(@int assigned = cip)
.(IP_Pkt(sip == assigned))∗
.IP_Pkt(@int unassigned = sip; sip != assigned)
.IP_Pkt(sip == unassigned)
.IP_Pkt(sip == unassigned)

This pattern is rejected because the binding of the variable unassigned will not be on the first occurrence of the event
IP_Pkt. A similar limitation applies to any compound, related patterns. It is meant to represent a device that uses the same
wrong IP three times.

R2 ATP Sequence Version 2

(ATP_add(@int x = cnt; cnt == x+1))∗

This pattern has two problems. First, the variable x is used before it is defined (the predicate cnt == x+1 does not have the
variable x in scope). Second, bindings can never occur under a closure. It is meant to loosely specify a similar pattern to E9,
but of any length.

R3 Chain Replication Reject

write(@int saved_seq=seq)
write(@int saved_seq2=seq; seq > saved_seq)
.write(seq<saved_seq2)

This pattern is rejected for a reason similar to R1: the binding of variable saved_seq2 will not occur on the first write event
(even though the first write event does bind a variable). This does not apply when binding two variables with the same
event (see E5).

13.4 Extensions
In this section, we go over various extensions to FLM to improve its expressiveness and usability.

13.4.1 Maintenance events

Some patterns, such as those that wait for a timeout, can be difficult to express as a sequence. Consider a sequence to check that
received requests are replied to with decisions in a timely manner:

request(@t1 = Sys.time())
.request∗
.decision(Sys.time() − t1 > Threshold)

Here, we are ignoring the indexing and response code to focus on the pattern. This pattern seems reasonable to detect late
decisions, but what if a decision never comes? Intuitively, that should be a violation as well, but if there is never another packet
for this flow, one will never be reported. The problem is that examples such as timeouts are examining a liveness property. Our
solution to this is to add maintenance events, which do not represent incoming network events. Instead, they are guaranteed to
visit every index of an array of FLM patterns eventually. To fix the above example, we can write the following, using maintenance
for the new events.



maintenance∗
.request(@t1 = Sys.time())
.(maintenance(Sys.time() − t1 <= Threshold) + request)∗
.(decision(Sys.time() − t1 > Threshold) +
(maintenance(Sys.time() − t1 > Threshold)))

The placement of maintenance events will not interfere with detecting late decisions, but it will now also detect decisions that
never arrive because the maintenance event will eventually come along and match the last disjunction. These can be implemented
easily with a packet that repeatedly circulates through the array one index at a time, perhaps with a delay to reduce overhead.

13.4.2 Longer patterns

Some sequence monitors are too complicated to be expressed using the original syntax, causing the compiler to reject them. This
could be for one of two reasons:

1. The pattern is unable to be rewritten into prefix form, usually because the programmer desires to bind variables using the
same event type in two places. This would violate the rewrite rule for concatenation.

2. The pattern is able to be rewritten successfully, but an implementation of the transition function for the translated DFA
cannot be found. The synthesis algorithm might either time out, or return "unsat."

The solution to both of these is to pay more stages for the ability to implement a pattern. To do so, we introduce unambiguous
concatenation, which allows a pattern to be split into two parts that can be implemented sequentially.

Unambiguous concatenation We say that two FLM patterns in prefix form are unambiguously concatenated with a semantic
condition that allows us to split it across stages. First, we define the prefixes of a pattern, which are all the prefixes of any accepted
word:

Definition 10. The prefixes of an FLM pattern r, denoted prefix(r), is the set:

{u| ∃E,v such that u.v ∈ JrKE}

Next, we define the continuations of a pattern, which are all the words which can be appended to an accepted word to get
another accepted word:

Definition 11. The Continuations of an FLM pattern r, denoted continuation(r) is the set:

{v| ∃E,u,w such that u ∈ JrKE and u.v.w ∈ JrKE}

As a simple example with the pattern a.b∗, the prefixes and continutations can be defined with the languages of the following
patterns:

pre f ix(a.b∗) = ε+a.b∗

continuation(a.b∗) = b∗

Finally, we say that two patterns r1 and r2 are unambiguously concatenated, denoted r1!!r2, if the prefixes of r1 and the
continuations of r2 only intresect with ε, or more formally:

r1!!r2 ⇐⇒ (pre f ix(r1)∩ continuation(r2))\{ε}= /0

Using the above example, a.b∗!!a.b∗ is a valid unambiguous concatenation. ε is excluded because it is always both a prefix and
continuation of any non-empty language.

Implementation The unambiguous concatenation condition lets us compile a single pattern into multiple stages, which will
either allow a programmer to reuse events for variable bindings or compile a larger pattern to switch actions. In principle, there
could be many patterns connected with !!. We assume that this is at the top level, and call each concatenated pattern a section.
We compile a series of sections in three steps, after compiling each section individually:

1. For each DFA except the last section, add one new state, called "done." Add a self-loop for every character to "done." For
each transition from any accepting state to the rejecting state, replace it with a transition to "done."



2. For each section’s code except the first, add a clause to only run it if the previous section’s state was "done."

3. In each section’s DFA, if any later sections are not nullable, change all of its accepting states to non-accepting ones. The
transition statement returns whether or not the last section run ended in an accepting state.

Step one allows us to track when each section has finished matching characters. This is the step where the unambiguous
concatenation condition is important. The transitions from accepting states to non-reject states correspond to the continuations of
a section, while the transitions from the initial state correspond to its prefixes. The condition guarantees that the prefixes of a later
section do not coincide with the continuations of an earlier one, so we never miss a transition.

Step two ensures that we are running the patterns in sequence, not in parallel. Note that if there are new variables to be bound,
they are only bound after previous sections are "done."

Step three ensures that the series of sections only accepts when the current string matches the unambiguously concatenated
pattern. We leave accepting states if all later states are nullable because otherwise, we would miss some strings that only match
the earlier sections.

13.5 Proofs of Theorems
Theorem 4. "Derivatives commute":
∀a,z,s,E,P where s is binding free, both s and each predicate in P is closed under E, and preds(s)⊆ P:

Dclas(Tl(a⟨z⟩,E,P);Tre(s,P)) = Tre(Dre(a⟨z⟩;s;E),P)

Proof. By induction on the structure of s

Theorem 5. For all a,z,s,E where s is binding-free and s is closed under E:

JDre(a⟨z⟩;s;E)KE = {w′|a⟨z⟩.w′ ∈ JsKE}

Proof. Proof by induction on the structure of s. Base cases:

1. /0:
JDre(a⟨z⟩; /0;E)KE

= J /0KE = /0 = {w|a⟨z⟩.w ∈ /0}

2. ε:
JDre(a⟨z⟩;ε;E)KE

= J /0KE = /0 = {w|a⟨z⟩.w ∈ {ε}}

3. a⟨p⟩ : a⟨z⟩ ∈ Ja⟨p⟩KE iff Jp(z)KE . So, {w|a⟨z⟩.w ∈ [a⟨z⟩]E}= {ε} if Jp(z)KE and /0 else, which is the derivative.

Induction cases:

1. r + s:

JDre(a⟨z⟩;r+ s;E)KE

= JDre(a⟨z⟩;r;E)KE ∪ JDre(a⟨z⟩;s;E)KE

By induction:
= {w|a⟨z⟩.w ∈ JrKE} ∪ {w|a⟨z⟩.w ∈ JsKE}

= {w|a⟨z⟩.w ∈ JrKE ∪ JsKE}

= {w|a⟨z⟩.w ∈ Jr+ sKE}

2. r & s: Very similar to above, substituting & and ∩ for + and ∪.

3. s∗:
The following together show that JDre(a⟨z⟩;s∗;E)KE = {w|a⟨z⟩.w ∈ Js∗KE}



(a) {w|a⟨z⟩.w ∈ Js∗KE} ⊆ JDre(a⟨z⟩;s∗;E)KE :
If a⟨z⟩.w ∈ Js∗KE , then a⟨z⟩.w ∈ JsiKE for some smallest natural i. i cannot be 0. Since a⟨z⟩.w ∈ JsiKE = Js.si−1KE ,
a⟨z⟩.w = w1.w2 s.t. w1 ∈ JsKE ∧w2 ∈ Jsi−1KE . s1 cannot be ε, otherwise i could be smaller. So, w1 = a⟨z⟩.w′1 and
w = w′1.w2.
By induction,

JDre(a⟨z⟩;s;E)KE = {w|a⟨z⟩.w ∈ JsKE}
So, w′1 ∈ JDre(a⟨z⟩;s;E)KE . w2 ∈ Js∗KE , so w ∈ JDre(a⟨z⟩;s;E).s∗KE = JDre(a⟨z⟩;s∗;E)KE

(b) JDre(a⟨z⟩;s∗;E)KE ⊆ {w|a⟨z⟩.w ∈ Js∗KE}:
If w ∈ JDre(a⟨z⟩;s∗;E)KE , then: w = s1.s2, where:

s1 ∈ JDre(a⟨z⟩;s;E)KE and s2 ∈ Js∗KE

By induction, a⟨z⟩.s1 ∈ JsKE . So, s1.s2 ∈ Js∗KE

4. r.s:
The following together show that JDre(a⟨z⟩;r.s;E)KE = {w|a⟨z⟩.w ∈ Jr.sKE}

(a) {w|a⟨z⟩.w ∈ Jr.sKE} ⊆ JDre(a⟨z⟩;r.s;E)KE :
If a word a⟨z⟩.w ∈ Jr.sKE , then by definition a⟨z⟩.w = w1.w2 s.t. w1 ∈ JrKE ∧ w2 ∈ JsKE . By definition,
JDre(a⟨z⟩;r.s;E)KE = JDre(a⟨z⟩;r;E).sKE ∪ Jv(r).Dre(a⟨z⟩;s;E)KE . There are two cases

i. w1 = a⟨z⟩.w′1. Then by induction, w′1 ∈ JDre(a⟨z⟩;r;E)KE , so w′1.w2 ∈ JDre(a⟨z⟩;r;E).sKE

ii. w1 = ε, and w2 = a⟨z⟩.w′2. Since w1 = ε ∈ JrKE , v(r) = ε. By induction, w′2 ∈ JDre(a⟨z⟩;s;E)KE , so w ∈
Jv(r).Dre(a⟨z⟩;s;E)KE

This includes all possibilities for any word in {w|a⟨z⟩.w ∈ Jr.sKE}.

(b) JDre(a⟨z⟩;r.s;E)KE ⊆ {w|a⟨z⟩.w ∈ Jr.sKE}:
If w ∈ JDre(a⟨z⟩;r.s;E)KDbind(a⟨z⟩;r.s;E), then either:

i. w ∈ JDre(a⟨z⟩;r;E).sKE . By induction, w = w′1.w2 such that a⟨z⟩.w′1 ∈ JrKE and w2 ∈ JsKE . So, a⟨z⟩.w ∈ Jr.sKE .
ii. w ∈ Jv(r).Dre(a⟨z⟩;s;E)KE .Then either v(r) = /0 and there are no such w, or v(r) = ε and by induction, a⟨z⟩.w ∈

JsKE . Since r is nullable, JsKE ⊆ Jr.sKE .
This includes all possibilities for any word in JDre(a⟨z⟩;r.s;E)KE

Lemma 1. For any B▷b1⟨@y1⟩▷b2⟨@y2⟩▷B′ ▷ s in prefix form and any E it is closed under:

JB▷b1⟨@y1⟩▷b2⟨@y2⟩▷B′ ▷ sKE = JB▷b2⟨@y2⟩▷b1⟨@y1⟩▷B′ ▷ sKE

Proof. By induction on the length of B preceding the two to be exchanged. In the base case, expand the definitions twice. In the
induction case, just exchange the smaller list.

Lemma 2. If b⟨@y⟩▷B▷ s is implementable, then so is B▷ s.

Proof. By expanding the semantics to get some value for y, and then using impl property on the compatible environments with
B.

Lemma 3. If B ▷ s is implementable, then for any a ̸∈ B,z, E where B ▷ s is closed, and compatible environment G,
B▷Dre(a⟨z⟩;s;(E,G)) is implementable as well.

Proof. By induction on the structure of s.

Theorem 6. Restatement of Theorem 3: For all a,z,B,s,E where B▷ s is in prefix form (B is a non-redundant list of bindings
and s is binding-free) and implementable:

JB′ ▷Dre(a⟨z⟩;s;E ′,Asgn0(B′))KE ′,Asgn0(B′) = {w′|a⟨z⟩.w′ ∈ JB▷ sKE}

where B′,E ′ = Dbind(a⟨z⟩,B,E)



Proof. By induction on the number of bindings in B. When B has no bindings, just use 1. When B has a binding with event b,
proceed by cases on whether a ∈ B.

1. If a ∈ B, then by 1, we can assume without loss of generality that it is the first binding in B (i.e. B = a⟨@y⟩▷B′ ▷ s. Also,
since B is not redundant, Dbind(a⟨z⟩;B′;E,y← z) = (B′,E,y← z). Then Dbind(a⟨z⟩;B;E) = (B′,(E,y← z)). Next, we can
expand the definition of JB▷ sKE :

Ja⟨@y⟩▷B′ ▷ sKE = {w1.a⟨z′⟩.w2 ∈ JB′ ▷ sKE,y←z′ and a ̸∈ w1}︸ ︷︷ ︸
S1

∪{w|∀z′.w ∈ JB′ ▷ sKE,y←z′ and a ̸∈ w}︸ ︷︷ ︸
S2

There are clearly no a⟨z⟩.w ∈ S2, since they cannot contain the event a. Furthermore, if any word a⟨z⟩.w = w1.a⟨z⟩.w2 ∈ S1,
w1 must be ε. So:

{w′|a⟨z⟩.w′ ∈ Ja⟨@y⟩▷B′ ▷ sKE}
= {w′|a⟨z⟩.w′ ∈ S1}

= {w′|a⟨z⟩.w′ ∈ JB′ ▷ sKE,y←z}

We now want to show that this set is equal to JB′ ▷Dre(a⟨z⟩;s;E,y← z,Asgn0(B′))KE,y←z,Asgn0(B′), which is true directly by
the induction hypothesis. :

JB′ ▷Dre(a⟨z⟩;s;E,y← z,Asgn0(B′))KE,y←z,Asgn0(B′)
= {w′|a⟨z⟩.w′ ∈ JB′ ▷ sKE,y←z} By induction

2. If a ̸∈ B, then B = b⟨@y⟩▷B′ ▷ s. Dbind(a⟨z⟩;B;E) = (B,E), since a doesn’t appear in the bindings. So, we can expand the
definition of JB▷ sKE ::

Jb⟨@y⟩▷B′ ▷ sKE = {w1.b⟨z′⟩.w2 ∈ JB′ ▷ sKE,y←z′ and b ̸∈ w1}︸ ︷︷ ︸
S1

∪{w|∀z′.w ∈ JB′ ▷ sKE,y←z′ and b ̸∈ w}︸ ︷︷ ︸
S2

Next, we can expand the definition of Jb⟨@y⟩▷B′ ▷Dre(a⟨z⟩;s;E,Asgn0(b⟨@y⟩▷B′))KE,Asgn0(b⟨@y⟩▷B′):

Jb⟨@y⟩▷B′ ▷Dre(a⟨z⟩;s;E,Asgn0(b⟨@y⟩▷B′))KE,Asgn0(b⟨@y⟩▷B′)
= Jb⟨@y⟩▷B′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′))KE,y←0,Asgn0(B′)

= {w1.b⟨z′⟩.w2 ∈ JB′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′))KE,y←z′,Asgn0(B′) and b ̸∈ w1}︸ ︷︷ ︸
S3

∪{w|∀z′.w ∈ JB′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′))KE,y←z′,Asgn0(B′)}︸ ︷︷ ︸
S4

Because b⟨@y⟩▷B′ ▷ s is implementable, so is B′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′)) by using 2 and 3. Using this, we have
the following in both S3 and S4:

JB′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′))KE,y←z′,Asgn0(B′)

= JB′ ▷Dre(a⟨z⟩;s;E,y← z′,Asgn0(B′))KE,y←z′,Asgn0(B′)

This lets us use the induction hypothesis on S3 and S4, since B′ ▷Dre(a⟨z⟩;s;E,y← 0,Asgn0(B′)) is implementable by 2
and 3:

JB′ ▷Dre(a⟨z⟩;s;E,y← z′,Asgn0(B′))KE,y←z′,Asgn0(B′) = {w|a⟨z⟩.w ∈ JB′ ▷ sKE,y←z′}
Plugging this into the definitions above gives the following:

Jb⟨@y⟩▷B′ ▷Dre(a⟨z⟩;s;E,Asgn0(b⟨@y⟩▷B′))KE,Asgn0(b⟨@y⟩▷B′)
= {w′ = w1.b⟨z⟩.w2|a⟨z⟩.w′ ∈ JB′ ▷ sKE,y←z′ and b ̸∈ w1}︸ ︷︷ ︸

S3’
∪{w′|∀z′.a⟨z⟩.w′ ∈ JB′ ▷ sKE,y←z′ and b ̸∈ w}︸ ︷︷ ︸

S4’

This concludes the proof, since these two sets are the same as S1 and S2, except for the requirement that the words start
with a⟨z⟩. Finally, it is clear that b is not in a word a⟨z⟩.w if b is not in w.



Lemma 4. For all a, z, E, and B:
Dbind(a⟨z⟩;B;E,Asgn0(B)) = B′,(E ′,Asgn0(B′)

Where B′,E ′ = Dbind(a⟨z⟩;B;E)

Proof. Observe that the initial values in E do not matter for Dbind . If a ∈ B, then afterwards it is not in B, and each variable that
was paired with a now has a value in E ′. These values would have overwritten the 0 added from Asgn0(B). The values of all
other variables do not change. If a ̸∈ B, then neither B nor E change.

Lemma 5. For all a, z, E, B, s where B▷ s is closed under E:

JB▷ sKE = JB▷ sKE,Asgn0(B)

Proof. By induction on the length of B.
Base case: When B is empty, Asgn0(B) adds no variables, so they are the same.
Induction step: B = b⟨@y⟩▷B′:

JB▷ sKE,Asgn0(B) = {w1.b⟨z⟩.w2 ∈ JB′ ▷ sKE,Asgn0(B),y←z|b ̸∈ w1}∪{w|b ̸∈ w and ∀z.w ∈ JB′ ▷ sKE,Asgn0(B),y←z}
= {w1.b⟨z⟩.w2 ∈ JB′ ▷ sKE,y←z,Asgn0(B′)|b ̸∈ w1}∪{w|b ̸∈ w and ∀z.w ∈ JB′ ▷ sKE,y←z,Asgn0(B′)}

By induction: = {w1.b⟨z⟩.w2 ∈ JB′ ▷ sKE,y←z|b ̸∈ w1}∪{w|b ̸∈ w and ∀z.w ∈ JB′ ▷ sKE,y←z}
= JB▷ sKE

Theorem 7. Restatement of Theorem 2: For any word w, bindings B, environment E, and predicates P, if an FLM pattern B▷ s is
in prefix form, B▷ s is closed under E, and B▷ s is implementable, then: Tw(w,B,(E,Asgn0(B)),P) ∈ L(Tre(s,P)) if and only if
w ∈ JB▷ sKE .

Proof. By induction on the length of w.

For the base case, Tre does not change the length of accepted words. So, ε ∈ Tre(s,P) ⇐⇒ ε ∈ JB▷ sKE (ε is the only word of
length 0).

For the induction step: w = a⟨z⟩.w′; s′ = Dre(a⟨z⟩;s;E,Asgn0(B)); and B′;E ′ = Dre(a⟨z⟩;B;E).
Starting with:

Tw(a⟨z⟩.w′,B,(E,Asgn0(B)),P) ∈ L(Tre(s,P))

By the definition of Tw and applying 4, This is equivalent to:

Tl(a⟨z⟩,(E ′,Asgn0(B′)),P).Tw(w′,B′,(E ′,Asgn0(B′),P) ∈ L(Tre(s,P))

Where B′,(E ′,Asgn0(B′) = Dbind(a⟨z⟩,B,(E,Asgn0(B))). By the definition of the classic derivative, this is equivalent to:

Tw(w′,B′,(E ′,Asgn0(B′),P) ∈ L(Dclas(Tl(a⟨z⟩,(E ′,Asgn0(B′),P);Tre(s,P)))

By 4, this is equivalent to:
w′ ∈ JB′ ▷Dre(a⟨z⟩,s,(E ′,Asgn0(B′))K(E ′,Asgn0(B′)

By 6, this is true if and only if:
a⟨z⟩.w′ ∈ JB▷ sKE,Asgn0(B)

Finally, we can use 5 to get the result:
w ∈ JB▷ sKE



Lemma 6. If r rw−→ r′ and r is implementable, then for all E such that r and r′ are closed under E, JrKE = Jr′KE .

Proof. By cases on which rewrite rule is used.

1. r = b⟨@y; p⟩.s rw−→ b⟨@y⟩▷b⟨p⟩.s

Jb⟨@y⟩▷b⟨p⟩.sKE

= {w1.b⟨z⟩.w2 ∈ Jb⟨p⟩.sKE,y←z|b ̸∈ w1}∪{w|∀z.w ∈ Jb⟨p⟩.sKE,y←z∧b ̸∈ w}

The right-hand set is empty, since any word in it must start with a b event.Similarly, w1 must be ε for any word in the
left-hand set.

= {b⟨z⟩.w2 ∈ Jb⟨p⟩.sKE,y←z}

=
⋃
z∈Z

({b⟨z⟩|Jp(z)KE}◦ JrKE,y←z)

= Jb⟨@y; p⟩.sKE

2. r = B1 ▷ (s1.(b⟨@y⟩▷ s2)
rw−→ (B1 ▷b⟨@y⟩▷ s1.s2)

In this case, we know that b⟨@y⟩▷ s2 and B1 ▷ s1 are implementable, that b ̸∈ B1 ▷ s1, and that y ̸∈ B1. We can now show the
two are equivalent by induction on the length of B1. In the base case, we use the fact that y is out of scope in s1:

Js1.(b⟨@y⟩▷ s2)KE

= {w1.w2|w1 ∈ Js1KE ∧w2 ∈ J(b⟨@y⟩▷ s2)KE}

= {w1.w2|(∀z.w1 ∈ Js1KE,y←z)∧w2 ∈ J(b⟨@y⟩▷ s2)KE}

= {w1.w2|(∀z.w1 ∈ Js1KE,y←z)∧ (w2 ∈ {w′1.b⟨z⟩.w′2 ∈ Js2KE,y←z|b ̸∈ w′1}∪{w|∀z.w ∈ Js2KE,y←z∧b ̸∈ w})}

Because we are quantifying over z for w1, it is clear that any w1.w2 in this set must also be in Jb⟨@y⟩▷ s1.s2KE , depending
on which set w′2 is in:

Jb⟨@y⟩▷ s1.s2KE

= {w′′1 .b⟨z⟩.w′′2 ∈ Js1.s2KE,y←z|b ̸∈ w′′1}∪{w′|∀z.w′ ∈ Js1.s2KE,y←z∧b ̸∈ w′}

If w′2 is in the right-hand set, then w′′1 = w1.w′1 and w′′2 = w′2. Otherwise, w′ = w1.w. The same expansions show membership
the other way; if a word w′′1 .b⟨z⟩.w′′2 ∈ Js1.s2KE,y←z, then a prefix of w′′1 ∈ Js1KE,y←z = Js1KE , and the rest is in the right-hand
set above. Otherwise, a prefix of w′ is in s1 and the rest is in the left-hand set above.

The induction case follows directly from expanding the definition:

Jb1⟨@y1⟩▷B′1 ▷ (s1.(b⟨@y⟩▷ s2)KE

= {w1.b⟨z⟩.w2 ∈ JB′1 ▷ (s1.(b⟨@y⟩▷ s2)KE,y1←z|b ̸∈ w1}∪{w|∀z.w ∈ JB′1 ▷ (s1.(b⟨@y⟩▷ s2)KE,y1←z∧b ̸∈ w}

Using induction:

= {w1.b⟨z⟩.w2 ∈ JB′1 ▷b⟨@y⟩▷ (s1.s2)KE,y1←z|b ̸∈ w1}∪{w|∀z.w ∈ JB′1 ▷b⟨@y⟩▷ (s1.s2)KE,y1←z∧b ̸∈ w}

3.
(b⟨@y1⟩▷ s1)+(b⟨@y2⟩▷ s2)

rw−→ b⟨y1⟩▷ (s1 +[y1/y2]s2)

Here, we assume both b⟨@y1⟩▷ s1 and b⟨@y2⟩▷ s2 are implementable. The proof follows directly from expanding the two
▷ expressions, and substituting the variables in s2.

Jb⟨@y1⟩▷ (s1 +[y1/y2]s2)KE

= {w1.b⟨z⟩.w2 ∈ Js1 +[y1/y2]s2KE,y1←z|b ̸∈ w1}∪{w|∀z.w ∈ Js1 +[y1/y2]s2KE,y1←z∧b ̸∈ w}

= {w1.b⟨z⟩.w2 ∈ Js1KE,y1←z∪ J[y1/y2]s2KE,y1←z|b ̸∈ w1}∪{w|∀z.w ∈ Js1KE,y1←z∪ J[y1/y2]s2KE,y1←z∧b ̸∈ w}

= {w1.b⟨z⟩.w2 ∈ Js1KE,y1←z∪ Js2KE,y2←z|b ̸∈ w1}∪{w|∀z.w ∈ Js1KE,y1←z∪ Js2KE,y2←z∧b ̸∈ w}

= J(b⟨@y1⟩▷ s1)+(b⟨@y2⟩▷ s2)KE



4.
(b⟨@y1⟩▷ s1)+(c⟨@y2⟩▷ s2)

rw−→ b⟨@y1⟩▷ c⟨@y2⟩▷ (s1 + s2)

We assume that b⟨@y1⟩▷ s1 and c⟨@y2⟩▷ s2 are implementable. The proof follows directly from expanding the definitions
of the two ▷ expressions.

J(b⟨@y1⟩▷ s1)+(c⟨@y2⟩▷ s2)KE

= Jb⟨@y1⟩▷ s1KE ∪ Jc⟨@y2⟩▷ s2KE

= S1 : {w|w = w1.b⟨z1⟩.w2 ∈ Js1KE,y1←z1 ∧b ̸∈ w1}∪S2 : {w|∀z.w ∈ Js1KE,y1←z∧b ̸∈ w}

∪S3 : {w|w = w1.c⟨z2⟩.w2 ∈ Js2KE,y2←z2 ∧ c ̸∈ w1}∪S4 : {w|∀z.w ∈ Js2KE,y2←z∧ c ̸∈ w}

Expanding the other definition:
Jb⟨@y1⟩▷ c⟨@y2⟩▷ (s1 + s2)KE

= {w|w = w1.b⟨z1⟩.w2 ∈ Jc⟨@y2⟩▷ (s1 + s2)KE,y1←z1 ∧b ̸∈ w1}∪{w|∀z.w ∈ Jc⟨@y2⟩▷ (s1 + s2)KE,y1←z1 ∧b ̸∈ w}

After expanding this to another 4 sets, it is clear that J(b⟨@y1⟩▷ s1)+(c⟨@y2⟩▷ s2)KE ⊆ Jb⟨@y1⟩▷c⟨@y2⟩▷ (s1 + s2)KE by
cases on which set (S1,S2,S3,S4) a word is in, and similarly in the reverse direction.

5.
(b⟨@y⟩▷ s1)+ s2

rw−→ b⟨@y⟩▷ (s1 + s2)

This proof is very similar to the above with one fewer expansion, because the binding-free s2 is always implementable.

The rules (equivalent to 3,4, and 5) for & have similar proof structure, but are simplified by using intersection rather than
union.

Lemma 7. If r rw−→ r′ and r is implementable, then so is r′.

Proof. By cases on which rewrite rule is used.

1. r = b⟨@y; p⟩.s rw−→ b⟨@y⟩▷b⟨p⟩.s
We assume that s is binding free, so that b⟨@y⟩▷b⟨p⟩.s is in prefix form. Now, we show that it is implementable, for any
a ̸= b, the derivative of s is the same no matter the environment, since the following does not depend on z1 at all:

Dre(a⟨z⟩;b⟨p⟩.s;E,y← z1)

= Dre(a⟨z⟩;b⟨p⟩;E,y← z1).s+ v(b⟨p⟩.Dre(a⟨z⟩;s;E,y← z1)

= /0.s+ /0.Dre(a⟨z⟩;s;E,y← z1)

= /0

2. r = (B1 ▷ s1).(b⟨@y⟩▷ s2)
rw−→ (B1 ▷b⟨@y⟩▷ s1.s)

In this case, we know that b⟨@y⟩▷ s2 and B1 ▷ s1 are implementable, that b ̸∈ B1 ▷ s1, and that y ̸∈ B1. Now, we can expand
the expression, for some a⟨z⟩ ̸∈ B1 ▷b and compatible environments G1,G2 to B1 ▷b. We will write these as G′1,y← z1 and
G′2,y← z2, separating out the compatible environments to B1 and B2, and expand definitions:

JDre(a⟨z⟩;s1.s2;(E,G1))KE,G2

= JDre(a⟨z⟩;s1;(E,G1)).s2 + v(s1).Dre(a⟨z⟩;s2;(E,G1))KE,G2

= JDre(a⟨z⟩;s1;(E,G1)).s2KE,G2 ∪ Jv(s1).Dre(a⟨z⟩;s2;(E,G1))KE,G2

= JDre(a⟨z⟩;s1;((E,y← z1),G′1)).s2K(E,y←z2),G′2
∪ Jv(s1).Dre(a⟨z⟩;s2;((E,G′1),y← z1))K(E,G′2),y←z2

On the left, because y is not in scope in s1, its value does not change the semantics of its derivative, so we can replace z1
with z2. Similarly, on the right we can replace G′1 with G′2 because those variables are out of scope in s2:

= JDre(a⟨z⟩;s1;((E,y← z2),G′1)).s2K(E,y←z2),G′2
∪ Jv(s1).Dre(a⟨z⟩;s2;((E,G′2),y← z1))K(E,G′2),y←z2



= JDre(a⟨z⟩;s1;((E,y← z2),G′1))K(E,y←z2),G′2
◦Js2K(E,y←z2),G′2

∪Jv(s1K(E,G′2),y←z2
◦JDre(a⟨z⟩;s2;((E,G′2),y← z1))K(E,G′2),y←z2

Finally, we can apply the inductive hypothesis for s1 and s2 and roll back up the definitions to get the desired result:

= JDre(a⟨z⟩;s1;((E,y← z2),G′2))K(E,y←z2),G′2
◦Js2K(E,y←z2),G′2

∪Jv(s1K(E,G′2),y←z2
◦JDre(a⟨z⟩;s2;((E,G′2),y← z2))K(E,G′2),y←z2

= JDre(a⟨z⟩;s1;((E,y← z2),G′1)).s2K(E,y←z2),G′2
∪ Jv(s2).Dre(a⟨z⟩;s2;((E,G′2),y← z2))K(E,G′2),y←z2

= JDre(a⟨z⟩;s1;((E,y← z2),G′1)).s2 + v(s2).Dre(a⟨z⟩;s2;((E,G′2),y← z2))K(E,G′2),y←z2

= JDre(a⟨z⟩;s1.s2;E,G2)KE,G2

3.
(b⟨@y1⟩▷ s1)+(b⟨@y2⟩▷ s2)

rw−→ b⟨y1⟩▷ (s1 +[y1/y2]s2)

Here, we assume both b⟨@y1⟩▷ s1 and b⟨@y2⟩▷ s2 are implementable. Then, we can expand definitions, writing G1as(y1←
z1) and G2 as (y1← z2):

JDre(a⟨z⟩;s1 +[y1/y2]s2;E,y1← z1)KE,y1←z2

= JDre(a⟨z⟩;s1;E,y1← z1)+Dre(a⟨z⟩; [y1/y2]s2;E,y1← z1)KE,y1←z2

= JDre(a⟨z⟩;s1;E,y1← z1)KE,y1←z2 ∪ JDre(a⟨z⟩; [y1/y2]s2;E,y1← z1)KE,y1←z2

On the left, we can apply the induction hypothesis directly. On the right, we undo the substitution and use it, then roll back
up the definition.

= JDre(a⟨z⟩;s1;E,y1← z1)KE,y1←z2 ∪ JDre(a⟨z⟩;s2;E,y2← z1)KE,y2←z2

= JDre(a⟨z⟩;s1;E,y1← z2)KE,y1←z2 ∪ JDre(a⟨z⟩;s2;E,y2← z2)KE,y2←z2

= JDre(a⟨z⟩;s1;E,y1← z2)KE,y1←z2 ∪ JDre(a⟨z⟩; [y1/y2]s2;E,y1← z2)KE,y1←z2

= JDre(a⟨z⟩;s1 + s2;E,G2)KG2

4.
(b⟨@y1⟩▷ s1)+(c⟨@y2⟩▷ s2)

rw−→ b⟨@y1⟩▷ c⟨@y2⟩▷ (s1 + s2)

We assume that b⟨@y1⟩▷ s1 and c⟨@y2⟩▷ s2 are implementable, and expand definitions, writing G1 as y1← z1,y2← z2 and
G2 as y1← z′1,y2← z′2:

JDre(a⟨z⟩;s1 + s2;E,y1← z1,y2← z2)KE,y1←z′1,y2←z′2

= JDre(a⟨z⟩;s1;E,y1← z1,y2← z2)+Dre(a⟨z⟩;s2;E,y1← z1,y2← z2)KE,y1←z′1,y2←z′2

= JDre(a⟨z⟩;s1;E,y1← z1,y2← z2)KE,y1←z′1,y2←z′2
∪ JDre(a⟨z⟩;s2;E,y1← z1,y2← z2)KE,y1←z′1,y2←z′2

y1 is out of scope in s2, and y2 is out of scope in s1. So, we can assign any value to them without changing the derivative:

= JDre(a⟨z⟩;s1;E,y1← z1,y2← z′2)KE,y1←z′1,y2←z′2
∪ JDre(a⟨z⟩;s2;E,y1← z′1,y2← z2)KE,y1←z′1,y2←z′2

Finally, we can apply the induction hypothesis for the other variables, using the implementability property. Then, we roll
back up the definitions.

= JDre(a⟨z⟩;s1;E,y1← z′1,y2← z′2)KE,y1←z′1,y2←z′2
∪ JDre(a⟨z⟩;s2;E,y1← z′1,y2← z′2)KE,y1←z′1,y2←z′2

= JDre(a⟨z⟩;s1 + s2;E,y1← z′1,y2← z′2)KE,y1←z′1,y2←z′2

5.
(b⟨@y⟩▷ s1)+ s2

rw−→ b⟨@y⟩▷ (s1 + s2)

This proof is very similar to the above, because the binding-free s2 is always implementable.

JDre(a⟨z⟩;s1 + s2;E,y← z1)KE,y←z2

= JDre(a⟨z⟩;s1;E,y← z1)KE,y←z2 ∪ JDre(a⟨z⟩;s2;E,y← z1)KE,y←z2



y is out of scope in s2, so we can replace its value with anything without changing the derivative.

= JDre(a⟨z⟩;s1;E,y← z1)KE,y←z2 ∪ JDre(a⟨z⟩;s2;E,y← z2)KE,y←z2

Now, we apply the induction hypothesis for s1, and get the require result:

= JDre(a⟨z⟩;s1;E,y← z2)KE,y←z2 ∪ JDre(a⟨z⟩;s2;E,y← z2)KE,y←z2

= JDre(a⟨z⟩;s1 + s2;E,y← z2)KE,y←z2

The & forms of rules 3, 4, and 5 above have very similar proofs, replacing + and ∪ with & and ∩.
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