
AppInsight: Mobile App Performance Monitoring in the Wild

Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan,
Ian Obermiller, Shahin Shayandeh

Microsoft Research

Abstract— The mobile-app marketplace is highly
competitive. To maintain and improve the quality of their
apps, developers need data about how their app is per-
forming in the wild. The asynchronous, multi-threaded
nature of mobile apps makes tracing difficult. The diffi-
culties are compounded by the resource limitations inher-
ent in the mobile platform. To address this challenge, we
develop AppInsight, a system that instruments mobile-
app binaries to automatically identify the critical path in
user transactions, across asynchronous-call boundaries.
AppInsight is lightweight, it does not require any input
from the developer, and it does not require any changes
to the OS. We used AppInsight to instrument 30 market-
place apps, and carried out a field trial with 30 users for
over 4 months. We report on the characteristics of the
critical paths that AppInsight found in this data. We also
give real-world examples of how AppInsight helped de-
velopers improve the quality of their app.

1 INTRODUCTION

There are over a million mobile apps in various app mar-
ketplaces. Users rely on these apps for a variety of tasks,
from posting mildly amusing comments on Facebook to
online banking.

To improve the quality of their apps, developers must
understand how the apps perform in the wild. Lab testing
is important, but is seldom sufficient. Mobile apps are
highly interactive, and a full range of user interactions
are difficult to simulate in a lab. Also, mobile apps expe-
rience a wide variety of environmental conditions in the
wild. Network connectivity (Wi-Fi or 3G), GPS-signal
quality, and phone hardware all vary widely. Some plat-
form APIs even change their behavior depending on the
battery level. These diverse conditions are difficult to re-
produce in a lab. Thus, collection of diagnostic and per-
formance trace data from the field is essential.

Today, there is little platform support for tracing app
performance in the field. Major mobile platforms, in-
cluding iOS, Android, and Windows Phone, report app-
crash logs to developers, but it is often difficult to identify
the causes of crashes from these logs [1], and this data
does not help diagnose performance problems. Analyt-
ics frameworks such as Flurry [8], and Preemptive [16]
are designed to collect usage analytics (e.g., user demo-
graphics), rather than performance data. Thus, the only
option left is for the developer to include custom trac-

ing code in the app. However, writing such code is no
easy task. Mobile apps are highly interactive. To keep
the UI responsive, developers must use an asynchronous
programming model with multiple threads to handle I/O
and processing. Even a simple user request triggers mul-
tiple asynchronous calls, with complex synchronization
between threads. Identifying performance bottlenecks
in such code requires correctly tracking causality across
asynchronous boundaries. This challenging task is made
even more difficult because tracing overhead must be
minimized to avoid impact on app performance, and also
to limit the consumption of scarce resources such as bat-
tery and network bandwidth.

In this paper, we describe a system called AppInsight
to help the app developers diagnose performance bottle-
necks and failures experienced by their apps in the wild.
AppInsight provides the developers with information on
the critical path through their code for every user trans-
action. This information points the developer to the opti-
mizations needed for improving user experience.

AppInsight instruments mobile apps mainly by inter-
posing on event handlers. The performance data col-
lected in the field is uploaded to a central server for of-
fline analysis. The design of AppInsight was guided by
three principles. (i) Low overhead: We carefully select
which code points to instrument to minimize overhead.
(ii) Zero-effort: We do not require app developers to
write additional code, or add code annotations. Instru-
mentation is done by automatically rewriting app bina-
ries. (iii) Immediately deployable: We do not require
changes to mobile OS or runtime.

We have implemented AppInsight for the Windows
Phone platform. To evaluate AppInsight, we instru-
mented 30 popular apps and recruited 30 users to use
these apps on their personal phones for over 4 months.
This deployment yielded trace data for 6,752 app ses-
sions, totaling over 33,000 minutes of usage time. Our
evaluation shows that AppInsight is lightweight – on av-
erage, it increases the run time by 0.021%, and the worst-
case overhead is less than 0.5%. Despite the low over-
head, the instrumentation is comprehensive enough to al-
low us to make several detailed observations about app
performance in the wild. For example, we can automati-
cally highlight the critical paths for the longest user trans-
actions. We can also group similar user transactions to-
gether and correlate variability in their performance with

1

void btnFetch_Click(
object obj, RoutedEventArgs e) {

var req = WebRequest.Create(url);
req.BeginGetResponse(reqCallback, null);

}
void reqCallback(IAsyncResult result) {

/* Process */
UIDispatcher.BeginInvoke(updateUI);

}
void updateUI() {

/* Update UI */
}

Figure 1: Example of asynchronous coding pattern

User Manipulation

UI Update

Web Request Callback

Web Request Call

Download Delay

UI Event
Handler Start

UI Event
Handler End

UI Dispatch

0

1

2

3

4

5

7

8

Processing 6

Background worker thread

UI Thread

Figure 2: Execution trace for the code in Figure 1.

variation in the environment. In § 8.2, we will discuss
how this feedback helped developers improve the quality
of their app.

This paper makes two main contributions. First, we
describe several innovative techniques that automatically
instrument mobile apps to monitor user transactions with
minimal overhead. These techniques are embodied in
the current implementation of AppInsight. Second, we
present results from a real-world study of 30 Windows
Phone apps that we instrumented using AppInsight.

2 MOBILE APP MONITORING

We now discuss the typical asynchronous program-
ming pattern used in mobile apps, and the challenge it
presents for monitoring performance and failures.

Mobile apps are UI-centric in nature. In modern UI
programming frameworks [6, 15], the UI is managed by
a single, dedicated thread. All UI updates, and all user in-
teractions with the UI take place on this thread. To main-
tain UI responsiveness, applications avoid blocking the
UI thread as much as possible, and perform most work
asynchronously. Some mobile-programming frameworks
like Silverlight [15], do not even provide synchronous
APIs for time-consuming operations like network I/O and
location queries. Even compute tasks are typically car-
ried out by spawning worker threads. Thus, user requests
are processed in a highly asynchronous manner.

This is illustrated in Figure 2, which shows the exe-
cution trace for a simple code snippet in Figure 1. In
the figure, horizontal line segments indicate time spent
in thread execution, while arrows between line segments
indicate causal relationships between threads.

7

User Manipulation

UI Update 0

UI Thread

Web callback thread 1

WebReq1 Callback 5

WebReq2 Callback

1 GPS Start

2

Start 2 Web Requests 3

GPS Fix Callback

Signal Complete 6

Signal Complete 8

Wait for 2 signals 4 9 Wakeup

UI Dispatch 10

11

Web callback thread 2

GPS Callback thread

Figure 3: Execution trace of a location-based app.

(0) The user starts the transaction by clicking a but-
ton; (1) the OS invokes the event handler (btn-
Fetch Click) in the context of the UI thread; (2) the
handler makes an asynchronous HTTP request, providing
reqCallback as the callback; (3) the handler quits,
freeing the UI thread; (4) time is spent downloading the
HTTP content; (5) when the HTTP request completes,
the OS calls reqCallback in a worker thread; (6) the
worker thread processes the fetched data; (7) when the
processing finishes, the worker thread invokes the UI Dis-
patcher, to queue a UI update; (8) the OS calls the dis-
patched function (updateUI) asynchronously on the
UI thread, which updates the UI.

Real apps, of course, are much more complex. For
example, (i) worker threads may in turn start their own
worker threads, (ii) some user interactions may start a
timer to perform periodic tasks through the lifetime of an
app, (iii) transactions may be triggered by sensors such
as accelerometers and, (iv) a user may interrupt a running
transaction or start another one in parallel.

For example, Figure 3 illustrates a pattern common to
location-based apps. The app displays information about
nearby restaurants and attractions to the user. A typical
user transaction goes as follows. Upon user manipula-
tion, the app asks the system to get a GPS fix, and sup-
plies a callback to invoke when the fix is obtained. The
system obtains the fix, and invokes the app-supplied call-
back in a worker thread at (2). The callback function
reads the GPS coordinates and makes two parallel web
requests to fetch some location-specific data. Then, the
thread waits (4), for two completion signals. The wait is
indicated via a dotted line. As the two web requests com-
plete, the OS invokes their callbacks at (5) and (7). The
first callback signals completion to the blocked thread at
(6), while the second one does it at (8). As a result of the
second signal, the blocked thread wakes up at (9), and
updates the UI via the dispatcher.

Given such complex behavior, it can be difficult for the
developers to ascertain where the bottlenecks in the code
are and what optimizations might improve user-perceived
responsiveness. In Figure 3, the bottleneck path involves
the second web request, which took longer to complete.

2

UI Thread

User Manipulation

0

Exception 8

2 Thread Start

btnSearch ()

searchAsync()

requestCallback()

parseXML()

4 Web Request

6 Thread Start

7

5

3

1

at parseURL()

Figure 4: Execution trace of an app crash.

Worse, these bottlenecks may be different for different
users, depending on their device, location, network con-
ditions, and usage patterns.

Failure analysis is also complicated by the asyn-
chronous nature of the app. Consider the example
in Figure 4. Suppose the app crashes in the method
parseURL() (8), which is called in a worker thread that
started at parseXML() (7). Since the UI thread function
that started the web request has exited, the OS has no in-
formation about the user context for this crash. Thus, in
the exception log offered by today’s popular mobile plat-
forms, the developer will only see the stack trace of the
crashed thread, from parseURL() to parseXML(). The
developer however, might want more information, such
as the user manipulation that triggered the crash, to speed
up debugging. This underscores the need for a system
that can track user transactions across thread boundaries.
This is one of the goals of AppInsight, as we discuss next.

3 GOALS

Our goal is to help developers understand the perfor-
mance bottlenecks and failures experienced by their apps
in the wild. We do this by providing them with criti-
cal paths for user transactions and exception paths when
apps fail during a transaction. We now define these terms.
User transaction: A user transaction begins with a user
manipulation of the UI, and ends with completion of all
synchronous and asynchronous tasks (threads) in the app
that were triggered by the manipulation. For example, in
Figure 2, the user transaction starts when the user ma-
nipulation occurs and ends when the updateUI method
completes. A user transaction need not always end with
a UI update. For example, a background task may con-
tinue processing past the UI update, without impacting
user-perceived latency. The notion of user-perceived la-
tency is captured in our definition of critical path, which
we turn to next.
Critical path: The critical path is the bottleneck path in
a user transaction, such that changing the length of any
part of the critical path will change the user-perceived la-
tency. Informally, the critical path starts with a user ma-
nipulation event, and ends with a UI update event. In Fig-

App

App

Instrumented

Instrumenter Analysis

Server

App Store/Marketplace

Developer

Downloads

Logs

Instrumentation
Metadata

Developer
Feedback

Figure 5: AppInsight System Overview

ure 2, the entire path from (0) to (8) constitutes the critical
path of the transaction. The latency can be reduced either
by reducing the download delay (4) or the processing de-
lay (6). In Figure 3, the critical path is shown in bold.
Note that activities related to the download and process-
ing of the first web request are not on the critical path.

The critical path identifies the portions of the code that
directly impacts user-perceived latency. However, the
critical path may not always accurately characterize user
experience. For example, a transaction may make multi-
ple updates to the UI (one after the other), and the user
may care about only one of them, or the user may inter-
rupt a transaction to start a new one. We discuss this in
§ 6.2.

While the critical path is useful for understanding per-
formance bottlenecks, to debug app failures, we provide
the developer with exception paths.
Exception path: The exception path is the path from
the user manipulation to the exception method, spanning
asynchronous boundaries. In Figure 4, (0) to (8) is the ex-
ception path. The exception path points the developer to
the user manipulation that started the asynchronous path
leading to the crash.

We now describe how we collect the trace data needed
to deliver the above information to the developer, while
minimizing the impact on application performance.

4 APPINSIGHT DESIGN OVERVIEW

Figure 5 shows the architecture of AppInsight. The app
binary is instrumented using an instrumentation tool (the
instrumenter) that we provide. The developer only needs
to provide the instrumenter with app binaries; no other
input or source code annotation is needed.

The instrumenter leverages the fact that phone apps
are often written using higher-level frameworks and com-
piled to an intermediate language (byte code). Our cur-
rent implementation is designed for apps written using
the Silverlight framework [15], compiled to MSIL [13]
byte code. MSIL preserves the structure of the program,
including types, methods and inheritance information.

3

Silverlight is used by a vast majority of the apps in the
WP7 marketplace. AppInsight requires no special sup-
port from the Silverlight framework.

When users run the instrumented app, trace data is col-
lected and uploaded to a server. We use the background
transfer service (BTS) [18] to upload the trace data. BTS
uploads the data when no foreground apps are running.
It also provides a reliable transfer service in the face of
network outages and losses. The trace data is analyzed
and the findings are made available to the developer via a
web-based interface (§ 7).

5 INSTRUMENTATION

We now describe our instrumenter in detail. Its goal is
to capture, with minimal overhead, the information nec-
essary to build execution traces of user transactions and
identify their critical paths and exception paths.

A number of factors affect the performance of mobile
applications: user input, environmental conditions, etc.
Even the app-execution trace can be captured in vary-
ing degrees of detail. In deciding what to capture, we
must strike the right balance between the overhead and
our ability to give useful feedback to the developer.

Figures 3 and 4 indicate that, we need to capture six
categories of data: (i) when the user manipulates the UI;
(ii) when the app code executes on various threads (i.e.,
start and end of horizontal line segments); (iii) causal-
ity between asynchronous calls and callbacks; (iv) thread
synchronization points (e.g., through Wait calls) and their
causal relationship; (v) when the UI was updated; (vi)
any unhandled exceptions. Apart from this, we also cap-
ture some additional data, as discussed in § 5.7.

To collect the data, we instrument the app in three
steps. First, we read the app binary and assign a unique
identifier to all methods in the app code and to system
calls. Each call site is considered unique; if X is called
twice, each call site gets its own identifier. This mapping
is stored in a metadata file and uploaded to the analysis
server for later use.

Second, we link two libraries to the app – a Detour
library and a Logger library (see Figure 6). The De-
tour library is dynamically generated during instrumenta-
tion. It exports a series of detouring functions [11], which
help attribute callback executions to the asynchronous
calls that triggered them. The Logger library exports
several logging functions and event handlers that insert
trace records into a memory buffer. Each record is tagged
with a timestamp and the id of the thread that called the
logging function. The buffer is flushed to stable storage
to prevent overflow as needed. When the app exits, the
buffer is scheduled for upload using BTS.

Finally, we instrument the app binary with calls to
methods in the Logger and Detour libraries from appro-
priate places to collect the data we need. Below, we de-

Framework

Instrumented App

Logger

Detour

Original App Code
+

Instrumentation

System Calls Callbacks App & UI Events

Callback

Detour

Log

Log

Memory Buffer

Write/Upload

Figure 6: Structure of Instrumented App

scribe this process in detail. We use the code fragment
shown in Figure 1, and the corresponding transaction di-
agram in Figure 2 as a running example.

5.1 Capturing UI Manipulation events
When the user interacts with the UI (touch, flick, etc.)
the Silverlight framework delivers several UI input events
on the UI thread of the app running in the foreground.
The first event in this series is always a Manipulation-
Started event, and the last is always the Manipulatio-
nEnded event. Further, any app-specified handler to han-
dle the UI event is also called on the UI thread in be-
tween these two events. For example, in Figure 1, bt-
nFetch Click handles the click event for a button.
When the user touches the button on the screen, the han-
dler is called in between the two Manipulation events.

The logger library exports handlers for Manipulation-
Started and ManipulationEnded events, which we add to
the app’s code. The handlers log the times of the events,
which allows us to match the UI manipulation to the right
app handler for that UI input.

5.2 Capturing thread execution
The horizontal line segments in Figure 2 indicate when
the app code starts and ends executing on each thread.
This can be determined from a full execution trace that
logs the start and end of every method. However, the
overhead of capturing and uploading a full execution
trace from a mobile phone is prohibitive. We reduce the
overhead substantially by observing that at the beginning
of each horizontal line segment in Figure 2, the top frame
in the thread’s stack corresponds to an app method (as
opposed to a method that is internal to the framework)
and that this method is the only app method on the stack.
These methods are upcalls from the framework into the
app code. For our purpose, it is enough to log the start
and end of only upcalls.

The upcalls are generated when the system invokes an
app-specified handler (also called callback) methods for
various reasons, for example, to handle user input, timer
expiration, sensor triggers, or completion of I/O oper-
ations. Even spawning of worker threads involves up-
calls: the app creates a thread, and specifies a method as
a start method. This method is invoked as a callback of
Thread.Start at some later time.

4

void btnFetch_Click(
object obj, RoutedEventArgs e) {

+ Logger.LogUpcallStart(5);
var req = WebRequest.Create(url);

* Detour dt = DetourFactory.GetDetour(reqCallback, 7);

* Logger.LogCallStart(7);
req.BeginGetResponse(dt.Cb1, null);

* Logger.LogCallEnd(7);
+ Logger.LogUpcallEnd(5);

}
void reqCallback(IAsyncResult result) {

+ Logger.LogUpcallStart(19);
/* Process */

* Detour dt = DetourFactory.GetDetour(updateUI, 13);

* Logger.LogCallStart(13);
UIDispatcher.BeginInvoke(dt.Cb2);

* Logger.LogCallEnd(13);
+ AppInsight.LogUpcallEnd(19);

}
void updateUI() {

+ Logger.LogUpcallStart(21);
/* Update UI */
+ Logger.LogUpcallEnd(21);

}

Figure 7: Instrumented version of the code in Figure 1.
The actual instrumentation is done on MSIL byte code.
We show decompiled C# code for convenience.

We identify all potential upcall methods using a simple
heuristic. When a method is specified as a callback to a
system call, a reference to it, a function pointer, called
delegate in .NET parlance, is passed to the system call.
For example, in Figure 1, a reference to reqCallback
is passed to the BeginGetResponse system call. The
MSIL code for creating a delegate has a fixed format [13],
in which two special opcodes are used to push a function
pointer onto the stack. Any method that is referenced by
these opcodes may be called as an upcall1.

We capture the start and end times of all potential up-
calls, along with the ids assigned to them, as shown in
Figure 7. The instrumentation added for tracking poten-
tial upcalls is prepended by ’+’. All three methods in the
example are potential upcalls and thus instrumented2.

While this technique is guaranteed to capture all up-
calls, it may instrument more methods than necessary,
imposing unnecessary overhead. This overhead is neg-
ligible, compared to the savings achieved (§ 8.3).

5.3 Matching async calls to their callbacks
We described how we instrument all methods that may
be used as upcalls. We now describe how we match
asynchronous calls to the resulting upcalls (i.e., their call-
backs). For example, in Figure 2, we need to match labels
2 and 5. To do so, we need to solve three problems.

First, we need to identify all call sites where an asyn-
chronous system call was made, e.g., in Figure 1, the
BeginGetResponse call is an asynchronous system
call. Second, we need to log when the callback started
executing as an upcall. We have already described how

1Certain UI handlers are passed to the system differently. We iden-
tify them as well – we omit details due to lack of space.

2The method btn FetchClick is a UI handler, and a pointer to it is
passed to the system elsewhere.

public class DetourFactory {
...
public static Detour GetDetour(

Delegate d, int callId) {
int matchId = getUniqueId();
Logger.LogAsyncStart(callId, matchId);
return new Detour(d, matchId);

}
}
public class Detour {
int matchId; Delegate originalCb;
public Detour(Delegate d, int matchId) {

this.originalCb = d; this.matchId = matchId;
}
public void Cb1(IAsyncResult result) {

Logger.LogCallbackStart(this.matchId);
Invoke(this.originalCb);

}
public void Cb2() {
...

}
}

Figure 8: Detour library

we track the start of upcall execution. Third, we need to
connect the beginning of callback execution to the right
asynchronous call.

We solve the first problem by assuming that any system
call that accepts a delegate as an argument, is an asyn-
chronous call. This simple heuristic needs some refine-
ments in practice, which we will discuss in § 5.3.1.

The third problem of connecting the callback to the
right asynchronous call is a challenging one. This is be-
cause a single callback function (e.g., a completion han-
dler for a web request) may be specified as a callback for
several asynchronous system calls. One possibility is to
rewrite the app code to clone the callback function sev-
eral times, and assign them unique ids. However, this is
not sufficient, since the asynchronous call may be called
in a loop (e.g., for each URL in a list, start download) and
specify the same function as a callback. To handle such
scenarios, we rewrite the callback methods to detour them
through the Detour library, as described below.

Figure 7 shows instrumented code for the example in
Figure 1. Instrumentation used for detour is tagged with
’*’. Figure 8 shows relevant code inside the Detour li-
brary. We add instrumentation as follows.

(i) We identify the system call BeginGetResponse
as an asynchronous call. The instrumenter has assigned a
call id of 7 to this call site. We log the call site id, and the
start and end time of the call3.
(ii) We generate a new method called cb1 that

matches the signature of the supplied callback function,
i.e., reqCallback, and add it to the Detour class in
the Detour library. This method is responsible for invok-
ing the original callback (see Figure 8).

(iii) We instrument the call site to call GetDetour to
generate a new instance of the Detour object. This ob-

3Async calls typically return almost immediately. We log both start
and end of these calls not to collect timing data, but because such brack-
eting makes certain bookkeeping tasks easier.

5

Thread t = new Thread(foo);
...
...
t.Start();

Figure 9: Delayed callback

ject stores the original callback, and is assigned a unique
id (called matchId) at runtime. This matchId helps
match the asynchronous call to the callback.
(iv) We then rewrite the app code to replace the orig-

inal callback argument with the newly generated detour
method, Detour.cb1.

Notice from Figure 8 that the GetDetour method
logs the beginning of an asynchronous call using the Lo-
gAsyncStart function of the Logger library. Sim-
ilarly, the beginning of the callback is logged by the
LogCallbackStart, which is called from cb1, just
before the original callback is invoked. These records,
and the UpcallStart record of the original callback
method are linked by the matchId, the call site id, and
their thread ids, allowing us to attribute the callback to the
right asynchronous call. We show an example in § 5.8.

Figure 7 also shows another example of detouring. The
UpdateUI method is a callback for the BeginInvoke
method of the UIDispatcher, and hence is detoured.

5.3.1 Refining async-call identification heuristic
The simple heuristic used to determine which system
calls are asynchronous calls, needs two refinements in
practice. First, some system calls may invoke the sup-
plied callback synchronously. This can be easily detected
using thread ids in the trace. The second problem is more
complex. Consider Figure 9. The callback delegate foo
was specified when the constructor was called, but it is in-
voked only when Thread.Start is called, which may
be much later. The simple heuristic would incorrectly
match the callback to the call site of the constructor, in-
stead of Thread.Start. We use domain knowledge
about Silverlight system libraries to solve the problem.
We know that the callback function is always invoked
from Thread.Start. We log the id of the thread ob-
ject at the constructor, and also at Thread.Start. The
object ids, and the detour log described above allow us
to match the callback to the Thread.Start call. We
handle event subscriptions in a similar manner.

5.4 Capturing Thread Synchronization
Silverlight provides a set of methods for thread syn-
chronization. The thread waits on a semaphore (e.g.,
Monitor.Wait(obj)), and is woken up by signaling that
semaphore (e.g., Monitor.Pulse(obj)). We log calls to
these functions and the identities of semaphore objects
they use. These object ids can be used to determine the
causal relationship between synchronization calls. Wait-
ing on multiple objects, and thread join calls are han-
dled similarly. Threads can also synchronize using shared
variables. We will address this in § 9.

RecordId Records ThreadId
1 UIManipulationStarted 0
2 MethodStart(5) 0
3 CallStart(7) 0
4 AsyncStart(7, 1) 0
5 CallEnd(7) 0
6 MethodEnd(5) 0
7 UIManipulationEnded 0
8 CallbackStart(1) 1
9 MethodStart(19) 1

10 CallStart(13) 1
11 AsyncStart(13, 2) 1
12 CallEnd(13) 1
13 MethodEnd(19) 1
14 CallbackStart(2) 0
15 MethodStart(21) 0
16 MethodEnd(21) 0
17 LayoutUpdated 0

Table 1: Trace of code in Fig. 7. The UI thread id is 0.

5.5 Capturing UI updates
The Silverlight framework generates a special LayoutUp-
dated event whenever the app finishes updating the UI.
Specifically, if an upcall runs on the UI thread (either
event handlers, or app methods called via the UIDis-
patcher), and updates one or more elements of the UI as
part of its execution, then a single LayoutUpdated event
is raised when the upcall ends. The Logger library ex-
ports a handler for this event, which we add to the app
code. The handler logs the time this event was raised.

5.6 Capturing unhandled exceptions
When an unhandled exception occurs in the app code, the
system terminates the app. Before terminating, the sys-
tem delivers a special event to the app. The data associ-
ated with this event contains the exception type and the
stack trace of the thread in which the exception occurred.
To log this data, the logger library exports a handler for
this event, which we add to the app code.

5.7 Additional Information
For certain asynchronous calls such as web requests and
GPS calls, we collect additional information both at the
call and at the callback. For example, for web request
calls, we log the URL and the network state. For GPS
calls, we log the state of the GPS. The choice of the in-
formation we log is guided by our experience, and the in-
evitable tradeoff between completness and overhead. Our
data shows that critical paths in a user transaction often
involve either network or GPS accesses. By logging a
small amount of additional information at certain points,
we can give more meaningful feedback to the developer.

5.8 Example trace
Table 1 shows the trace generated by the instrumented
code in Figure 7. Records 1 and 7 show a UI Manipula-
tion event. They encompass an upcall (records 2-6) to the
method btnFetch Click. As described in § 5.1, we
attribute this upcall to UI manipulation.

This method makes the asynchronous system call Be-
ginGetResponse (record 4), the callback of which is

6

M

S

A

E

S

E S

E
A

L

2

4

9
13

15 16

1
17

6

11

Figure 10: Transaction Graph for the trace in Table 1.
.

M

S
A

E

S

A A
B

S

S

F
E

F
E

W

E S

E
A

L

Figure 11: Transaction Graph for transaction in Figure 3.
Record labels are omitted for simplicity.

.
detoured, and assigned a match id of 1. Record 8 marks
the begining of the execution of the detoured callback. It
calls the actual callback method, reqCallback, which
has a method id of 19. This method executes between
records 9 and 13. We can link records 8 and 9 because
they have the same thread id, and will always follow each
other (§ 5.3). When reqCallback executes, it makes
another asynchronous call. This is the call to the UI dis-
patcher. We detour the callback, and assign it a match id
of 2. The actual callback method, of course, is Upda-
teUI, which has the method id of 21.

The completion of this method is indicated by record
16. We note that this method ran on the UI thread. Record
17 indicates that a LayoutUpdated event was triggered
immediately after the execution of this method, which
means that this method must have updated the UI.

6 ANALYSIS METHODOLOGY

We analyze the traces to delineate individual user trans-
actions, and identify critical paths and exception paths.
Transactions can also be analyzed in aggregate, to high-
light broader trends.

6.1 User transactions
We represent user transactions by directed acyclic graphs.
The graph is generated from the trace data. Consider the
trace in Table 1. It is converted to the graph in Figure 10.

The graph contains five types of nodes, namely: (M)
User Manipulation, (S) Upcall start, (E) Upcall end, (A)
Async call start, and (L) Layout updated. Each node rep-
resents one trace record 4 and is identified by the type and
the record id. The mapping between node types M,S,E,A
and L and the record types can be gleaned from Table 1.

4CallStart, CallEnd and CallBackStart records are used for book-
keeping purposes only, and are not mapped to nodes.

The edges between nodes represent causal relation-
ships. For example, the UIManipulationStarted event M1
triggers the start of the handler S2. Similarly, the start of
callback execution S9 was caused by the asynchronous
call A4. We also say that an upcall start node “causes”
any subsequent activity on that upcall. Hence we draw
S2 → A4, as the async call was made during execution
of the upcall, and S2 → E6, to represent the fact that the
upcall end is triggered by upcall start.

The above graph does not show any thread syn-
chronization events. These are represented by three
types of nodes, namely: (B) Thread blocked node, (F)
Semaphore fired node, and (W) Thread wakeup node.
We’ll describe these nodes later.

When the app trace contains overlapping user transac-
tions, this approach correctly separates them, and gener-
ates a graph for each.

We now discuss how we use this graphical representa-
tion to discover the critical path in a user transaction.

6.2 Critical Path
The critical path is the bottleneck path in the user trans-
action (§ 3). The basic algorithm for finding the critical
path is simple. Consider Figure 10. We traverse the graph
backwards, going from the last UI update (L17), to the
user manipulation event that signals the start of the trans-
action (M1), traversing each directed edge in the opposite
direction. This path 5, when reversed, yields the critical
path: M1, S2, A4, S9, A11, S15, E16, L17. Even this
simple example shows that we correctly account for time
spent inside upcalls: for example, the edge (S9,E13) is
not on the critical path, which means that any activity
in the reqCallback method (See Figure 7), after call-
ing the dispatcher, does not affect user-perceived latency.
This basic algorithm requires several refinements, as dis-
cussed below.
Multiple UI Updates: As discussed in § 3, the transac-
tion may update the UI multiple times. This results in
multiple L nodes in the transaction graph. Only the de-
veloper can accurately determine which of these updates
is important. In such cases, AppInsight, by default, re-
ports the critical path to the last L node. However, using
the feedback interface (§ 7), the developer can ask AppIn-
sight to generate the critical path to any of the L nodes.
Thread synchronization via signaling: The basic algo-
rithm implicitly assumes that each node will have only
one edge incident upon it. This is not the case for the
graph shown in Figure 11, which represents the trans-
action shown in Figure 3: Node W , which is a thread
wakeup node, has two edges incident upon it, since the
thread was waiting for two semaphores to fire (the two

5This algorithm always terminates because the transaction graph is
always acyclic. Also, we are guaranteed to reach an M node from an L
node, with backward traversal. We omit proofs.

7

F nodes). In such cases, we compare the timestamps of
the semaphore-fire records, and pick the later event. This
yields the critical path shown in the figure.
Periodic timers: An app may start a periodic timer,
which fires at regular intervals and performs various
tasks, including UI updates. In some cases, periodic
timers can also be used for thread synchronization (§ 9).
We detect this pattern, and then assume each timer firing
to be the start of a separate transaction. We call these
transactions timer transactions, to distinguish them from
user transactions. These transactions need to be pro-
cessed differently, since they may not end with UI up-
dates. We omit details due to lack of space. We handle
sensor-driven transactions in a similar manner.

6.3 Exception path
When the app crashes, we log the exception information
including the stack trace of the thread that crashed (§ 5.6).
We also have the AppInsight-generated trace until that
point. We walk the stack frames until we find a frame that
contains the method name of the last UpcallStart record
in the AppInsight trace. The path from the start of the
transaction to the Upcall start node, combined with the
stack trace represents the exception path.

6.4 Aggregate Analysis
AppInsight helps the developer see the “big picture” by
analyzing the transactions in aggregate. There are a num-
ber of ways to look at the aggregate data. Our experience
shows that the developer benefits the most by using the
aggregate data to uncover the root causes of performance
variability, and to discover “outliers” – i.e. transactions
that took abnormally long to complete compared to simi-
lar transactions.

To perform this analysis, we group together transac-
tions with identical graphs; i.e. they have the same nodes
and the same connectivity. These transactions represent
the same user interaction with the app. This is a conserva-
tive grouping; the same user interaction may occasionally
generate different transaction graphs, but if two transac-
tions have the same graph, with a high probability they
correspond to the same interaction.
Understanding performance variance: While the
transactions in a group have the same transaction graph,
their critical paths and durations can differ. To iden-
tify the major sources behind this variability, we use a
standard statistical technique called Analysis of Variance
(ANOVA). ANOVA quantifies the amount of variance in
a measure that can be attributed to individual factors that
contribute to the measure. Factors include network trans-
fer, local processing and GPS queries which in turn can
vary because of network type, device type, GPS state,
user state, etc. We will discuss ANOVA analysis in more
detail in § 8.1.3.

Outliers: AppInsight also flags outlier transactions to
help developers identify performance bottlenecks. Trans-
actions with duration greater than (mean + (k * standard
deviation)) in the group are marked as outliers. We use k
= 3 for our analysis.

7 DEVELOPER FEEDBACK

The AppInsight server analyzes the collected traces using
the methods described in § 6. The developers use a web
UI to access the results. Figure 12 shows a collage of
some of the views in the UI.

For ease of navigation, the UI groups together identi-
cal transactions (§ 6.4) ((a) in Figure 12). To allow easy
mapping to the source code, groups are named by their
entry event handler method. Within each group, transac-
tions are sorted by duration and outliers are highlighted
(b). Developers can select individual transactions to view
their transaction graph which are shown as interactive
plots (c). The plot also highlights the critical path (d).
Within a critical path, we show the time spent on each
component (e). The developer can thus easily identify
the parts of the code that need to be optimized. Addi-
tional information, such as URLs and network type (3G
or Wi-Fi) for web calls and the state of the GPS is also
shown (e). We also provide variability analysis for each
transaction group (f).

The UI also shows where each transaction fits within
the particular app session. This view provides develop-
ers with the context in which a particular transaction oc-
curred (e.g, at the start of a session).

The tool also reports certain common patterns within a
group and across all transactions for an app. For example,
it reports the most common critical paths in a transaction
group, the most frequent transactions, common sequence
of transactions, frequently interrupted transactions, etc.
Using this information, the developer can focus her ef-
forts on optimizing the common case.

Developers can also browse through crash reports.
Crashes are grouped by their exception path. For each
exception, the tool reports the exception type, shows the
stack trace attached to the execution graph and highlights
the exception path.

8 RESULTS

We first present results from the live deployment of
AppInsight, and some case studies of how AppInsight
helped developers improve their app. Then, we present
micro-benchmarks to quantify AppInsight’s overhead
and coverage.

8.1 Deployment
To select the apps to evaluate AppInsight with, we asked
50 of our colleagues to list 15 apps they regularly use
on their Windows Phone. From these, we picked 29
most popular free apps. We also included an app that

8

(d) Critical path
highlighted

(a) Transaction groups

(b) Outliers highlighted (e) Critical path information

(f) Variability
analysis

(c) Interactive transaction plot

Figure 12: Collage of some of the views in the developer feedback UI.

total num of apps 30
total participants 30
unique hardware models 6
unique hardware+firmware 14
start date 03 April 2012
end date 15 August 2012
total num of app launches (sessions) 6752
total minutes in apps 33,060
total user transactions 167,286
total timer transactions 392,768
total sensor transactions 3587

Table 2: Summary statistics from our deployment

was developed by an author of this paper. The app was
published several months before we started the AppIn-
sight project, as an independent effort. We instrumented
these 30 apps using AppInsight. Thirty users volunteered
to run some of the instrumented apps on their personal
phones. Often, they were already using many of the apps,
so we simply replaced the original version with the instru-
mented version. All participants had their own unlimited
3G data plans.

Table 2 shows summary deployment statistics. Our
data comes from 6 different hardware models. Over the
course of deployment, we collected trace data from 6752
app sessions. There are a total of 563,641 transactions in
this data. Over 69% of these are timer transactions, trig-
gered by periodic timers (see § 6.2). Almost all of them
are due to a one-second timer used in one of the gam-
ing apps. In the rest of the section, we focus only on the
167,286 user transactions that we discovered in this data.

Table 3 shows basic usage statistics for some of the
apps. Note the diversity in how often users ran each app,
for how long, and how many user transactions were in
each session. Over 40% of the user transactions were
generated by a multiplayer game app. Figure 13 shows
the CDF of the length of user transactions (i.e., the length
of their critical path). Only 15% of the transactions last

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Transaction Length (s)

Figure 13: CDF of user-transaction duration.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Number of edges

In a Transaction
In a Critical Path

Figure 14: CDF of number of edges in user transactions
and in critical paths. The X-axis has been clipped at 100.
The top line ends at 347, and the bottom ends at 8,273.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

 o
f
ti
m

e
 i
n
 t
h
e

 c
ri
ti
c
a
l
p
a
th

Edges sorted by fraction of time in the critical path

Figure 15: Cumulative fraction of time in the critical path
as a function of number of edges.

more than 5 seconds. The app developer would likely
want to focus his debugging and optimization efforts on
these long-running transactions.

8.1.1 User Transactions and Critical Paths
In Table 3, we see that the average number of asyn-
chronous calls per user transaction varies from 1.2 to 18.6

9

Avg #User Avg #trans Perf Perf Network Extra
App # # session trans- #Async #parallel inter- overhead overhead overhead data

description Users Sessions length (s) -actions calls threads -rupted ms/trans ms/s b/trans transfer
News aggregator 22 604 88 11738 42826 5.50 1732 3.02 0.69 311 3.2%

Weather 25 533 31 4692 8106 1.92 541 0.31 0.09 162 2.9%
Stock information 17 460 32 4533 5620 1.00 486 0.20 0.06 91 8.6%
Social networking 22 1380 622 48441 900802 7.60 6782 3.48 0.21 487 8.0%
Multiplayer game 21 1762 376 68757 359006 2.28 719 0.18 0.26 27 79.0%

Transit info 7 310 37 1945 40448 4.88 182 2.96 0.85 355 0.9%
Group discounts 9 67 306 1197 3040 6.62 109 0.99 0.06 212 2.3%
Movie reviews 7 48 394 1083 7305 6.56 80 0.51 0.08 97 2.7%

Gas station prices 8 110 48 1434 2085 2.11 72 0.14 0.04 91 1.9%
Online shopping 14 43 512 1705 25701 2.74 349 0.18 0.06 24 4.7%
Microblogging 3 333 60 3913 19853 2.02 386 0.89 0.28 181 2.2%

Newspaper 10 524 142 13281 24571 4.85 662 0.33 0.06 92 1.2%
Ticket service 7 64 530 171 9593 3.70 38 0.05 0.57 9 2.9%

Table 3: Summary statistics for 13 of the 30 apps. For conciseness, we highlight a single app out of each of the major
app categories. The name of the app is anonymized. Overhead data is explained in § 8.3.1.

depending on the app. The average number of parallel
threads per user transaction varies from 1 to 7.6. This
high degree of concurrency in mobile apps is one of the
key reasons why a system such as AppInsight is needed
to identify the critical path in the complex graph that rep-
resents each user transaction.

Figure 14 offers another perspective on the complex-
ity of user transactions and the value of AppInsight. It
shows the CDF of the number of edges in a user trans-
action. While we have clipped the horizontal axis of this
graph for clarity, there are user transactions with thou-
sands of edges. Amidst this complexity, AppInsight helps
the developers by identifying the critical path that limits
the user-perceived performance. As the figure shows, the
number of edges in critical paths are much fewer.

We also observe that not all edges in a critical path con-
sume the same amount of time. Rather a few edges are
responsible for most of the time taken by a transaction,
as shown in Figure 15. This graph plots the cumulative
fraction of transaction time as a function of the number of
edges. We see that two edges are responsible for 82% of
the transaction time. Application developers can focus on
these edges to understand and alleviate the performance
bottlenecks in their applications.

Investigating these time-hogging edges in critical
paths, we find, expectedly, that network transfers are of-
ten to blame. In transactions that involve at least one
network transfer (14.6% of total), 93% had at least one
network transfer in the critical path and 35% had at least
two. On an average, apps spend between 34-85% of the
time in the critical path doing network transfer.

In contrast, location queries are not a major factor. In
transactions that had a location query (0.03% of total),
the query was in the critical path in only 19% of the cases.
This occurs because most apps request for coarse location
using WiFi or cell towers, without initializing the GPS
device. Coarse location queries tend to be fast.

8.1.2 Exception paths
AppInsight also helps in failure diagnosis. In our deploy-
ment, we collected 111 crash logs (from 16 apps), 43

 0

 5

 10

 15

 20

 0 5 10 15 20

R
a
n
g
e
 (

s
)

Average Transaction Length (s)

Involves network or GPS
Does not involve network or GPS

Figure 16: Variation in transaction length for each group.
Both axes are clipped at 20.

of which involved asynchronous transactions where the
standard stack trace that the mobile platform gives the
app developer would not have identified the full path that
led up to the crash.

8.1.3 Aggregate Analysis
We analyzed the trace data from our deployment using
techniques described in § 6.4. For the data in Table 2, we
have 6,606 transaction groups across all apps.
Understanding performance variance: We first quan-
tify the variance in transaction groups and then analyze
the sources of the variance.

We find that 29% of the transaction groups contain
multiple distinct critical paths. Further, even where there
is a unique critical path, the dominant edge (the one that
consumes most time) varies in 40% of the cases. This im-
plies that the performance bottlenecks differ for different
transactions even when the transactions correspond to the
same activity.

Figure 16 shows the extent of performance variabil-
ity we observe across transactions in a group. For each
group, it plots the range (maximum - minimum) of trans-
action duration observed as a function of the average
transaction duration. We see many activity groups with
highly variable transaction duration. To show that this
variability is not limited to cases with network transfers
or location queries, we separately show activities that do
not involve these two functions. While such activities
have lower transaction duration on average, they too have
highly variable performance. This variability can stem
from the user’s device, system load, user state, etc.

10

We identify the major sources behind the variability in
transaction duration using ANOVA (§ 6.4). At the highest
level, there are three factors that impact transaction dura-
tion: (i) network transfer, (ii) location queries, and (iii)
local processing. Each of these factors can itself vary be-
cause of network type, device type, GPS state, user state,
etc. For each transaction, we split the transaction dura-
tion into these three factors depending on where time is
spent on the critical path and then find the contribution of
each component to the variability of the transaction du-
ration. For this analysis, we only use activity groups that
have at least 10 transactions.

We focus first on activities that do not involve location
queries. We find that the average contribution of network
and local processing to the variability in the transaction
duration was 66% and 34%. Much of the variability in
transaction duration stems from the variability in network
transfer time. Though, in 10% of the groups, local pro-
cessing contributed to over 90% of the variability.

We further analyze those groups where network trans-
fers were responsible for over 90% of the variability.
We find that network type (3G or WiFi) plays an impor-
tant role. On average, 3G-based transactions took 78%
longer and had 155% more standard deviation compared
to WiFi-based transactions. However, we also found
groups with high variability in network-transfer time ir-
respective of the network type. This variation might be
due to factors such as dynamic content and server delay
that we do not capture.

We also analyze groups in which local processing was
responsible for over 90% of the variability. We find
groups where the variability can be entirely explained by
the device type. For instance, in one group, transactions
from Nokia Lumia 900 phones had 38% lower transac-
tion times than those from Samsung Focus phones. One
of the key differences between the two phones is that the
Nokia has a 1.4 GHz processor compared to the Samsung
with a 1 GHz processor. We also find transactions where
the variability could be completely explained by the user
herself. The duration of these transactions likely depend
on user state that we do not capture.

Next, we analyze groups that have location queries in
the critical path. We find that such queries contribute
to the transaction duration variability in only one group.
This is because, as noted above, most apps query for
coarse location which is quick. In the group that queried
for fine-grained location, the transaction time was highly
correlated with the state of the GPS device. If it was
not initialized, the query took 3–20 seconds; otherwise,
it took roughly 1 ms.
Outliers: AppInsight flags transactions that take signifi-
cantly longer than other transactions in the same group
(§ 6.4). Overall, we find 831 outlier transactions and
287 groups with at least one outlier. These outliers span

across 11 apps. 19% of the outliers are due to large
network delays (with the transaction’s network time be-
ing greater than the mean network time in the group by
more than three orders of standard deviation), 76% are
due to local processing and 5% are due to both. 70% of
the transaction with large network delay was on 3G. The
mean transaction duration of outliers with network de-
lay was 16.6 seconds (14.1s median), and those because
of local processing delay was 10 seconds (7.4s median).
From the data, we can see that, local processing also plays
a major role in long transactions.

Interestingly, the factors that explain most of the vari-
ability in a transaction group can be different from those
that lead to outliers. We find groups in our data where the
variability was primarily due to network transfers but the
outlier was due to local processing.

8.2 Case Studies
We now describe how AppInsight helped app developers
improve their applications.

8.2.1 App 1
One of the apps in our deployment was developed by an
author of this paper (see § 8.1). AppInsight feedback
helped the author improve the app in many ways. The
following observations are based on 34 session traces rep-
resenting 244 user transactions and 4 exception logs.
Exceptions: Before being instrumented with AppIn-
sight, the app had been on the marketplace for 1.5 years.
The developer had occasionally received crash logs from
the Windows Phone developer portal, but logs contained
only the stack trace of the thread that crashed. While the
developer knew that a routine that split a line into words
was crashing, there was not enough information for the
developer to diagnose the failure. When the app was in-
strumented with AppInsight, the developer received the
entire exception path. This included the web call and the
URL from where the line was fetched. The developer
replayed the URL in his app in a controlled setting, and
discovered that his text-parsing routines did not correctly
handle certain patterns of blank lines.
UI sluggishness: The aggregate analysis in AppInsight
identified a user transaction with high variability in du-
ration. The variability was attributed to local processing
(time spent on thread execution). The developer spotted
that only the user transactions at the start of user sessions
experienced these abnormal latencies. He identified that
certain system calls early in the app execution caused sys-
tem DLLs to be loaded into memory. The time to load the
DLLs was high and highly variable. Later transactions
that used the same APIs did not experience high latency,
as the DLLs were cached. This problem was not spotted
in lab testing, since the DLLs are almost always in mem-
ory, due to continuous test runs. He redesigned his code
to force-load the DLLs earlier.

11

Wasted computation: The feedback UI pointed the de-
veloper to frequently interrupted transactions. The devel-
oper noticed that in some cases, the background threads
initiated by the interrupted transaction were not being
terminated, thereby wasting the battery. The developer
modified the code to fix the problem.
Serial network operations: The developer noticed that
a common critical path consisted of web requests that
were issued in a serial manner. The developer improved
the user response time by issuing them in parallel.

8.2.2 App 2
AppInsight can help the developers optimize a “mature”
app, that rarely experiences performance problems. For
example, a popular app in our deployment has been in
the marketplace for over 2 years and had gone through
multiple rounds of updates. Our deployment traces had
over 300 user sessions for this app, representing 1954
user transactions.

Aggregate analysis showed that 3G data latency sig-
nificantly impacted certain common transactions in their
app. In this case, the app developers were already aware
of this problem and had considered adding caching to
their app. However, they did not have good quantitative
data to back up their decision. They were also impressed
by the ease with which AppInsight highlighted the prob-
lem, for it had taken them a long time to pinpoint the
fix. The developers are considering using AppInsight for
their next release, especially to evaluate changes to the
data caching policies.

8.2.3 App 3
We also instrumented an app that is under active devel-
opment. This app was not part of our deployment – the
developers tested the instrumented app in a small pilot of
their own. Surprisingly, AppInsight revealed that custom
instrumentation code that the developers had added was
a major contributor to the poor performance of their app.

Analysis of trace data from other apps in our deploy-
ment has also shown many cases of wasteful computa-
tion, UI sluggishness, and serial network transactions in
the critical path.

8.3 Micro-benchmarks
We now present micro-benchmarks to quantify AppIn-
sight’s overheads, and verify that AppInsight does not
miss any user transactions.

8.3.1 Overheads
App run time: The impact of AppInsight on run time of
the app is negligible. Individual logging operations sim-
ply write a small amount of data to a memory buffer, and
hence are quite lightweight, as seen from Table 4. The
buffer is flushed to disk when full6 or when the app exits.

6We use a two-stage buffer to prevent data loss during flushing.

Log Method Overhead (µs)
LogUpcallStart 6
LogUpcallEnd 6
LogCallStart 6
LogCallEnd 6
LogCallbackStart 6
LogAsyncStart 12
LogObject 12
LogParameters 60

Table 4: Overhead of AppInsight Logger. Averaged over
1 million runs, on a commonly used phone model.

In most cases, the buffer never gets full, so flushing hap-
pens only when the app exits. The disk write happens on
a background thread, and takes only a few milliseconds.

To estimate the cumulative impact of logging opera-
tions on the apps that our users ran, we multiply the num-
ber of log calls in each user transaction by overheads re-
ported in Table 4. The maximum overhead per user trans-
action is 30ms (average 0.57ms). Since most transactions
are several seconds long (see Figure 13), we also calcu-
lated the approximate overhead per second. The maxi-
mum overhead is 5ms (average 0.21ms) per second. We
believe that this is negligible. Table 3 shows the aver-
age overhead per transaction and per second for different
apps. The overhead is quite low. We also note that our
users reported no cases of performance degradation.
Memory: AppInsight uses a 1MB memory buffer. Typi-
cal apps consume around 50MB of memory, so the mem-
ory overhead is just 2%.
Network: AppInsight writes log records in a concise
format to minimize the amount of data that must be up-
loaded. The median amount of trace data we upload is
3.8KB per app launch. We believe that this overhead is
acceptable. We use two more metrics to further charac-
terize the network overhead: (i) bytes per transaction and
(ii) percentage of extra data transferred because of Ap-
pInsight compared to data consumed by the app. The last
two columns of Table 3 shows these metrics for different
apps. We see that the extra network overhead introduced
by AppInsight is minimal for most apps. Recall that we
use BTS (§ 4) to upload the data, which ensures that the
upload does not interfere with the app’s own communi-
cation. BTS also provides a “Wi-Fi Only” option, which
defers data upload till the phone is connected to Wi-Fi.
Size: On average, the added instrumentation increased
the size of the app binaries by just 1.2%.
Battery: The impact of AppInsight on battery life is
negligible. We measured the overhead using a hardware
power meter. We ran an instrumented app and the cor-
responding original app 10 times each. In each run, we
manually performed the same UI actions. For the original
app, the average time we spent in the app was 18.7 sec-
onds across the 10 runs, and the average power consump-
tion was 1193 mW, with a standard deviation of 34.8. For
the instrumented version, the average time spent was also

12

18.7 seconds, and the average power consumption was
1205 mW. This 1% increase in power consumption is
well within experimental noise (the standard deviation).

8.3.2 Coverage
AppInsight uses several heuristics (see § 5) to reduce the
amount of trace data it collects. To verify that we did not
miss any user transactions because of these heuristics, we
carried out a controlled experiment. First, we added extra
instrumentation to the 30 apps that logs every method call
as the app runs. Then, we ran these “fully instrumented”
apps in a virtualized Windows Phone environment, driven
by an automated UI framework, which simulates random
user actions – tap screen at random places, random swip-
ing, etc. We ran each app a 100 times, simulating between
10 and 30 user transactions each time7. Upon analyzing
the logs, we found that the “extra” instrumentation did
not discover any new user transaction. Thus we believe
that AppInsight captures necessary data to reconstruct all
user transactions. We also note that the full instrumen-
tation overhead was as much as 7,000 times higher than
AppInsight instrumentation. Thus, the savings achieved
by AppInsight are significant.

9 DISCUSSION

We now discuss some of the overarching issues related to
AppInsight design.
Causal relationships between threads: AppInsight
can miss certain casual relationship between threads.
First, it does not track data dependencies. For exam-
ple, two threads may use a shared variable to synchro-
nize, wherein one thread would periodically poll for data
written by another thread. Currently, AppInsight uses
several heuristics to identify these programming patterns,
and warns the developer that the inferred critical path
may be incorrect. Tracking all data dependencies re-
quires platform support [7], which we do not have. Sec-
ond, AppInsight will miss implicit causal relationships,
introduced by resource contention. For example, disk
I/O requests made by two threads will get serviced one
after the other, introducing an implicit dependency be-
tween the two threads. Monitoring such dependencies
also requires platform support. Third, AppInsight can-
not untangle complex dependencies introduced by count-
ing semaphores. The Silverlight framework for Win-
dows Phone [15] does not currently support counting
semaphores. Finally, AppInsight does not track any state
that a user transaction may leave behind. Thus, we miss
dependencies resulting from such saved state.
Definition of user transaction and critical path: The
definition of user transaction and critical path in § 3 does
not address all scenarios. For example, some user in-
teractions may involve multiple user inputs. Our current

7Some apps require non-random input at the beginning.

definition will break such interactions into multiple trans-
actions. This may be incompatible with the developer’s
intuition of what constitutes a transaction. In case of mul-
tiple updates to the UI, our analysis produces one critical
path for each update (§ 6.2). It is up to the developer to
determine which of these paths are important to investi-
gate. Despite these limitations, results in § 8 show that
we can give useful feedback to the developer.
Privacy: Any system that collects trace data from user
devices risks violating the user’s privacy. To mitigate this
risk, AppInsight does not store user or phone ids. Instead,
we tag trace records with an anonymous hash value that is
unique to that phone and that app. Since two apps running
on the same phone are guaranteed to generate a different
hash, it is difficult to correlate the trace data generated by
different apps. This mechanism is by no means foolproof,
especially since AppInsight collects data such as URLs
accessed by the app. We continue to investigate this area
further.
Applicability to other platforms: The current imple-
mentation of AppInsight works for the Windows Phone
platform. However, the core ideas behind AppInsight can
be applied to any platform that has certain basic charac-
teristics. First, the applications need to have a single, ded-
icated UI thread. Second, we need the ability to rewrite
byte code. Third, we need the ability to correctly identify
all possible upcalls (i.e., calls into the user code by the
system) and thread start events triggered by the UI itself.
Fourth, the system needs to have a set of well-defined
thread synchronization primitives. These requirements
are not onerous. Thus we believe that AppInsight can
be ported to other mobile platforms as well, although we
have not done so.

10 RELATED WORK

While we are not aware of a system with similar focus,
AppInsight touches upon several active research areas.
Correlating event traces: AppInsight automatically in-
fers causality between asynchronous events in the app ex-
ecution trace. A number of systems for inferring causality
between system events have been proposed, particularly
in the context of distributed systems.

LagHunter [12] collects data about user-perceived de-
lays in interactive applications. Unlike AppInsight,
LagHunter is focused on synchronous delays such as ren-
dering time. LagHunter requires the developer to supply
a list of “landmark” methods, while AppInsight requires
no input from the developer. LagHunter also occasionally
collects full stack traces, which AppInsight does not do.

Magpie [4] is a system for monitoring and model-
ing server workload. Magpie coalesces Windows system
event logs into transactions using detailed knowledge of
application semantics supplied by the developer. On a
Windows phone, system-event logs are not accessible to

13

an ordinary app, so AppInsight does not use them. Ap-
pInsight also does not require any input from the app de-
veloper. Magpie’s goal is to build a model of the system
by characterizing the normal behavior. Our goal is to help
the developer to detect anomalies.

XTrace [9] and Pinpoint [5] both trace the path of a re-
quest through a system using a special identifier attached
to each individual request. This identifier is then used to
stitch various system events together. AppInsight does
not use a special identifier, and AppInsight does not track
the request across process/app boundaries. Aguilera et.
al. [2] use timing analysis to correlate trace logs collected
from a system of “black boxes”. While AppInsight can
also use some of these log-analysis techniques, we do not
treat the app as a black box, and hence are able to perform
a finer grained analysis.
Finding critical path of a transaction: The goal of Ap-
pInsight is to detect the critical path in a user transaction.
Yang and Miller did early work [19] on finding the critical
path in the execution history of parallel and distributed
programs. More recently, Barford and Crovella [3] stud-
ied critical paths in TCP transactions. While some of our
techniques (e.g., building a graph of dependent events)
are similar to these earlier works, our focus on mobile
apps leads to a very different system design.
Mobile application monitoring: AppInsight is de-
signed to monitor mobile-application performance in the
wild. Several commercial products like Flurry [8] and
PreEmptive [16] are available to monitor mobile-app us-
age in the wild. The developer typically includes a li-
brary to collect usage information such as number of app
launches, session lengths and geographic spread of users.
Through developer annotations, these platforms also al-
low for some simple timing information to be collected.
But obtaining detailed timing behavior and critical-path
analysis is not feasible with these platforms. To aid with
diagnosing crashes, many mobile platforms report crash
logs to developers when their application fails. While col-
lecting such data over long term is important [10], it does
not necessarily help with performance analysis [1]. Sev-
eral researchers [17, 14] have studied energy consump-
tion of mobile apps and have collected execution traces
for that purpose. Our focus, on the other hand is on per-
formance analysis in the wild.

11 CONCLUSION

AppInsight helps developers of mobile apps monitor and
diagnose the performance of their apps in the wild. Ap-
pInsight instruments app binaries to collect trace data,
which is analyzed offline to uncover critical paths and
exception paths in user transactions. AppInsight is
lightweight, it does not require any OS modifications,
or any input from the developer. Data from a live de-
ployment of AppInsight shows that mobile apps have

a tremendous amount of concurrency, with many asyn-
chronous calls and several parallel threads in a typical
user transaction. AppInsight is able to correctly stitch
together these asynchronous components into a cohesive
transaction graph, and identify the critical path that deter-
mines the duration of the transaction. By examining such
transactions from multiple users, AppInsight automati-
cally identifies outliers, and sources of variability. Ap-
pInsight uncovered several bugs in one of our own app,
and provided useful feedback to other developers.

ACKNOWLEDGMENTS

We thank Ronnie Chaiken and Gleb Kirosheev for discus-
sions and support during AppInsight development. We
also thank Petros Maniatis and the anonymous reviewers
for their comments on earlier drafts of this paper.

REFERENCES
[1] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl. There’s an app

for that, but it doesn’t work. Diagnosing Mobile Applications in
the Wild. In HotNets, 2010.

[2] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and A. Muthi-
tacharoen. Performane Debugging for Distributed System of
Black Boxes. In SOSP, 2003.

[3] P. Barford and M. Crovella. Critical Path Analysis of TCP Trans-
actions. In ACM SIGCOMM, 2000.

[4] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie
for Request Extraction and Workload Modelling. In OSDI, 2004.

[5] M. Chen, A. Accardi, E. Kıcıman, J. Lloyd, D. Patterson, A. Fox,
and E. Brewer. Path-Based Failure and Evolution Mangement. In
NSDI, 2004.

[6] J. Elliott, R. Eckstein, M. Loy, D. Wood, and B. Cole. Java Swing,
Second Edition. O’Reilly, 2003.

[7] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. Seth. TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones. In OSDI, 2010.

[8] Flurry. http://www.flurry.com/.
[9] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-

Trace: A Pervasive Network Tracing Framework. In NSDI, 2007.
[10] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,

G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in the
(Very) Large: Ten Years of Implementation and Experience. In
SOSP, 2009.

[11] G. Hunt and D. Brubacher. Detours: Binary Interception of Win32
Functions. In Usenix Windows NT Symposium, 1999.

[12] M. Jovic, A. Adamoli, and M. Hauswirth. Catch Me if you can:
Performance Bug Detection in the Wild. In OOPSLA, 2011.

[13] S. Lidin. Inside Microsoft .NET IL Assembler . Microsoft Press,
2002.

[14] A. Pathak, Y. C. Hu, and M. Zhang. Where Is The Energy Spent
Inside My App? Fine Grained Energy Accounting on Smart-
phones with Eprof. In EuroSys, 2012.

[15] C. Perzold. Microsoft Silverlight Edition: Programming Windows
Phone 7. Microsoft Press, 2010.

[16] Preemptive. http://www.preemptive.com/.
[17] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck.

Profiling Resource Usage for Mobile Applications: A Cross-
Layer Approach. In MobiSys, 2011.

[18] A. Whitechapel. Windows Phone 7 Development Internals. Mi-
crosoft Press, 2012.

[19] C.-Q. Yang and B. P. Miller. Critical Path Analysis for the Execu-
tion of Parallel and Distributed Programs. In IEEE DCS, 1988.

14

