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Abstract

We develop Propane/AT, a system to synthesize provably-

correct BGP (border gateway protocol) configurations for

large, evolving networks from high-level specifications of

topology, routing policy, and fault-tolerance requirements.

Propane/AT is based on new abstractions for capturing pa-

rameterized network topologies and their evolution, and al-

gorithms to analyze the impact of topology and routing pol-

icy on fault tolerance. Our algorithms operate entirely on ab-

stract topologies. We prove that the properties established

by our analyses hold for every concrete instantiation of the

given abstract topology. Propane/AT also guarantees that

only incremental changes to existing device configurations

are required when the network evolves to add or remove de-

vices and links. Our experiments with real-world topologies

and policies show that our abstractions and algorithms are

effective, and that, for large networks, Propane/AT synthe-

sizes configurations two orders of magnitude faster than sys-

tems that operate on concrete topologies.

CCS Concepts • Networks → Network manageability;

Network management; • Software and its engineering →
Domain specific languages

Keywords Propane/AT; Domain-specific Language; BGP;

Fault Tolerance; Compilation; Network Management

1. Introduction

Computer networks run many critical services, and every

second of downtime is costly at best and dangerous at worst.

Yet, keeping these systems running 24/7 is an enormous

challenge [10, 11, 15, 26]. While hardware faults, backhoes,

power failures and natural disasters all pose problems, stud-

ies have shown that human error in network configuration is

one of the leading causes of outages [21, 29].

To configure large networks, instead of considering indi-

vidual devices, operators classify devices into roles. A role

refers to specific functionality and is served by one or more

devices. For instance, in a data center, roles may be “top-of-

rack,” “aggregation,” and “spine” routers; and in a backbone

network, they may be “core” and “border” routers. While

the network may have hundreds or thousands of devices—a

scale that is impossible for humans to handle—there tend to

be only a handful of roles. Operators author a configuration

template for each role. Templates are macros that, given a

network topology, can be instantiated with different concrete

values to generate device configurations.

Unfortunately, templates use the same low-level con-

structs as ordinary router configurations (e.g., adding or re-

moving tags from announcements). In both templatized and

non-templatized configurations, ensuring that a collection

of low-level, local configurations achieves some important

network-wide policy, such as a guarantee of connectivity in

the face of failures, is extremely challenging. To validate

their templates, operators will typically first instantiate a

template with appropriate concrete parameters and then test

it under various scenarios. In general, like in any complex

software system, such testing is inherently incomplete.

Moreover, even if network operators were to instantiate

their templates using the initial network topology and verify

key properties using tools such as Bagpipe [36], the guaran-

tees would not hold as the network topology evolves. Evo-

lution of the topology is a frequent event for large networks,

as devices and links are taken offline for maintenance and

added to expand capacity. Templates that work for the cur-

rent topology may or may not work for future topologies.

Ensuing problems may cause operators to make non-uniform

changes to routers’ configurations, which defeats the pur-

pose of a template system. An even worse situation is when

operators must update many devices to evolve their network.

Such network-wide configuration changes entail a great deal

of risk and can be highly disruptive to live traffic.

Given the challenges of generating and validating net-

work configurations, one might think that operators will be
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receptive to systems that can generate provably-correct con-

figurations from high-level policy specifications [5, 8, 28].

However, our conversations with two major cloud providers

reveal that operators of large networks are reluctant to use

such systems. While they think of their network abstractly,

in terms of roles, current synthesis systems operate over con-

crete topologies. Even if two devices play the same role, op-

erators cannot specify policy in terms of this role; and even

if specifications for the two devices are similar, there is no

guarantee that the systems will generate (syntactically) simi-

lar configurations. Perhaps most importantly, if the operators

want to debug or analyze system output, they will have to

consider hundreds of device configurations instead of just a

handful of role configurations. Current synthesis systems are

also brittle in the face of network evolution. Any change in

network topology requires re-execution of the engine, from

scratch, on the new topology, and the result may be a com-

pletely different set of configurations. No operator can shut

down a large, production network, upgrade policy on all de-

vices and then restart their network.

To address the challenge of configuration synthesis in

the presence of abstract roles, we develop Propane/AT.

Propane/AT allows operators to input abstract topologies in

terms of roles and their connectivity. For instance, they may

specify roles for “top-of-rack” and “aggregation” routers

and specify that every top-of-rack router connects to at least

two aggregation routers (to tolerate the failure of a link to an

aggregation router). Propane/AT takes two additional inputs.

The first is a high-level specification of routing policy, for

which we borrow notation from the original Propane sys-

tem [5]. While Propane policies refer to concrete devices,

Propane/AT policies refer to abstract roles. The final input

to Propane/AT is the fault-tolerance requirements of the net-

work, such as the number of simultaneous link failures it can

tolerate without loss of connectivity for any traffic flow.

Based on these inputs, Propane/AT generates one tem-

plate per role. These templates specify routing policy using

BGP (border gateway protocol). BGP is the standard pro-

tocol for interdomain routing and is also commonly used

within data centers because of its scalability and support

for rich policies.1 Our templates are correct for any concrete

topology that complies with the abstract topology. They are

also evolution friendly. When the network evolves from one

compliant concrete topology to another, only the configu-

rations of devices that acquire or lose a neighbor need to

change. This guarantee is the best that any system can give as

neighbor relationships are explicitly configured in devices.

We achieve it in part by leveraging BGP features that allow

arbitrary tags on routing announcements and expressing pol-

icy using such tags (instead of router identifiers).

During synthesis, our compiler analyzes abstract topolo-

gies to determine the fault tolerance properties of the speci-

1 However, BGP is not the only routing protocol used in existing networks.

In the future, we will extend our work to other protocols such as OSPF.

fied routing policy. This analysis yields a lower bound on the

number of link failures required to disconnect one abstract

location from another. Any concrete instance of the abstract

topology will adhere to the given fault tolerance property.

We use Propane/AT for a range of real-world topologies

and routing policies. We find that it can effectively encode

the topologies and their evolution, and the fault tolerance

bounds that it computes are often precise. We also find

that Propane/AT scales substantially better than its nearest

competitor, the original Propane system, which operates

over concrete topologies. As the number of devices in a

network grows, the number of distinct roles will often stay

constant. Consequently, Propane/AT can be two orders of

magnitude faster than Propane, taking less than 10 seconds

to synthesize templates for large networks.

Contributions: To summarize, our contributions are:

• New topology abstractions for network programming

based on graph homomorphisms and connectivity rules.

• New algorithms for analyzing routing policy and fault

tolerance over abstract topologies.

• Implementation and evaluation of a Propane/AT compiler

that generates BGP templates and is much faster than

compilers based on concrete topologies.

2. Background

In this work, we focus on synthesizing configurations for a

network that runs BGP, the standard for routing across inde-

pendent organizations and inside large data centers. It scales

effectively and allows operators to define flexible policies.

We provide a brief background on BGP focused on aspects

relevant to our work.

The way in which a BGP-based network forwards traf-

fic depends on how the routers exchange and process rout-

ing announcements. To invite traffic from a neighbor to a

destination, routers announce the destination’s address pre-

fix (e.g., 10.1.1.0/242) to the neighbor. Traffic flows in the

opposite direction to such route announcements.

All route announcements carry an AS path, the sequence

of BGP networks, called autonomous systems (ASes), that

will be traversed to reach the destination. Optionally, they

may also include one or more communities, which are arbi-

trary tags whose semantics are agreed upon out of band.

When a BGP router receives one or more announcements

for a prefix from different neighbors, it selects which one to

use (if any) based on its configuration. This selection can de-

pend on the AS path, communities, or the neighbor that sent

the announcement, and it can even discard certain announce-

ments (i.e., never use them for sending traffic). Then, based

again on its configuration, the router forwards the selected

route to one or more neighbors, after adding itself to the AS

path, and optionally, modifying communities.

2 An IP address such as 10.1.1.0 is 32 bits, with each of the four values

representing 8 bits. The prefix 10.1.1.0/24 denotes the set of addresses that

share the first 24 bits with 10.1.1.0, i.e., all addresses that begin with 10.1.1.
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Figure 1: An example data center network.

Figure 2: A modified version of the network in Figure 1.

When announcing destinations to certain neighbors, a

BGP router may perform route aggregation, i.e., announce

a single prefix that covers multiple prefixes (e.g., announce

10.1.0.0/16 instead of 10.1.[1–255].0/24). The covering pre-

fix is announced if the router has a valid route for any of the

covered prefixes. Aggregation helps reduce the memory con-

sumption of routers, but it can lead to traffic black holes [24].

A router that announces 10.1.0.0/16, because it has a route

to 10.1.1.0/24, may also get traffic for 10.1.2.0/24 to which

it has no route.

3. Motivation

We demonstrate the difficulty of configuring networks today

using the data center example in Figure 1. The boxes denote

routers. Using terminology for fat tree networks [3], S[1–2]

are spine routers, A[1–8] are aggregation routers,3 and T[1–

8] are top-of-rack (ToR) routers. The spine routers connect

to the Internet through neighbors N[1–2]. The ToR routers

attach to a set of servers (“a rack”) that host services with

address prefixes P[1–8].

The intended policy for this network is: (1) complete in-

ternal connectivity, i.e., all routers should be able to reach

each other; (2) services in Pods[1–2] should be accessible

from outside; (3) prefixes for global service should be aggre-

gated into a covering prefix PG when announced outside; (4)
services in Pods[3–4] should not be externally accessible;

(5) traffic paths should be valley-free (e.g., a path through

S1 should not go down through Ai and then back up through

S2, for instance, creating an up-down-up path); (6) prefer

neighbor N1 over N2, i.e., when both neighbors announce a

3 This term is not related to BGP route aggregation.

Figure 3: Idealized small configuration component for the

data center spine based on templates from a cloud provider.

prefix, send traffic through N1; (7) routers should not transit

traffic between N1 and N2; and (8) no loss in connectivity

after any single-link failure.

To correctly configure this policy, operators must gener-

ate configurations for each router, which implies ensuring,

for instance, that all routing adjacencies are correctly con-

figured (e.g., T1’s configuration includes A1 as neighbor and

vice-versa); the ToRs announce the correct prefixes for their

services; all routers forward the prefix announcements that

they should to each neighbor and not forward others (e.g.,

the spines should forward prefixes for local services to inter-

nal neighbors but not to external neighbors); and the spines

announce externally only the covering global prefix. Such

configuration tasks are highly complex [1, 5, 11, 29].

To simplify them, operators are adopting a template-

based approach [19, 35]. Instead of authoring a configu-

ration per router, operators author a template per role. A role

is a specific function that is served by one or more routers.

For example, the network in Figure 1 might have five roles:

spine, global aggregator, global ToR, local aggregator, and

local ToR. Figure 3 shows an example of what a small com-

ponent of a template for the spine role in the two data centers

might look like. The template has parameters for various as-

pects of the configuration (e.g., neighbor list, local prefixes)

and is compiled to low-level device configurations by in-

stantiating the parameters using the network topology and a

database of network information.

As described earlier (§1), templates are hard to author and

hard to validate. Worse, templates that work for one topol-

ogy may not work for seemingly-inconsequential variations

which may arise after the network evolves. Consider the net-

work in Figure 2, which is similar to Figure 1; it has the same

five roles, connected in a similar hierarchy. One might think

that the same templates, with different database entries, can

be used for both cases. However, if the templates are config-

ured to disallow “valley” paths (per policy (5) above), they
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will work for Figure 1 but silently violate the fault tolerance

policy (8) when used for Figure 2. Specifically, in Figure 2,

an aggregation-based black hole (§2) will occur when the

link S1–A1 fails; after this failure, S1 has no valley-free path

to P[1–2] even though it will continue to get traffic for these

prefixes as it announces the covering prefix PG (because it

gets routes for P[3–4]). Such a black hole will not occur in

Fn Figure 1 because spine routers have two links to each

pod.

When operators discover that an old template no longer

works, they may consider changing it, which may cause a

change to all devices that use it—an unacceptable disrup-

tion in many cases. As a result, operators may abandon the

template entirely and revert to hand-crafting configuration

patches to accommodate the change. Such patches reintro-

duce the complexity and the risk of errors that templates

were meant to prevent.

4. Propane/AT Overview

Propane/AT takes as input the network’s abstract topology

and its policy. The policy consists of the routing policy that

describes how traffic should flow and the fault-tolerance

policy that describes how many simultaneous link failures

the network should withstand without losing connectivity.

Abstract Topology Abstract topologies in Propane/AT de-

fine structural and role-based invariants that compactly de-

scribe all concrete networks that can emerge as the network

evolves. They are encoded in the form of a graph homo-

morphism annotated with logical constraints about node and

edge multiplicities. We designed the abstractions to be able

to precisely capture real network topologies, while being

amenable to fault-tolerance analysis in the abstract domain.

Our topology abstractions consist of several concepts.

The primary one is a role-based abstraction that allows an

operator to map routers in the concrete network to roles

in the abstract network. Figure 4 shows an example of this

abstraction for both networks from §3. In the example, the

concrete networks are abstracted into a new topology with

5 different roles: local ToR (TL), global ToR (TG), local

aggregator (AL), global aggregator (AG), and spine (S).

More specifically, a network topology is a graph G =

(V,E), which consists of a set of vertices V and a set of

directed edges E : V × V . A role-based abstraction is a

graph homomorphism from G to an abstract graph GA =

(V A,EA). A graph homomorphism f : G → GA maps each

node in the concrete graph to a node in the abstract graph

such that, whenever (u, v) ∈ E, then (f(u), f(v)) ∈ EA.

The role-based abstraction therefore over-approximates the

connectivity of the underlying concrete graphs.

On its own, this abstraction loses a lot of information

about the concrete network’s structure, making it difficult

to reason precisely about fault-tolerance. For example, with

this abstraction any spine router may or may not connect to

any aggregator router. To capture concrete networks more

Figure 4: An abstraction for the network in Figure 1.

precisely, we introduce additional concepts. The first is

topology hierarchy, captured by P and Q, which indicate

that nodes in the ToR and aggregator roles are grouped into

pods. The second is node and edge multiplicity. Each edge

(and node) is labeled with a symbolic variable (e.g., e1) that

denotes a constraint on the number of edges (and nodes) that

may appear in any valid concrete network. Operators can

capture concrete network invariants by adding constraints

on the symbolic variables using logical formulas.

For example, in Figure 4, the first constraint (e1 = AG)

states that, within any pod P, the number of outgoing edges

from a node in the TG role (i.e., e1) to a node in the AG
role equals the number of nodes in the AG role. Similarly,

the constraint (e2 = TG) states that the number of outgo-

ing edges from a node in the AG role (i.e., e2) to a node in

the TG role equals the number of nodes in the TG role. To-

gether these constraints capture the fact that, within any pod,

the global aggregators and ToRs are in a full mesh. Further-

more, the constraints AG = AL and AG ≤ S ensure that,

within pods P and Q, the AG and AL roles have the same

number of routers, which is less than or equal to the number

of routers in the spine role S. The constraint e3 ≥ 2 says

that, in each pod, each aggregator node has at least 2 out-

going edges to nodes in the spine role. Symmetrically, the

constraint e4 ≥ 1 says that, for each pod P, each node in the

spine role has at least one outgoing edge to a node in the AG
role. Similar constraints appear for the local aggregator role.

The constraint 2 ≤ S ≤ 4 makes explicit the possibility for

growth, for example, by growing the network from Figure 1

to Figure 2. In general, we need not bound the number of

spine routers to admit more concrete topologies, potentially

at the expense of analysis precision. We also include the con-

straints (S mod AG) = 0, and (S mod AL) = 0 simply

to show that constraints do not have to be in the form of in-

equalities. Operators can use logical formulas from any the-

ory supported by modern SMT solvers.

A final concept is the mincut(1) constraint between the

spine role S and N[1–2]. It says that any spine router has

at least one path to any node in the neighbor N1 (and N2)

role. Such annotations are useful for a “one big switch”
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abstraction [7] in which a complex, unstructured network

is represented as a single node. As another use case, an

ISP backbone can be modeled by dividing the network into

separate geographic regions with two roles per region—one

for the border routers and another for the network core.

Mincut annotations can describe the degree of fault tolerance

both within regional cores and across regions.

Our topology abstractions can also capture concrete

topologies by using a one-to-one correspondence between

abstract and concrete nodes/edges. This allows operators to

define complex networks in which some (e.g., legacy) parts

of the network cannot evolve while others can.

Routing Policy Routing policies in Propane/AT consist of

an ordered sequence of i) a predicate that matches a class of

traffic; and ii) paths that the traffic should take through the

network, ranked per their relative preference. Propane/AT

borrows syntax from Propane [5], but instead of concrete

predicates and paths, uses abstract predicates and paths.

Let us see how to express the routing policy of the net-

works in §3 over the abstract topology. We can capture the

basic routing behavior, constraints (1, 2, 6), as follows:

define Routing =

$GP => end(TG)

$LP => end(TL)

true => end(out) & exit(N1 >> N2)

The second line introduces a prefix template variable

$GP. Template variables represent multiple instances of a

rule for different concrete prefixes that can be provided by an

external source (e.g., a database). The line says that traffic for

each global prefix associated with the variable should follow

a path that ends at its corresponding destination router in

the TG role. As we will see in §5, constraints like end(TG)

are just syntactic sugar for regular expressions describing

network paths. The second line has a similar policy for

local prefixes. The final rule matches all other IP prefix

destinations and allows traffic to follow a path that leaves

the data center, ending at some external role (out), through

neighbors N1 or N2 with a preference for leaving through

N1. The >> symbol indicates that traffic should satisfy the

constraint on the left and resort to the backup (right) only

when that is not possible due to network failures.

Next, we can capture constraint (4) that traffic for local

prefixes must stay within in the data center:

define Local =

$LP => always(in)

The Local policy adds the always(in) constraint for each

local prefix described by the template variable $LP. This

constraint ensures that traffic follows a path that matches an

internal role (i.e., in the data center) at each hop of the path.

The constraint to prevent “valleys” (5) is written as:

define NoValley =

true => novalley({TG,TL},{AG,AL},{S})

This policy applies to all traffic and prevents valley paths

by adding the novalley constraint with arguments corre-

sponding to each level in the data center. Constraint (7) to

prevent transit traffic between neighbors is expressed as:

define Peer = {N1,N2}

define NoTransit =

true => !(enter(Peer) & exit(Peer))

We define a Peer as N1 or N2 and disallow paths where

traffic both enters and exits the data center through a peer.

Finally, we can combine these constraints together as:

Routing & Local & NoTransit &

NoValley & agg(GP_AGG, in -> out)

This instructs Propane/AT to satisfy the conjunction of all

the constraints. It also declares that we want to perform

route aggregation, with covering prefix GP AGG, for global

prefixes at the border of the data center (i.e., along any edge

that connects the inside of the data center to the outside). In

this case, GP AGG is declared as a concrete prefix rather than

a template because a single aggregate prefix will be used to

summarize all less-specific prefixes.

Fault-Tolerance Policy This policy specifies how many

link failures the network should be able to withstand before

traffic experiences connectivity loss. Operators can specify

different tolerance levels for different pairs of abstract nodes.

For instance, they may say that ToR to spine connectivity

should be robust to 2 failures, i.e., no ToR-spine pair should

lose connectivity as long as the number of simultaneous link

failures is 2 or fewer; and ToR-to-ToR connectivity should

be robust to 1 failure.

Synthesis Propane/AT generates templates from the inputs

above in three phases. First, it combines the abstract topol-

ogy and routing policy into a product graph (PG) that com-

pactly captures the flow of routing information over the

topology in a policy-compliant manner. The algorithm for

this phase builds on Propane (for concrete networks); we

show that it can be extended to abstract inputs.

Second, Propane/AT checks if the fault-tolerance policy

can be met by considering the joint impact of the abstract

topology and routing policy. Joint analysis is needed, be-

cause connectivity depends on both: traffic will not flow

along valid topological paths if the routing policy disallows

it. We develop a sound analysis based on computing the min-

imum number of edge-disjoint, policy-compliant paths be-

tween pairs of nodes over abstract topologies. If this num-

ber is less than the desired fault-tolerance level for a pair of

nodes, Propane/AT declares that the policy cannot be met.

If it can be met, Propane/AT generates templates for each

node in the abstract topology. Per-device BGP configura-

tions can in turn be generated from the templates using in-

formation in the concrete topology. To ensure the process is

sound, Propane/AT checks that the given concrete topology

is an instance of the abstract topology.
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d ∈ Integers

x ∈ Variables

l ∈ Topology Locations

pol ::= p1, . . . , pn Policy

p ::= t => r1>> . . .>>rm | a Path Preferences

t ::= $x | d.d.d.d/[d..d] Predicate

a ::= agg(t, r1 → r2) Aggregation

r ::= l | ∅ | in | out | r1 ∪ r2 | Regular Path

r1 ∩ r2 | r1 · r2 | !r | r
∗

Figure 5: Propane/AT core syntax.

The following sections detail each of the three phases.

5. Product Graph Generation

The first step for the Propane/AT compiler is to build the

product graph (PG), a data structure that is amenable to joint

analysis of the topology and routing policy. As a precursor

to this step, we convert the routing policy syntax in §4 to a

core language based on regular expressions, shown in Fig-

ure 5. A policy has one or more constraints, each an ag-

gregation or a path constraint. Path constraints have a test

on a destination prefix and a list of regular expressions de-

scribing network paths. Regular paths are defined over net-

work locations, where each location is either a router inside

the operator’s network, or an external neighbor connected to

that network. Values in and out will match any internal and

external location respectively. There are two types of pred-

icates, as shown. A test for a concrete prefix d.d.d.d/[d..d]
matches a range of IP prefixes (e.g., 10.0.1.0/[24..32]) where

metavariable d represents an integer. A prefix template test

$x, for variable x, represents a collection of many tests, one

for each prefix represented by the template.

Converting from the high-level syntax from §4 to the

core syntax is straightforward. The predicate true becomes

the prefix range 0.0.0.0/[0..32]. Each constraint desug-

ars to a regular expression. For example, the constraint

always(in) becomes in∗ and the constraint end(TG) be-

comes Σ∗ · TG. Preferences are lifted to the top level of the

regular expression when their use is unambiguous, and sep-

arate sets of constraints are joined prefix-by-prefix by taking

the regular expression intersection of their constraints.

We are now ready to generate the PG. Intuitively, the PG

captures topology and routing constraints by “intersecting”

the finite automata associated with the policy regular expres-

sions with the graph structure of the topology. Because there

can be a separate routing policy for each predicate t in the

policy, we construct one PG for each predicate.

For each regular path constraint ri from r1 >> ... >> rk,

we construct a DFA for the reverse of ri. A DFA for ri is

defined as a tuple (Σ, Qi, Fi, q0i , σi). The alphabet Σ is the

set of topology locations (i.e., routers or roles), Qi is the set

of states for automaton i, Fi is the set of final states, q0i is

the initial state, and σi : Qi × Σ → Qi is the state transition

function. The PG for a graph (i.e., a topology) G = (V,E) is

a tuple (G′, start, rank) where G′ = (V ′, E′) has vertices

V ′ : V ×Q1×· · ·×Qj , edges E′ : V ′×V ′, a unique starting

vertex start, and a ranking function rank: V ′ → 2{1,...,j},

mapping nodes in the PG to a set of path ranks.

The PG is constructed by adding an edge from state

m = (lm, qm1
, . . . , qmk

) to n = (ln, qn1
, . . . , qnk

) when-

ever σi(qmi
, ln) = qni

for each i and (lm, ln) ∈ E. We add

edges from the start node to any m = (l, qm1
, . . . , qmk

)
when σi(q0i , l) = qmi

for each i. The ranking function

rank(m) denotes the rank of paths through the PG ending

at node m and is defined as rank(m) = {i | qmi
∈ Fi}. Fi-

nally, we write topo(m) = l to extract the topology location

from a PG node, when m = (l, qm1
, . . . , qmk

) ∈ V ′. For the

remainder of the paper, we use the term location to refer to a

router in the case of a concrete topology/PG, or a role in the

case of an abstract topology/PG.

Figure 6 shows the PG for the data center policy that

applies to all external traffic (true=>exit(N1 >> N2)).

The first automaton represents the more preferred constraint

exit(N1) and the second automaton represents the less pre-

ferred constraint exit(N2). The PG is shown for both an

instance of a simple concrete network matching the abstrac-

tion from §4 as well as for the abstract topology.

Paths through the PG represent paths through the topol-

ogy that BGP announcements may use to ensure policy-

compliance. For example, in the concrete PG, all messages

from N1 are not blocked at spine routers S1 and S2. Paths

for a destination learned through N1 will end in an accept-

ing state for the first automaton (e.g., node (T1,1,0)). Simi-

larly, paths for a destination learned through N2 will end in

an accepting state for the second automaton.

Interestingly, the concrete and abstract PGs have a similar

structure, which leads to the following observation:

Lemma 5.1. If we have a graph homomorphism f : G →
GA, concrete product graph PG = (G′, start , rank) and

abstract product graph PGA = (G′A, startA, rankA), then

there is a homomorphism fpg : G′ → G′A where:

fpg(start) = start
A

fpg((l, q1, . . . , qn)) = (f(l), q1, . . . , qn)

As shown in §7, our generation strategy commutes with

template instantiation, meaning that we obtain the same re-

sults if we instantiate the abstraction early, or if we defer the

instantiation until after template generation.

6. Fault-Tolerance Analysis

The possibility of network failures exacerbates the difficulty

of constructing correct configurations. Link failures in net-

works occur frequently; it is not uncommon for a large net-

work to experience dozens of failures in any given day [15].

However, existing tools [5, 33] reason about fault-tolerance

only for concrete topologies. Propane/AT provides stronger

guarantees: all possible concrete instantiations of an abstract

topology satisfy the fault-tolerance policy.
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Figure 6: Product Graph construction for policy true => exit(N1 >> N2).

We frame satisfying the fault-tolerance requirements as

an analysis problem over the structure of the PG. In particu-

lar, we develop an analysis that uses information embedded

in the abstract topology to infer bounds on the number of

edge-disjoint paths between pairs of concrete nodes.

For each node in the abstract PG, the idea is to infer facts

learned about the number of edge-disjoint paths to groups

of concrete routers in the node’s role. More specifically, we

maintain fact of the form:

LX1
, . . . , LXn

(j, k)

where each label L ∈ {S,A} is either S, which stands

for “some” or is A, which stands for “all”. There is one

label for each pod in the abstraction pod hierarchy under

which the abstract node appears. For a given node, LX1

corresponds to the outermost pod, LXn−1
corresponds to

the innermost pod, and LXn
to the node itself. Semanti-

cally, LX1
, . . . , LXn

(j, k) means that starting from some

concrete source node, for some/all pods X1, . . . , Xn−1 and

for some/all groups of nodes in the role Xn of size j, there

are k paths to each such that all j ∗k paths are edge-disjoint.

For example, an inference of the form AQATL(2, 3)
states that, from the given source location, for all pods Q,

and all groups of 2 nodes in the TL role, there are 6 disjoint

paths to the group—3 for each of the 2 nodes.

6.1 Inference Rules

Figure 7 displays the collection of rules used to infer facts

about disjoint paths. Each rule is read from bottom to top.

The label on the bottom left is a known fact. We use L
to represent a rule that is parametric over the label (S or

A). Labels on other nodes correspond to facts learned after

applying the rule. The box shows the conditions that must be

valid, given the abstraction constraints, for the rule to apply.

Some of the inference rules (e.g., I-out2 and I-mesh2) try

to learn about the largest number of disjoint paths to any

single node in an abstract role, while others (e.g., I-out1 and

I-mesh1) try to learn about the largest reachable group in a

particular role with at least one disjoint path to each node in

that group. Both kinds of rules are useful.

The first rule, I-out1 applies to a learned fact of the form

Lm(j, k) where the number of outgoing edges from any

concrete node in the m role is greater than 0. In the worst

case, the largest group of concrete nodes we could hope to

reach at the n role would be e1 since all j nodes at the bottom

may have outgoing edges to the same concrete nodes at the

top. Furthermore, the total number of disjoint paths to the j
nodes at the bottom is equal to j ∗ k. Since extending the

existing disjoint paths with disjoint edges keeps the paths

disjoint, and since we cannot exceed the current number of

disjoint paths to the concrete nodes in role m on the bottom,

the largest reachable group for the role n on the top will be

min(j ∗ k, e1). We conservatively use 1 for the number of

disjoint paths to each node in role n, since when n is very

large, all reachable nodes in role m might only have a single

edge to completely different nodes in n.

Consider rule I-out2, and consider any node in the role

n. There are e2 incoming edges to that node. Due to the
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Figure 7: Abstract k-disjoint path analysis inference rules.

fact that Am(j, k), we know that at least j of those e2 edges

are connected to nodes with disjoint paths from the origin.

Hence we infer An(1,min(j, e2)).
The two rules I-mesh1 and I-mesh2 handle the case where

there is a full mesh between the two roles. This happens

when the number of outgoing edges (e1) from nodes in

role m equals the number of nodes on top (n). I-mesh1

says that we can find disjoint paths to each node in the top

role restricted to the number of disjoint paths we started

with. I-mesh2 uses the fact that each node in the top role is

connected to each node in the bottom role to infer that there

can be j disjoint paths to any single node in the top role.

The annotation mincut(X) appearing on an edge is an

assertion about the fault tolerance between nodes in two

different roles. The rule I-mincut uses such assertions. To

each node in role n, from a node in role m, we can construct

at least the minimum of X and k disjoint paths.

The rule I-striping is the most complicated case. It starts

with the invariant Lm(j, k) at role m and can be applied if

each edge multiplicity ei > 0 is valid given the constraints.

The first inference for role n tries to find the largest reachable

group with disjoint paths to each. The idea is similar to

the rule I-out1, but is able to use the fact that e2 > 0 to

learn more about the structure of the concrete topology. In

particular it uses the following inequality, where g represents

the size of the group for the role n:

(m− j) ∗ e1 ≥ (n− g) ∗ e2

The remaining nodes (m − j) that are not part of the reach-

able group in the bottom role, each have e1 outgoing edges

and must be able to at least “fill” the incoming edges for the

remaining nodes not in the reachable group at the top (n−g),

which each have e2 incoming edges. Solving the inequality

gives the lower bound for g used in Figure 7.

The second part of the rule uses a similar idea to reason

about the overlap between roles m and o with respect to role

n. This rule is particularly useful for data center topologies

where routers in one tier of the data center often have a

uniform striping pattern with another tier.

Finally, rules I-local and I-global reason across pod hier-

archies. I-local says that if there is an inference from X to

Y , then the derivation can be used inside pod P by leaving

the P-label unchanged. I-global says that when the edge goes

across pods, we can infer the fact for all pods Q since the

multiplicities apply uniformly for each pod.

6.2 Inference Algorithm

The abstract disjoint path analysis starts from a fixed source

location src and repeatedly tries to apply every inference

rule from Figure 7 until it reaches a fixed point. The al-

gorithm applies an inference rule when the rule’s condi-

tion is valid given the abstract topology constraints. Because

the inference rules may continue to yield larger and larger

symbolic expressions, we make the following observation

to ensure termination: for any invariant learned of the form

L(j, k), it is sound to instead infer L(j′, k′) if j′ ≤ j and
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Figure 8: Abstract disjoint path analysis for global prefixes.

k′ ≤ k. Therefore, for each inference L(j, k) we minimize

the symbolic expressions for j and k subject to the topology

constraints using the optimizing SMT solver νZ [6].

At a higher level, what is happening is that each infer-

ence rule is attempting to learn the maximum fault tolerance

information possible as a function of the symbolic inputs.

The νZ [6] solver will then minimize this maximum by ac-

counting for all possible topologies that meet the abstraction.

Facts learned with j = 0 or k = 0 are discarded.

Recall the policy for global prefixes in the data center.

$GP => end(TG) ∩
novalley({TG,TL},{AG,AL},{S}) ∩
!(enter(Peer) & exit(Peer))

Figure 8 shows part of the abstract PG representation for

this routing policy. The inference algorithm starts from the

node (TG, 0, 0) with the initial fact SPSTG(1,∞) (i.e., no

restriction on the number of disjoint paths initially). The first

step applies each inference rule to this initial fact. The algo-

rithm uses rules I-mesh1 and I-local to reason about connec-

tivity within a single pod for the TG and AG roles. It makes

a call to νZ to minimize the expression min(∞, AG), which

results in 2. Therefore, the algorithm learns a new invariant

of the form SPAAG(2, 1) for node (AG, 0) to indicate that

in some pod P, any group of 2 nodes is reachable. The al-

gorithm will then eventually apply I-out2 to learn that any

single spine node is reachable at (S, 0). It will also apply

I-striping to determine that there is some group of at least 2

spine routers reachable at (S, 0) and that there is some group

of at least 2 nodes reachable in the AL role in state (AL, 0).
Note that, because each inference rule only applies to

directed edges in the PG, the algorithm cannot make any

inferences about connectivity from the AL role to the S role

since there is no directed edge from AL to S. This restriction

ensures that the analysis remains policy-sensitive.

The next step is to use I-mesh2 together with I-local to

infer that any single node in the TL role for any pod Q

is reachable via at least 2 disjoint paths. This process will

continue until a fixed point is reached.

The algorithm could infer that there is at least 1 disjoint

path to any spine router, and at least 2 disjoint paths to any

TL router. In this case, the analysis is precise. There exists

a concrete network, namely the data center from Figure 2,

where a single failure can disconnect a global ToR from a

spine router due to the valley-free constraint.

7. Template Generation

At a high level, the translation from the PG representation to

per-device templates that run the distributed BGP protocol

involves the following steps: (1) Every BGP message is

tagged to record the state of the product graph as messages

are passed between routers. The tags allow BGP to only

search for valid paths by dropping messages that do not

correspond to any edge in the PG. (2) To ensure that BGP

always finds the best paths in the network, we must rank

route advertisements for each router locally such that, under

this ranking function, the network as a whole satisfies the

Propane/AT policy’s end-to-end network preferences.

We introduce a simple, vendor-independent BGP config-

uration language called mBGP and describe a compilation

function that uses the inferred preference ordering to gener-

ate concrete configurations from a concrete topology, or tem-

plates from an abstract topology. Given a concrete network,

templates can be instantiated by replacing instances of ab-

stract neighbors with the union of all concrete neighbors un-

der the inverse homomorphism, and by replacing prefix tem-

plate variables with separate entries for each concrete prefix

provided by a context. We call this process of transform-

ing templates into configurations concretization. We prove

that concretization and compilation commute. Moreover, by

modifying compilation slightly we can further ensure that

every configuration depends only on its immediate neigh-

bors. This guarantees that any change made to the concrete

topology will result in a minimal number of changes to the

configurations. We now look at each of these steps in turn.

Tagging and Filtering The BGP routing protocol allows

community tags—32-bit integer tags that can be arbitrarily

attached to, or removed from, routing advertisements. Com-

munity tags serve as a simple form of history, and operators

routinely use such tags to implement policy. For example,

operators might tag advertisements at certain entry points

and then block the export of tagged advertisements to pre-

vent their network from becoming a transit point.

Template generation uses community tags to record

the state of the automata from the Product Graph in ev-

ery BGP announcement and updates these tags whenever

messages are passed between routers. This mechanism en-

sures that BGP only considers paths that are allowed by the

Propane/AT policy (i.e., paths in the PG). Routers will allow

advertisements that correspond to an edge in the PG and will

block any advertisements that do not.
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mBGP Syntax

d ∈ Integers

c ∈ Communities

l ∈ Topology Locations

t ::= $x | d.d.d.d/[d..d] predicate

ns ::= {l1, . . . , lk} peers

ma ::= d : (ns1, c1)→ (ns2, c2) match action

pc ::= ma1, . . . ,mak predicate config

rc ::= t1 → pc
1
, . . . , tk → pc

k
router config

mbgp ::= l1 → rc1, . . . , lk → rck mbgp policy

Compilation to mBGP

compile
mBGP

([(t1, PG1, pref1), . . . , (tk, PGk, prefk)], G) =
[ l→ rc | l ∈ internal(G.V ), rc = append

i

[ ti → [ ma |
m← (l, qm) ∈ PGi,
pin← adjIn(PGi,m),
(in, qn)← {(bs, qn) | bs = {b | (b, qn) ∈ pin}, bs 6= ∅},
out← {c | (c, ) ∈ adjOut(PGi,m)},
ma = pref

i
(m) : (in, qn)→ (out, qm) ] ] ]

compile(p1, . . . , pk, G) =
compile

mBGP
([compile

PG
(p1, G), . . . , compile

PG
(pk, G)], G)

Figure 9: mBGP syntax (left), and compilation from product graphs (right).

For example, in the concrete PG in Figure 6, router

S1 appears in two PG nodes: (S1, 1, 0) and (S1, 0, 1).
These nodes have two peers that can send them messages:

(N1, 0, 0) and (N2, 0, 0). Therefore, S1 will allow adver-

tisements from both peer N1 and peer N2. If S1 uses the

path advertised by neighbor N1, then it will add the tag

(1, 0) to the advertisement before sending this to its neigh-

bors A1 and A2. If S1 uses a path advertised from neighbor

N2, then it will add the tag (0, 1) instead. Similarly, router

A1 appears in two PG nodes. It will admit advertisements

that have the (1, 0) or (0, 1) tag attached (and drop all other

advertisements). In either case, it will not modify the tag

before exporting the route to its neighbors.

Preference Search Tagging and filtering based on the PG

restricts the possible paths to those that are allowed by the

policy. However, finding some path to the destination is

not enough. We must ensure that each router uses its best

available path according to the policy. Further, each router

must continue to use its best available path as elements of

the network fail. In the example from Figure 6, the policy

was true => exit(N1>>N2), which indicates that paths

through N1 should be used whenever possible, and paths

through N2 should only be used as a backup. If router S1 al-

lows advertisements from both N1 and N2, but does not pre-

fer one advertisement over another, it might end up choosing

to use a path through N2 even though a more preferred path

through N1 exists and is available4. On the other hand, if the

S1-N1 link fails, then the best available path is through N2.

To enforce correct path preferences, we use the BGP

local-preference attribute, which allows routers to prefer cer-

tain routes (e.g., those from a particular neighbor or with a

tag) over other routes. The challenge is to find a collection of

device-local preferences that correctly enforce the policy’s

network-wide preferences in the face of any set of failures.

The idea is to search for such a device-local preference

function for each router that totally orders advertisements

from different neighbors (possibly with different tags). For

example, to satisfy the policy that leaving through N1 is

4 Ties between equally preferred paths can be broken nondeterministically.

preferred to leaving through N2, S1 should prefer a message

it hears from N1 over N2. Similarly, A1 should prefer routes

tagged with (1, 0) over those with (0, 1). Intuitively, S1

should prefer a message from N1 because it results in an

accepting state for automata 1, which indicates a better path.

Further, it can result in downstream routers such as A1 using

a path that is accepting for automata 1 as well.

In general, because BGP is distributed, each router does

not have a view of the entire network when choosing which

path to use, and finding a collection of preferences to ensure

correct end-to-end behavior for all failures is a hard prob-

lem. Propane introduced a conservative search strategy for

determining route preferences that works well in practice. To

make it work for abstract topologies, we modify the search

based on the following observation about the PG structure:5

Definition 7.1. Let m ≥rank n be a relation over PG

vertices that holds iff topo(m) = topo(n) and either

min(rank(m)) ≥ min(rank(n)) or rank(n) = ∅.

Intuitively m ≥rank n means that paths ending at node

n have lower automata rank and are thus better than paths

ending at m. The PG can be viewed as a labeled transition

system by pushing the location from each directed edge’s

target node onto the edge. That is, m
l
→ n if there is an

edge (m,n) in the PG and topo(n) = l. For example, in the

concrete PG we have the transition (S1, 1, 0)
A2
→ (A2, 1, 0).

Definition 7.2. We write m ≤ n if the subgraph reachable

from m and n respectively form a simulation relation with

respect to ≥rank. More specifically, we say that m ≤ n if

n ≥rank m and for every transition n
l
→ n′ from PG node

n there exists a transition m
l
→ m′ from m and m′ ≤ n′.

If m ≤ n, then advertisements received for node m can

safely be preferred over those received for node n after ac-

counting for the network-wide impact of the choice. For ex-

5 Recall that rank(m) is a set of priorities—those of the automata whose

final states include m. For instance, if rank(m) is {1,3} then automata 1

and 3 have m as a final state. Moreover, recall that the policy expressed by

automata i is preferred to the policy expressed by automata j if i < j.
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Figure 10: Spine template and concrete configurations

(left), and evolution-friendly templates (right).

ample, in Figure 6, S1 can receive advertisements in two

different contexts (S1, 1, 0) and (S1, 0, 1) and must choose

between messages received in these different contexts. Ad-

vertisements are preferred in state (S1, 1, 0) because they

result in a better path for S1 ((S1, 0, 1) ≥rank (S1, 1, 0))
and downstream routers such as A1 will also obtain paths no

worse than if S1 had chosen (S1, 1, 0). The policy is guar-

anteed to be safe from failures because if a link fails in the

topology, then m ≤ n will still hold since any transition that

becomes unusable for m also becomes unusable for n. That

is m ≤ n before the failure implies m ≤ n after the failure.

For each router, its corresponding PG nodes are then

sorted according to the ≤ operator. If the operator defines

a total order on PG nodes, then the compiler can simply

prefer advertisements from peers of node m over those of

n whenever m ≤ n. However, if ≤ does not form a total

order, then the policy is rejected as being potentially unsafe

under some failure conditions.

For example, in Figure 6 the inequality (S1, 0, 1) ≤
(S1, 1, 0) holds since nodes on the left side of the PG can

always match transitions made on the right hand side with

respect to the ≥rank relation. This relation does not hold

the other way around since (S1, 0, 1) �rank (S1, 1, 0).
Therefore, advertisements received at S1 with tag (1, 0)
must be preferred to those received at S1 with tag (0, 1).
Notice that in the abstract PG (S, 0, 1) ≤ (S, 1, 0) also holds.

This leads to the following observation:

Lemma 7.1. m ≤ n in the concrete PG iff fpg(m) ≤ fpg(n)
in the abstract PG.

Lemma 7.1 tells us that inferring preferences for the ab-

stract PG before template instantiation is equivalent to infer-

ring preferences for an already-instantiated concrete PG. A

proof appears in the technical appendix.

mBGP To characterize compilation we first introduce a

simple, vendor independent configuration language for the

BGP protocol called mBGP. The syntax for mBGP is shown

in Figure 9 (left). An mBGP policy consists of a sequence

of router configurations (one for each internal topology lo-

cation l). A router configuration is an ordered sequence of

pairs, where is pair contains a predicate describing the traf-

fic, and a predicate configuration. A predicate is either a tem-

plate variable $x or a prefix. A predicate configuration is a

collection of match action statements, where each match ac-

tion indicates that the router will match advertisements from

any of a set of peers ns1 with a particular community tag c1
with local preference d, before exporting the route to another

set of peers ns2 with a new community tag c2.

Compilation Figure 9 (right) defines compilation from

Propane/AT to mBGP. It proceeds by compiling constraints

pi in the original Propane/AT policy to a tuple of: the pred-

icate ti, the product graph PGi, and the preference func-

tion prefi. These tuples are passed to the compilemBGP

function, along with the network topology G. For each in-

ternal router in the topology l, and each predicate ti in the

Propane/AT policy, compilation goes through each node m
for l in PGi, and groups the inbound neighbors of m by tag

(qn) into sets (in). It allows imports from these neighbors

before exporting to the outbound neighbors of m. The local

preference for these imports is given by prefi(m), which

represents an integer based on the total ordering of (≤). We

build configurations using list-comprehension notation. For

instance, [ l → rc | l ∈ V, p(l, rc) ] denotes the mBGP policy

l1 → rc1, ..., lk → rck where each rci satisfies p(li, rci).
We use append to denote sequence concatenation.

Figure 10 (left) shows part of the generated mBGP con-

figuration for spine routers for both the concrete and abstract

policies. For brevity, we using the symbol (∗) to denote the

set of all neighbors and omit tags when irrelevant. For pre-

fix true, the spine routers will match advertisements from

peer N1 and N2. The match for N1 is preferred since it has a

higher BGP local-preference attribute (110). If an advertise-

ment from N1 is chosen, the spine attaches the community

tag (1, 0) before sending the route to all its peers (∗). If an

advertisement is only available from the backup N2, then it

attaches the tag (0, 1) instead. The template configuration

matches any global prefix $GP from any internal peer and

re-advertises the route to all its peers. For any local prefix, it

will allow an advertisement from any internal peer, and re-

advertise the route to only other internal peers. The concrete

configurations for S1 and S2 obtained from compilation for

the concrete PG from Figure 6 have a similar structure for

each local and global prefix where local routes are reflected

downward, while global routes are advertised to all peers.

Concretization The similar structure between the spine

template and concrete configurations is not a coincidence.

We formalize this observation by defining two concretiza-

tion functions (con), one for Propane/AT policies and an-

other for mBGP policies. Concretization takes a context

Γ : Var → 2Prefix×V that maps each template variable

to a set of pairs of a concrete prefix and topology location

where the prefix is owned. Both concretization functions

traverse the policy and substitute instances of a topology lo-

cation l in the template policy with the set of all concrete
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locations that map to l, given by the inverse homomorphism

f−1(l) = {l′ | f(l′) = l}. Additionally, whenever a pair

(pfx, l) ∈ Γ(x), then a new entry is added to the concretized

policy where pfx replaces $x and adds the constraint that

traffic ends at l (end(l)). For example, the spine template

in Figure 10, is obtained by substituting {A1, A2} for AG
and {A3, A4} for AL and by also replacing the entry for

$GP with entries for GP1 and GP2 given by the context.

Our main theoretical result is that the compilation and

concretization functions commute:

Theorem 7.2. For any context Γ, topologies G and GA,

homomorphism f : G → GA, and policy pol,

con(compile(pol,GA),Γ, f,G) = compile(con(pol,Γ, f), G)

Full definitions of concretization as well as the proof of

Theorem 7.2 are included in the technical appendix.

Incrementality Suppose an operator wants to expand the

concrete data center from Figure 1 by adding an additional

ToR router to the TG role. Per the network routing policy,

the new router will advertise any owned prefixes provided by

looking up $GP in Γ. Because the new topology matches the

abstraction, the compiled templates will remain the same.

However, in the spine configurations, the match on the global

prefix template variable $GP must be expanded when con-

cretizing the template to include the new prefixes added by

the ToR. Hence, this small change to the topology results in

a change to every single spine configuration.

More generally, each configuration template depends on

two things: the routing policy and the abstract topology. If

the policy remains fixed and a change to the concrete topol-

ogy preserves the topology abstraction, then the generated

templates will not change. Further, each template has policy

only in terms of its immediate neighbors. Because abstract

neighbors are substituted for concrete neighbors during con-

cretization, it would seem as though the generated config-

urations will also only depend on their concrete neighbors.

However, prefix template variables allow for the possibility

of introducing new prefixes in the context Γ after a change.

For example, when adding a new ToR router with its own

unique prefix, the spine configurations would need to know

about this new prefix. In fact, the only way in which the

concrete configurations can depend on anything non-local

is when instantiating prefix template variables.

To prevent the non-local changes induced by template

variables, we modify compilation in the following ways.

First, we associate a new unique community tag for each

template variable (e.g., $GP), and add this tag where the

route is originated (e.g., role TG). Then, template variable

tests elsewhere in the policy are replaced with a new test on

this tag. Finally, during template instantiation the tags are

left unmodified. Figure 10 (right) shows the spine and ToR

templates after this transformation. Routers in the TG role

Fixed Reachability K-paths

Some All Some All

Pairs Pairs Pairs Pairs

Tree-based topologies, valley-free routing

Fat tree [3] – ✓ ✓ ✓ ✓

Facebook [4] – ✓ ✓ ✓ ✓

F10 [25] – ✓ ✓ ✓ ✓

VL2 [16] – ✓ ✓ ✓ ✓

All topologies, shortest-path routing

Fat tree [3] – ✓ ✓ ✓ C

Facebook [4] – ✓ ✓ ✓ ✓

F10 [25] – ✓ ✓ ✓ C

VL2 [16] – ✓ ✓ ✓ C

BCube [18] k ✓ ✓ C C

DCell [17] k ✓ ✓ C C

Butterfly [23] n ✓ ✓ ✓ ✓

Hypercube N ✓ ✓ ✓ ✓

HyperX [2] L ✓ ✓ ✓ ✓

Figure 11: Expressiveness and precision of Propane/AT.

will originate ({start}) global prefixes and tag them with a

unique tag, while routers in the spine role match the tag.

8. Implementation

The Propane/AT compiler generates configurations for Cisco

and Quagga [30] routers. The fault-tolerance analysis uses

νZ [6] to both test validity and minimize variables subject

to the topology constraints. Since the analysis typically calls

the SMT solver many times with relatively small optimiza-

tion problems, we use a timeout of 200ms.

Although the disjoint path analysis takes place over the

PG, each application of the inference rules from Figure 7

depends on the topology locations, but not the automata

states, and can be reused across multiple PG nodes with

the same topology location. Therefore, we lazily apply the

rules and cache the satisfiability and minimization calls to

νZ after their first use. Furthermore, the cached results are

shared across different prefixes, each of which may have a

unique PG representation.

9. Evaluation

9.1 Expressiveness and Precision

We evaluate the expressiveness of Propane/AT’s topology

abstractions and the precision of its fault-tolerance analy-

sis on a range of network topologies found in production

networks and in the networking literature. We character-

ize expressiveness by checking if the abstractions allow the

topologies to evolve arbitrarily or certain aspects must be

fixed (i.e., cannot be symbolic). We measure precision by

checking if we find a tight lower-bound on fault-tolerance

(i.e., there is a concrete network with that fault-tolerance).

The top part of Figure 11 shows the results for common

data center networks: tree-based topologies coupled with

valley-free routing. We consider four variants of tree topolo-
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HyperX

BCube

Figure 12: Example abstractions for HyperX and BCube.

gies: a standard fat tree [3], the Facebook fat tree [4], the

F10 fault-tolerant fat tree [25], and VL2 [16]. These variants

differ in the number of tiers and the connectivity pattern be-

tween roles. For each, we use a tiered abstraction similar to

that in our example (§4) and parameterize over the number

of pods, which can be scaled for expansion. We report pre-

cision of both analyzing reachability and disjoint paths, and

we report if Propane/AT is precise for all pairs of abstract

nodes or only some of them. We record a check when the

analysis is precise and a C when the analysis is conservative.

Our results are encouraging for these settings. Our ab-

stractions are perfectly expressive for tree-based topologies—

we did not have to fix any aspect of their structure—and the

analysis is precise in all cases.

Recursive Topologies These topologies include BCube [18]

and DCell [17]. Each topology includes a recursion depth

parameter (k), which we fixed while abstracting them. For

a recursive topology with depth k, we model it as an ab-

stract topology consisting of a pod to represent all depth

k− 1 subcomponents. This allows for safe expansion within

a subcomponent, but does not allow changing the recursion

depth dynamically. For BCube, we model each tier of the

data center as a separate role. Figure 12 shows an example

of a BCube abstraction for k = 1.

Hypercube Topologies Hypercube variants can be used as

an alternative to Clos-style topologies for networks with port

density routers. The HyperX [2] topology generalizes the

hypercube and butterfly topologies and includes parameters

L for the lattice dimension of the network, and Si for the

node multiplicity of each dimension i. For a fixed number

of dimensions L, we abstract each full mesh of SL nodes

into its own abstract node. Nodes in dimension Sx−1 are

(a) Data center (b) Backbone

Figure 13: Concrete vs. Abstract Synthesis Time.

(a) Data center (b) Backbone

Figure 14: Abstract Synthesis Time by Phase.

abstracted using pods of abstract nodes from dimension Sx.

Figure 12 shows an example for L = 2.

Results The bottom part of Figure 11 shows the results for

all types of topologies with shortest-path routing. (Valley-

free routing is not meaningful for non-tree-based topolo-

gies.) For all tree-based topologies, the analysis is precise

for reachability, but for three of them, it does not compute a

tight bound for disjoint paths for all router pairs. Specifically,

it underestimates ToR-to-spine paths; it fails to account for

some circuitous paths that traverse another spine because it

could not disambiguate two concrete spines that map to the

same abstract role. For instance, for the fat tree topology [3],

it only finds 1 path between any ToR and any Spine when

there should always be at least two. However, in this case

the analysis computes the correct worst case connectivity be-

tween any source ToR and any other destination aggregation

or ToR router. A similar pattern occurs with other tree-based

topologies. For both recursive topologies, the analysis can

only accurately determine reachability.

9.2 Synthesis time

We evaluate generation time in Propane/AT both with and

without abstraction using routing policy for backbone and

data center networks inspired by configurations obtained

from a large cloud provider. For both types networks, we

fix the routing policy and scale the size of the topology.

Topologies Routers in the data centers run BGP using

unique AS numbers and connect to multiple external neigh-

bors. The routers aggregate some prefix blocks when an-

nouncing them to external neighbors, and keep some pre-
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fixes internal. The data center prefers that traffic leave

through certain neighbors over others and should not transit

traffic between neighbors. The policy also prevents routers

from using external neighbors to reach “private” destinations

(i.e., those in the IP address space reserved for private use).

We use a fat tree [3] and scale it by increasing the number of

pods. The abstract topology uses one abstract node for each

tier with additional nodes for local and global ToRs.

The backbone policy classifies neighbors into several cat-

egories based on commercial relationship [13] and prefers

paths through them in order. Like the data center, it blocks

private destinations from neighbors, drops transit traffic be-

tween certain pairs of neighbors, and aggregates internal pre-

fixes at the network border. We scale the backbone network

from 10 to 240 routers. We split it into two parts: border

routers that connect to external neighbors and an internal

core. We use one abstract node for the border routers and one

for the network core with mincut annotations both within the

core and between the core and border roles. For neighbors,

there is one abstract role per commercial category.

Results Figure 13 shows total configuration generation

time for Propane/AT vs the concrete network synthesis tool

Propane. All experiments were run on an 8 core, 2.4 GHz

Intel i7 processor machine running Mac with 16GB of Ram.

For both networks, the abstract synthesis is slightly

slower than concrete synthesis for small topologies due to

the overhead of the fault-tolerance analysis. However, as the

topology size increases, abstract synthesis becomes orders

of magnitude faster. In all cases for both networks, it takes

less than 10 seconds to complete.

Figure 14 shows the relative time taken by each phase

of Propane/AT. The fault-tolerance analysis takes the most

time, but that does not depend on the number of concrete

nodes in the network, and thus is largely a fixed cost. In par-

ticular, the number of calls to νZ remains constant across

topology size. The seesaw behavior for the data center net-

works results from differences in time taken by νZ to mini-

mize similar constraints with different values.

9.3 Incrementality

Propane/AT’s compilation strategy guarantees that network

evolution requires configuration changes only for nodes that

acquire or lose a neighbor. We experimentally confirmed

that our implementation provides this guarantee. For the net-

works we studied above, we made a range of changes, in-

cluding adding and removing routers and pods and changing

prefixes that routers originate. In each case, we found the

guarantee to hold. In contrast, all router configurations were

modified with Propane because it heavily uses prefix lists

which are sensitive to such changes. While Propane may be

made friendlier to network evolution, its fundamental limi-

tation will remain because it does not understand roles and

the network’s structure that Propane/AT leverages.

10. Related Work

Network Synthesis Many recent systems allow operators

to specify their policies at a high level of abstraction. These

can be classified into two classes. The first class targets

networks based on SDN (software-defined networking) and

generates dataplane rules [31, 32, 34]. The second class, to

which our work belongs, targets conventional networks and

generates control-plane router configurations [5, 8, 28].

While we borrow much from existing configuration syn-

thesis work, especially Propane [5], our goal is to generate

role templates from abstract topologies, rather than router

configurations from concrete topologies. This goal aligns

better with operators’ mental models and tools and permits

network evolution with minimal disruption. In the process,

we develop new abstractions for network topologies, compi-

lation algorithms that generate templates, and analysis tech-

niques that operate over classes of networks.

Topology Design Network topology design, especially for

data centers, is another active research area, with researchers

exploring designs with different properties [2–4, 16–18, 23,

25]. We do not develop new designs but develop abstractions

that can capture these designs (and their evolution).

Network Verification A complementary approach to re-

ducing configuration errors is to analyze the forwarding

rules or the configuration of a network to ensure the ab-

sence of (a class of) bugs [9–12, 14, 20, 22, 27, 36]. Our

focus, in contrast, is on a correct-by-construction approach.

It has the downside that operators must express policies in

a new language, but it saves them from the challenging and

time-consuming task of manual configuration generation.

11. Conclusions

To help configure large networks correctly, we develop

Propane/AT, the first system that can generate role templates

from high-level specifications of network topology and pol-

icy. Propane/AT is based on new abstractions for capturing

network topologies, and their evolution, and algorithms to

analyze the combined impact of topology and routing policy

on the network’s fault tolerance. Our analysis operates en-

tirely in the abstract domain and guarantees correctness for

all concrete instantiations of the topology. Experiments with

many types of real-world topologies and policies show that

our abstractions and analysis are effective and that, for large

networks, configuration synthesis is two orders of magnitude

faster than systems that operate over concrete topologies.
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