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ABSTRACT
We take a comprehensive look at packet corruption in data center

networks, which leads to packet losses and application performance

degradation. By studying 350K links across 15 production data

centers, we find that the extent of corruption losses is significant

and that its characteristics differ markedly from congestion losses.

Corruption impacts fewer links than congestion, but imposes a

heavier loss rate; and unlike congestion, corruption rate on a link

is stable over time and is not correlated with its utilization.

Based on these observations, we developed CorrOpt, a system to

mitigate corruption. To minimize corruption losses, it intelligently

selects which corrupting links can be safely disabled, while ensuring

that each top-of-rack switch has a minimum number of paths to

reach other switches. CorrOpt also recommends specific actions

(e.g., replace cables, clean connectors) to repair disabled links, based

on our analysis of common symptoms of different root causes of

corruption. Our recommendation engine has been deployed in over

seventy data centers of a large cloud provider. Our analysis shows

that, compared to current state of the art, CorrOpt can reduce

corruption losses by three to six orders of magnitude and improve

repair accuracy by 60%.
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1 INTRODUCTION
Packet losses in data center networks (DCNs) hurt applications

and can lead to millions of dollars in lost revenue [20, 26, 37]. For

instance, packet loss rate above 0.1% causes RDMA’s throughput

to drop by 25% for bulk transfer [36]. For user-facing video traffic,

loss rates of 0.01% can cause TCP CUBIC’s throughput to drop by

50% [10]. Even sporadic packet losses can cause catastrophic virtual

machine reboots [5].

Consequently, researchers have explored several approaches

to reduce packet loss, including congestion control, active queue

management, load balancing, and traffic engineering [2–4, 12, 28,

31, 32, 36]. All of these approaches, however, focus on one source

of packet loss—congestion that occurs when the network’s load

exceeds its capacity.

However, another significant source of packet loss, namely packet

corruption, has received little attention. Packet corruption occurs

when the receiver cannot correctly decode transmitted bits. Such

decoding errors cause the cyclic redundancy check in the Ethernet

frame to fail and force the receiver to drop the packet. While recent

studies categorize different sources of packet loss and acknowledge

packet corruption as a contributor [5, 34, 37], not much is known

today about the extent and characteristics of corruption-induced

packet loss.

This paper presents what to our knowledge is the first large-scale

study of packet corruption in DCNs. We monitor 350K switch-to-

switch, optical links within 15 data centers of amajor cloud provider,

over seven months. We find that, despite the cloud provider’s efforts

to mitigate corruption, the number of packets lost due to corrup-

tion is significant. To improve mitigation techniques for packet

corruption, we need a thorough understanding of its characteristics.

We uncover several relevant characteristics of corruption losses

and contrast them with those of congestion. For instance, while

the loss rate due to congestion varies with link utilization, that due

to corruption is relatively stable over time and is independent of

the link’s utilization. This observation implies that reducing the

load on the link, as in congestion control, will not reduce packet

corruption rate. We also find that, compared to congestion, cor-

ruption plagues fewer links but imposes higher loss rates on those

links. Finally, we find that corruption exhibits weak locality, i.e., the

chances of multiple corrupting links being on the same switch or

being topologically close are noticeable but low, while congestion

exhibits strong locality.

We also analyze hundreds of trouble ticket logs to find the com-

mon root causes of corruption. These range from faulty transceivers

(i.e., devices that convert between optical and electrical signals) and

switches, to poorly installed hardware, to damaged optical fiber, to

https://doi.org/10.1145/3098822.3098849
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dirty optical connectors. By monitoring the optical layer contem-

poraneously with the tickets, we uncover the common symptoms

for each such root cause.

The prevalent method to mitigate corruption is to disable links

with corruption loss rate above a certain level (e.g., 10
−6
), provided

that the switches to which they attach have at least a threshold

number of active uplinks toward the spine of the DCN [26]. This

threshold ensures that the hosts using the switch have enough left-

over capacity—otherwise, we might replace corruption losses with

heavy congestion losses. Links are disabled automatically using soft-

ware that monitors the corruption loss rate of each link. Though it

does not repair corrupting links, this software is important because

it reduces the chances of application traffic experiencing corruption

losses. For each disabled link, a maintenance ticket is issued for

operators to manually repair the link. The operators attempt to

repair the link via a sequence of steps (e.g., clean the optical fiber

and connectors; replace the transceiver; replace the cable), based on

their expertise and largely independent of the root cause. The link

is enabled after each step, and the next step is taken if the previous

one did not succeed at eliminating corruption.

The method above has two limitations. First, the criterion for

disabling links is greedy and local.While such decisions can bemade

quickly, they miss better opportunities that can reduce the level of

corruption losses, i.e., disable links with higher corruption rates or

disable more corrupting links. We show that such opportunities

exist while meeting the same capacity constraint. Second, since the

strategy to repair corruption is agnostic of the root cause, it can

take multiple steps to eliminate corruption. In fact, with the current

strategy, the link is fixed in the first step only 50% of the time.

Based on the observations above, we develop CorrOpt, a system

to mitigate corruption in DCNs. Because the problem of identifying

the optimal set of corrupting links to disable, which minimizes

corruption losses while meeting capacity constraints, is NP-hard,

CorrOpt uses a two-phase approach. First, when a link starts cor-

rupting packets, a fast decision is made on whether the link can

be safely turned off. Even this fast decision allows us to lower cor-

ruption losses than the current method because it considers the

entire set paths from top-of-rack switches to the spine, instead of

just the switches adjacent to the link. But this fast decision is not

optimal. To approximate optimality, we use a second phase that

does a global optimization to determine the set of links that can

be safely disabled. The combination of the two phases allows us to

react quickly and optimize later.

CorrOpt also has a recommendation engine that uses a root

cause-aware approach to propose the right repair for corrupting

links. Based on the link’s characteristics (i.e., corruption rate, optical

transmit power, optical receive power) and history of actions taken

thus far (if any), it generates concrete recommendations for oper-

ators on what corrective action is needed. This recommendation

engine has been deployed in over 70 DCNs of our cloud provider.

We evaluate CorrOpt using the deployment of the recommenda-

tion engine and a trace-based analysis using data from production

DCNs. We find that CorrOpt responds to packet corruption quickly

and lowers the amount of corruption losses by up to three to six

orders of magnitude, while meeting the desired capacity constraints.

Figure 1: Mean and standard deviation of packets lost per
day due to corruption across 15 DCNs, sorted by their size.
Values are normalized by the mean number of congestion
losses in each DCN. Horizontal dashed line denotes the
threshold when packets loss due to corruption and conges-
tion are the same. In most cases, corruption and congestion
losses are on par.

We also find that our recommendation engine has improved the

accuracy of repairing the link at the first attempt from 50% to 80%.

2 EXTENT OF PACKET CORRUPTION
We demonstrate the need to understand and mitigate packet cor-

ruption by quantifying its extent in today’s DCNs. We show that

the number of packets lost due to corruption is startlingly high.

Our analysis considers corruption- and congestion-induced losses

in 15 production data centers. We focus on switch-to-switch links.

Corruption mitigation, by disabling or routing around corrupting

links, is relevant only for such links, not server-to-ToR links. Fur-

ther, as we discuss later, the complexity of repair is a concern only

for switch-to-switch links, which are optical and can go long dis-

tances; server-to-ToR links, which are electrical and short, simply

get replaced. As the data centers that we study use standard designs

and physical layer technologies (e.g., transceivers, fibers), we expect

our findings to be applicable to other data centers as well.
1

The DCNs in our study have 4–50K links, and the total across all

of them is 350K. For each link, we use SNMP [11] to query its packet

drop, packet error, and total packet counts, as well as its optical

power levels every 15 minutes. Our network operators found SNMP

to be a reliable and lightweight mechanism for monitoring these

counters. The data cover a period of seven months. The results in

this section are based on three weeks of data, and the next section

looks deeply into one representative week. The rest of the paper

uses the entire data set.

Figure 1 shows the number of packets lost per day due to packet

corruption and congestion. The DCNs are sorted by size. For confi-

dentiality, the number of packet losses on the Y-axis is normalized

with respect to mean congestion per DCN. The error bars represent

the standard variation around the mean for packets lost due to

corruption on different days.

We see that, while results vary across data centers and days, in

aggregate, the number of corruption losses is on par with conges-

tion losses on the switch-to-switch links that we study. (Results

1
Our data centers have diverse ages and have been through different rounds of equip-

ment replacement cycles. We do not have data of when each device is installed and

thus cannot study the effect of packet corruption over device lifetime.
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Loss bucket links w. corruption links w. congestion

[10
−8

- 10
−5) 47.23% 92.44%

[10
−5

- 10
−4) 18.43% 6.35%

[10
−4

- 10
−3) 21.66% 0.99%

[10
−3+) 12.67% 0.22%

total 100% 100%

Table 1: Comparison of the normalized distribution of links
with congestion and corruption loss for different loss buck-
ets. 12.67% of total links that experience corruption, have
a corruption loss rate greater than or equal to 10

−3 (0.1%
loss rate) whereas only 0.22% of links with congestion, have
congestion loss rate of 10−3. The numbers in each column
are normalized so that the table does not reveal the overall
percentage of links with congestion or corruption losses for
confidentiality reasons.

for server-attached links may differ.) In other words, for every con-

gestion loss that applications experience, they will experience a

corruption loss. Although this graph does not show corruption rate,
the next section shows that it can be quite high for some links.

This high level of corruption loss happens even though there is al-

ready a system to discover and turn off links with corruption. While

this system has limitations, which we explain in §5, we estimate

that without it, corruption-induced losses would be two orders of

magnitude higher.

Our results clearly demonstrate the need for an effective strategy

to mitigate corruption in DCNs. Our proposed system, CorrOpt,

provides such a strategy. To explain the rationale underlying its

design, in the next two sections, we dig more deeply into the nature

of corruption and its root causes.

3 CORRUPTION CHARACTERISTICS
To develop a thorough understanding of packet corruption, in this

section we identify the characteristics of corruption and compare

them to congestion. Though not our focus, our observations can also

help load balancing and congestion control systems appropriately

handle congestion vs. corruption losses when switch counters are

not available to distinguish the two.

Corruption impacts fewer links but can be more severe than conges-
tion. Our data reveal that while congestion is a more widespread

phenomenon in terms of the links it impacts, packet corruption

affects fewer links. We compute the percentage of links with con-

gestion and corruption loss rate above 10
−8

and find that the total

number of links with corruption is less than 2-4% of those with

congestion.
2

This difference suggests that a small set of links have high corrup-

tion loss rate, given that the number of corruption and congestion

losses is similar. Table 1 shows the distribution of links with cor-

ruption and congestion in different loss buckets, normalized such

that the total in each column adds to 100%. Overall, only a small

2
IEEE 802.3 standard requires each link to have corruption loss rate under 10

−8
, but

operators today tend to worry only when packet loss rates start approaching 10
−6
.

In this paper, we conservatively use 10
−8

as the threshold to deem a link as lossy or

non-lossy.

(a) Loss rate of one link (b) CV of loss rate for all links

Figure 2: Corruption loss rate is more stable over time than
congestion loss rate. 2a compares the corruption loss rate
with congestion loss rate of a link for one week and shows
corruption has little variation than congestion. 2b plots the
CDF of the coefficient of variance of packet loss rate across
15 data centers for one week and shows corruption loss rate
has less variation compared to congestion loss rate.

percentage of links in the DCN have any corruption or congestion;

we exclude these percentages for confidentiality. We see that over

90% of links with congestion have a loss rate between 10
−8

and 10
−5
.

As the loss rate increases, the percentage of links with congestion

in each category decreases. This is expected, as congestion control

reduces flows’ sending rate which lowers the loss rate. However,

the same trend does not hold for corruption: 12.67% of links ap-

pear in the last loss bucket with loss rate ≥ 10
−3

(or 0.1%) whereas

congestion appears in 0.22% of links.

Corruption rate is stable over time. Figure 2a shows the corruption
and congestion loss rate of example links for one week. We can see

that the corruption rate has less variation compared to congestion

which varies by three orders of magnitude in a short amount of time.

A similar observation holds for the entire data set. We quantify

the level of variation of loss rate on a link using the coefficient of

variation (CV), which is standard deviation divided by the mean.

Figure 2b shows the CDF of CV between congestion and corrup-

tion loss rates for all links in one week. For 80% of the links, CV

for corrupting links is smaller than four while for congestion, it is

more than twice that amount. Thus, for most links, corruption loss

rate is more stable than congestion loss rate.

Corruption rate is uncorrelated with utilization. Inherently, cor-
ruption loss rate is stable over time because it does not vary with

link utilization. Figure 3a shows a scatter plot of utilization versus

loss rate of a link for one week. Congestion loss rate has a posi-

tive correlation with the outgoing traffic rate. Unlike congestion,

corruption loss rate does not change as the link’s incoming traf-

fic rate changes. To depict the lack of correlation in all links, we

compute the Pearson correlation between utilization of a link and

the logarithm of its loss rates. Figure 3b shows the CDF of Pearson

correlation across all links. The mean correlation between incoming

link utilization and corruption loss rate is only 0.19, and 85% of

the links have a correlation between -0.5 and +0.5. Hence, for most

links, there is no correlation between their utilization and corrup-

tion loss rate. In contrast, the mean correlation between outgoing

link utilization and corruption loss rate is 0.62, which indicates a
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(a) Utilization vs. loss rate (b) Correlation of utilization and loss
rate

Figure 3: Corruption loss rate is less correlated with utiliza-
tion than is congestion loss rate. 3a shows a scatter plot of
utilization versus loss rates of a link for one week. Unlike
congestion, the corruption loss rate does not change as the
link’s utilization changes. 3b plots the CDF of Pearson cor-
relation between utilization and logarithm of loss rate. The
average Pearson correlation between utilization and conges-
tion loss rate is 0.62. The average Pearson correlation be-
tween utilization and corruption loss rate is 0.19.

strong positive correlation. This behavior is expected because more

traffic leads to a higher congestion loss rate.

Because the corruption loss rate is uncorrelated with utilization,

application or transport layer reactions will not resolve it. Thus,

unlike congestion, packet corruption is a pernicious fault that is

is not mitigated when senders slowdown. Instead, it persists—to

stop it, we must disable the link and then have technicians fix it.

A related, unfortunate aspect of corruption losses is that they lead

loss-sensitive transport protocols such as TCP to unnecessarily

slow down, which does nothing to resolve corruption but does hurt

application performance.

Corruption has weak spatial locality. We investigated if corrupt-

ing links tend to be spatially correlated (e.g., on the same switch or

topologically close) or scattered across the DCN (uniformly and)

randomly, and we found weak spatial locality. To demonstrate this

finding, we first compute the fraction of switches in the DCN that

have at least one link with a high corruption loss rate, i.e., in the

set of the worst 10% of corrupting links. We then simulate a hypo-

thetical setting in which the same number of corrupting links are

randomly spread through the network, and again compute the frac-

tion of switches to which they belong. We then calculate the ratio

of the two switch fractions. For example, let’s say x% of switches

contain the worst 10% of corrupting links. If those corrupting links

are uniformly distributed, y% of switches will contain them. Then

the ratio is
x
y . If the ratio is 1, it suggests that corrupting links are

scattered randomly across the switches. Lower ratios indicate more

co-location with switches.

We repeat this analysis for 100 different values, between 0 and

100%, for the set of corrupting links chosen, and we also repeat

the analysis for congested links. As Figure 4 shows, for congestion,

the number of affected switch is only 20% of what the random

distribution suggests. This means congested links exhibit a high

degree of spatial locality. For corruption, this ratio is around 80%,

which indicates weak spatial locality. We can also see that when we

Figure 4: Links with packet corruption have weak locality.

(a) Corruption (b) Congestion

Figure 5: Corruption is highly asymmetric. 5a shows corrup-
tion loss rate at x-axis and the corruption loss rate on the
opposite direction at y-axis. 5b is a similar figure for conges-
tion loss rate.

focus on the worst corrupting links (e.g., the top 10%), the locality

is weaker. Thus, the worst offenders are more likely to be randomly

spread in the network.

While we expected congestion to exhibit locality, the locality

(albeit weak) of corruption surprised us. As we show in §4, it occurs

because of shared root causes (e.g., bad switch backplane or poorly-

routed fiber bundle). We also found that spatially related links

start corrupting packets roughly the same time and have similar

corruption loss rates. We omit these results from the paper.

Corruption is asymmetric. Corruption in one direction of the link

does not imply corruption in the reverse direction. With a week’s

worth of data, we observed that only 8.2% of the links among links

with packet corruption had bidirectional corruption.
3
For conges-

tion, 72.7% of links among links with congestion losses had bidi-

rectional losses. For those links with bidirectional losses, Figure 5

shows average packet loss rate on both directions of the link. For

congestion, however, we see a cluster of links for which the conges-

tion loss rates in both directions are similar and large. We speculate

that high, bidirectional congestion is caused by link failures that

temporarily reduce network capacity for both upstream and down-

stream traffic.

Corruption is uncorrelated with link location. Corruption happens
at every stage of the DCN topology. We computed the probability

that a link is corrupting for each stage of the network (e.g., ToR-to-

aggregation, aggregation-to-ToR, aggregation-to-spine), and we did

3
This asymmetry implies that a more efficient way (in terms of network capacity)

to mitigate corruption would be to disable only one direction of the link, but since

current hardware and software does not allow unidirectional links, we disable both

directions in CorrOpt.



Understanding and Mitigating Packet Corruption in DCNs SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

not observe any bias. This observation also implies that corruption

does not depend on cable length, since cable lengths at higher

stages tend to be longer, or the type of switch. In contrast, we find

that certain stages of the DCN have significantly fewer congestion

losses than the rest. We find this reduction in congestion losses to

be correlated with the use of deep buffer switches. Shallow buffer

switches in such stages still experience congestion losses.

4 ROOT CAUSES OF CORRUPTION
To successfully repair a corrupting link, operators need to address

the root cause of corruption. We analyzed over 300 trouble tickets

while monitoring all links’ optical receive power (RxPower) and

transmit power (TxPower), as well as their corruption statistics.
4

This tandem monitoring of tickets and link statistics turns up a

set of symptoms that are the most common signature of each root

cause. In §5.2 we use these symptoms to recommend repair actions

to on-site technicians to help them eliminate corruption faster.

Root cause 1: Connector contamination. An optical link consists

of fiber optics cable and a transceiver on each end. Transceivers

convert the signal between electrical and optical domains, and

the fiber carries the optical signal. In fiber optics, the tolerance of

dirt or contamination on a connector is near zero [22]. Airborne

dirt particles may even scratch the connectors permanently if not

removed. Fiber tips or connectors can become contaminated during

installation or maintenance. Patch panels can become contaminated

if they are left open to the air or scrape off foreign particles under

repeated usage. Figure 6a shows an MTP fiber connection with 12

fiber cores. Prior to installation, technicians should inspect each

fiber core manually using a fiber microscope. Figure 6b shows a

magnified image of two cores we inspected using a P5000i Fiber

Microscope [21]. In this case, the device foundmore than five defects

larger than 2 µm in diameter on the right-hand side fiber core and

failed the test on it. Common types of contamination and defects

include dirt, oil, pits, chips, and scratches [13]. Fiber cleaning can

remove dirt and contamination on the connector.

Contamination reduces RxPower which increases the probability

of packet corruption by making it more likely that the transceiver is

unable to decode the signal correctly [38]. Since fiber optics cables

and connectors are unidirectional, we find that the most probable

indicator of contamination is high TxPower on both sides of the

link, with low RxPower along only one direction of the link (i.e.,

the receiving side of corruption). As Figure 7 shows, the packet

corruption of a link jumps at the same time as its RxPower drops,

but the TxPower on the opposite side remains stable. In this case,

cleaning the both sides of the link mitigates the corruption.

Not all forms of contamination cause low RxPower; some cause

backs reflections, where the RxPower remains high but the reflec-

tions interfere with signal decoding. Transceivers do not report

on reflections, and thus we are not able to correctly identify this

root cause all the time. Such limitations of accurate identification

exist for other root causes as well, which is why the accuracy of

our repair recommendations is not 100%.

Root cause 2: Damaged or bent fiber. Cable management is a

tedious task in large fiber plants. A bent or damaged fiber causes

4
In modern DCNs, all inter-switch links tend to be optical.

(a) MTP fiber connector (b) Magnified image of 2 fiber cores

Figure 6: Dirty connection creates corruption. 6a shows an
MTP fiber connection consisting of 12 fiber cores. 6b shows
a magnified image of two cores. These images were taken
using a P5000i Fiber Microscope to inspect and certify fiber
end face quality in production data centers [21]. In this
case, the tool found more than five defects larger than 2 µm
in diameter on the right-hand side fiber core. Technicians
are supposed to inspect each fiber core manually prior to
installation–a task that is largely ignored because it is man-
ual and cumbersome. Similar observations are reported for
other fiber types [14].

(a) Optical power (b) Corruption loss rate

Figure 7: An example of a dirty connection causing packet
corruption. RxPower suddenly drops on November 5, caus-
ing corruption loss to increase to 10

−2 (1%). TxPower on the
transmit side shows no changes. Fiber cleaning takes place
on November 27 which restores RxPower level and elimi-
nates the corruption.

the optical signal to leak out of the fiber, reducing the signal strength

in the fiber. Cables should be laid such that they are not bent beyond

their specification, especially for fibers at the bottom layer of a fiber

housing mount. Figure 8 shows a case in our data center; the fibers

at the bottom row are too bent, causing corruption.

When we study the RxPower of damaged or bent cables, we

find both sides of the link are likely to have low RxPower coupled

with high TxPower. Figure 9 shows an example of a damaged fiber

causing packet corruption. Another indicator of cable damage is

that switches on both sides experience packet corruption, which is

otherwise rare (§3).

Root cause 3: Decaying transmitters. Transceivers are built using
semiconductor laser technology, and their lasers tend to have a
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Figure 8: Bent fiber (red arrow) can cause packet corruption
when the fiber cable is bent tighter than its maximum bend
tolerance. When operating a large fiber plant, this situation
becomes likely especially for long cables.

(a) Optical power (b) Corruption loss rate

Figure 9: An example of a damaged fiber causing packet cor-
ruption. Fiber damage happens on October 30 causing both
sides’ RxPower to suddenly drop at the same time. TxPower
on both sides are not affected. When traffic is put on the
link at the beginning ofDecember, the corruption loss rate is
around 1%. Fiber replacement restores both sides’ RxPower
back to normal level.

long life expectancy, but old lasers can suffer deterioration in Tx-

Power, leading to low RxPower and corruption on the receive side

of the link. Replacing the dying transceiver can resolve the problem.

The most probable symptom of decaying transmitters is that the

TxPower on the send side of the link and RxPower on the receive

side of the link are both low or are gradually decreasing.

Root cause 4: Bad or loose transceivers. Bad transceivers or loosely-
seated ones (i.e., not properly plugged in) also cause corruption.

When this happens, technicians should take out the transceiver and

plug it back in (a.k.a., reseating the transceiver). If the issue is not

resolved, the transceiver is likely bad and needs to be replaced.

When bad or loosely-seated transceivers cause corruption, opti-

cal TxPower and RxPower on both sides of the link are most likely

high, but the link still corrupts packets. This symptom is shared

by root cause 5 as well, but a distinguishing characteristic of this

root cause is that only one of the links on the switch is bad. It is

uncommon (but still possible) that multiple transceivers on the

same switch are bad or loose.

Root cause

Most likely symptom

TxPower → RxPower
RxPower ← TxPower

Contribution

Connector

contamination

H → H
L ← H

17-57%

Bent or damaged

fiber

H → L
L ← H

14-48%

Decaying trans-

mitter

∗ → ∗

L ← L
< 1%

Bad or loose

transceiver

H → H
H ← H
(single link)

6-45%

Shared compo-

nent failure

H → H
H ← H
(co-located links)

10-26%

Table 2: Summary of root causes of corruption, their symp-
toms and their relative contribution in our data centers.

Root cause 5: Shared-component failure. Some infrastructure com-

ponents in a DCN, such as breakout cables
5
and switches, are shared

by multiple links. A faulty breakout cable causes four links on the

same switch to have packet corruption at the same time. Breakout

cable replacement can resolve the issue. Faults in the switch back-

plane can also cause multiple links to experience corruption. In

such cases, several links on the shared infrastructure suffer packet

corruption, despite good optical power levels on all of them. In

addition, the corruption loss rate on these links is similar. When

switches have unused ports that are not affected by the failure,

rewiring can resolve the issue. Otherwise, the switch has to be

replaced. This root cause is primarily responsible for the spatial

locality of packet corruption (§3). We find in our data that links

experiencing packet corruption because of other root causes, which

usually accompany low RxPower, exhibit no locality.

Table 2 summarizes the root causes mentioned above, their symp-

toms and their relative contribution in our data centers. We use the

notation of TxPower → RxPower to indicate the power levels of

each side of optical links.H and L indicate if the power level is above
or below the acceptable threshold (determined by the transceiver

technology and loss budget of links). The percentage of contribu-

tion of each root cause is presented as a range because our ticket

diaries show that technicians often take multiple actions (e.g., clear

the connectors and reseat the transceiver) without logging which

action resulted in the repair. When a root cause is present in such

a bundle, we assume that it was not the culprit to compute the low

end of the reported range and we assume that it was the culprit to

compute the high end of the reported range.

5 MITIGATING CORRUPTION
There are two aspects to CorrOpt, our system tomitigate corruption.

First, to protect applications from corruption, we disable corrupt-

ing links, while meeting configured capacity constraints. Meeting

capacity constraints is important because otherwise we may trade

5
A breakout cable splits a high-speed port (e.g, 40Gbps, 100Gbps) into several low-

speed ports (e.g, 10Gbps, 25Gbps). It is typically used between switches with different

port speed.
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Figure 10: Example of problems with switch-local checking, with ToR capacity constraints of c=60%. (a): Every switch keeps
sc=c=60% of its uplinks alive, resulting in 8 disabled links, but only 9 out of 25 paths to the spine are still available for T , far
below the constraint of 60%. (b): When sc=

√
c = 0.77 of the links are kept online, the ToR capacity constraint is met, but only 4

links can be disabled. (c): The optimal solution, which has 12 disabled links offline and meets the capacity constraints.

off corruption losses for heavy congestion losses. For practical rea-

sons, we only consider disabling links as a strategy in this paper; it

requires minimal changes to our existing infrastructure. We will

consider other strategies, such as error coding, source routing, or

traffic engineering to move sensitive traffic away from corrupting

links, in future work. That said, any such strategy would still need

to disable corrupting links at some point to enable operators to fix

them. Our strategy to detect and disable corrupting links can be

used in combination with these strategies.

If we rely solely on disabling links for corruption mitigation,

the DCN will have fewer and fewer links as time progresses. In-

stead, we must also fix the root cause of corruption, so links can be

enabled again. Thus, the second aspect of CorrOpt is generating

repair recommendations for disabled links based on root causes

and symptoms described in §4. Our recommendations reduce both

repair time and packet loss (§7.2).

5.1 Disabling Corrupting Links
While disabling corrupting links reduces corruption losses, it also

reduces network capacity. In the extreme cases, especially because

of the locality of corrupting links, blindly disabling links can create

hotspots, and, hence, engender heavy congestion losses; it may

even partition the network.

To lower corruption losses without creating heavy congestion,

we consider a common capacity metric [24, 29, 34]: the fraction

of available valley-free paths from a top-of-rack switch (ToR) to

the highest stage of the network (i.e., the spine). This metric quan-

tifies available capacity and redundancy for a ToR after links are

disabled. Because traffic demand can differ across ToRs [17], we

allow per-ToR thresholds. Our data show up to 15% of corrupting

links cannot be disabled due to capacity constraints under real-

istic configurations (e.g., when every ToR has threshold between

50–75%).

CorrOpt determines the subset of links to disable based on the

impact of corrupting links that remain active. Each link l with
packet corruption rate of fl has impact I ( fl ), where I (.) is a mono-

tonically increasing penalty function that reflects the relation-

ship between application performance and loss rate [27, 36]. Cor-

rOpt aims to minimize the total penalty of packet corruption, i.e.,∑
l ∈links (1 − dl ) × I ( fl ), where dl is 1 if the link is disabled and 0

otherwise. Our goal is to determine the value of dl for each link l ,
while meeting capacity constraints.

However, as we prove in Appendix A (via reduction to 3-SAT)

this problem is computationally difficult.
6

Theorem 5.1. Deciding which links to disable in a Clos topology,
s.t. the total penalty of packet corruption is minimized under capacity
constraints, is NP-complete.

Because of the complexity, we cannot quickly determine the optimal

set of links to disable. Speed is desirable to protect applications from

corruption, but it is not possible to be both fast and optimal.

State-of-the-art: switch-local checking. Current DCN operators

opt for speed [26]. When a new corrupting link is found, a controller

decides whether it can be disabled based on the number of available

uplinks at the switch to which it is attached. For a threshold of

sc and a switch withm uplinks, ⌊m × (1 − sc )⌋ of the uplinks can
be disabled. For example, with m = 5 uplinks and sc = 60%, at

most two uplinks can be disabled. When a link is enabled, after

repairing corruption or other problems, the same check is run for

all active corrupting links to see if additional links, which could

not be disabled before, can be disabled now.

Unfortunately, switch-local checks are highly sub-optimal. Fig-

ure 10 shows an example, where T is a ToR with five uplinks, to

switches (A through E) that also have five uplinks each. Corrupting

links are in red, and dashed lines represent disabled links. Suppose

we want to enforce a per-ToR capacity constraint of c=60%. If we
directly map c to the switch-local constraint, i.e., sc=c , Figure 10(a)
shows the network state that will emerge. The direct mapping leads

to disabling eight corrupting links. However, ToR T now has only

nine of 25 (36%) possible paths to the spine, far below the desired

limit of 60%.

This problem can be fixed by enforcing a switch-local capacity

constraint of sc =
√
c = 0.77 because this forces c fraction of

paths to the core switches to be available. But now, as shown in

Figure 10(b), each switch can disable only one corrupting uplink,

for a total of four disabled links (out of a total of 16 corrupting links).

The optimal solution, however, shown in Figure 10(c), can disable

as many as 12 corrupting links, for a much lower total penalty due

to active corrupting links.

Generalizing the example above, in a simple ToR-aggregation-

spine-topology, a capacity constraint of c requires every switch

to keep

√
c of its uplinks. Otherwise, the capacity constraint can

be violated. The gap widens when the DCN has more tiers: with r
tiers above the ToR-level, a switch-local algorithm needs to keep

r√c fraction of uplinks active.

6
The NP-hard problem stated in [9] is orthogonal to our formulation, as it moves

logical machines between physical machines.
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Another limitation of a switch-local checker is that it cannot

handle different ToR requirements well. If one ToR has a high

capacity requirement c ′, all upstream switches need to keep
r√
c ′

uplinks active. A switch-local checker may not be able to disable a

single link in extreme cases.

CorrOpt’s approach. CorrOpt achieves both speed and optimality

using a two-pronged approach. First, when a new corrupting link

is found, it runs a fast checker for a quick response that exploits

global network state to bypass the sub-optimality of switch-local

checking. Second, when links become active, CorrOpt runs an op-
timizer that globally optimizes over all active corrupting links in

the network. Link activations allow other remaining corrupting

links to be turned off. Those links tend to have lower loss rates than

newly arrived corrupting link due to the fast checker disabling lossy

links, which gives us time to solve a hard problem. By analyzing the

failure structures in our data set, we are able to efficiently solve the

practical instances of this NP-complete problem. We now provide

more detail on the two components.

Fast checker. Conceptually, when a new corrupting link l arrives,
CorrOpt counts the remaining paths for each ToR to the spine

assuming l is removed from the topology. If no ToR’s constraint is

violated, CorrOpt disables l and creates a maintenance ticket for it

with a recommended repair. This process is repeated for each new

corrupting link. As long as no link is activated since its last run,

the network state after the fast checker runs is maximal, i.e., no

more links can be disabled. If no link was activated since the last

run of the fast checker, the optimizer must have left the network

in a maximal state. Thus, we never need to run fast checker on old

corrupting links that could not be disabled earlier.

Because of its exact counting of paths, our fast checker can dis-

able more links than switch-local checking. A naive implementation

of the fast checker is to iterate over all the path from ToR switches

to the spine switches in order to count the number of available

paths for each ToR. The naive implementation is slow because a

large data center network can possibly have over millions of paths.

Using information about all links E in the DCN, we efficiently im-

plement CorrOpt’s fast checker as follows. First, for each switch v2
in the second-highest stage, we count the active (one-hop) paths

p1 (v2) to the spine (i.e., the highest stage). Then, each switch v3
in the third-highest stage adds p1 (v2) to each of its active uplinks,

obtaining the number of two-hop paths p2 (v3) to the spine. This

process is iterated until the ToR-stage is reached.

With this information, to see if l can be safely disabled, we

check the downstream of l , updating the path counts with the same

method, beginning with the switch directly downstream of l . If all
downstream ToRs of l meet the capacity constraints with l offline,

l is disabled. Conceptually, we perform O (1) operations per link,
resulting in a linear runtime of O ( |E |). In our experiments, the

fast checker takes only 100-300 ms for the largest DCN, effectively

providing instantaneous decisions.

Optimizer. When a link is enabled, one option is to rerun the fast

checker on all active corrupting links, as is done today in switch-

local checks. However, we can now afford to run a potentially-

slower computation to determine the optimal subset of links to

Figure 11: Example of topology pruning. If capacity con-
straint is 50%, only ToR J will violate the constraint if all
corrupting links (in red) are disabled. Hence, we only need
to consider the pruned topology and can safely disable the
other three links.

disable. The optimization problem is what we defined earlier, oper-

ating over the set of active corrupting links.
7

Even though the problem is NP-complete, we can provide a

fast exact algorithm in practice. First, we find that, under realistic

capacity constraints, 99% of the ToRs can be ignored because their

capacity constraints will not be violated even if all corrupting links

are disabled. Only the links that are in danger of capacity constraint

violation need to be considered. To identify such links, we run

fast checker’s path counting procedure on the network with all

corrupting links considered disabled, identifying all ToRs V whose

capacity constraints are violated. Only disabling links upstream of

the ToRs in V can violate capacity constraints. All corrupting links

not upstream of V can hence be safely disabled, thus pruning the

topology.

For instance, in Figure 11, assume the capacity constraint is 50%.

The corrupting links are shown in red, and if we were to disable all

of them, ToRs G, H, and I will have at least two out of four paths

to the spines, but ToR J will have only one. Thus, we can remove

all links and switches except those upstream of J, and the three

removed corrupting links can be safely disabled.

Next, we need to decide which remaining corrupting links in

the pruned topology can be disabled. CorrOpt iterates through all

possible subset to measure (1) whether the capacity constraint is

met if the entire subset is turned off (2) the total penalty if the

subset is turned off. To speed up, CorrOpt uses a “reject cache” to

memorize subsets that can fail capacity constraint. When CorrOpt

iterates through a subset that is a super set of any set in the cache,

the subset is immediately ignored. For example, in Figure 11, {AF,

EJ} can be kept in the cache. Any subset S such that S is a superset

of {AF,EJ} is guaranteed to fail the capacity constraint and thus can

be ignored.

The output of CorrOpt’s optimizer is an exact solution to the

optimization problem. Pruning only removes links that can be safely

disabled and the “reject cache” only skips infeasible link sets. In our

experiments, the combination of both techniques allows us to finish

7
For practical reasons, CorrOpt does not enable corrupting links before they have

been repaired. In theory, we can further reduce corruption losses by doing so; e.g.,

pre-maturely enabling a link with a lower corruption rate may allow a link with a

higher corruption rate to be disabled. On our small to medium DCNs, the performance

of this optimal version was close to that of CorrOpt. We could not evaluate this version

on our large DCNs because of its computational complexity, which is worse than

CorrOpt’s optimizer since it considers a bigger set of links at each step.
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(a)

(b) (d)

(c)

(f)

(g)(e)

Figure 12: An example of unsuccessful repair actions on a
link. (a) A healthy state with corruption loss rate below 10

−8.
(b) Starts corrupting packets. (c) Disabled for repair. (d) En-
abled after the repair but starts corrupting packets again. (e)
Disabled again. (f) Enabled after but the repair failed again.
(g) Disabled again for repair, and the repair is finally success-
ful.

optimizer runs in less than one minute on a 1.3 GHz computer with

2 cores.

5.2 Corruption Repair
Simply stated, repairing corruption in today’s DCNs is cumber-

some. Unlike switch configuration errors or congestion, corruption

cannot be remedied via a software-based reaction. For example, as

mentioned in §4, dirt on connectors can cause corruption, and the

only repair is to manually clean the connections. If the root cause

of the corruption is not correctly diagnosed, on-site technicians

must rely on guesswork when deciding what action to take.

Network technicians currently use manual diagnosis. When as-

signed to a ticket, they manually inspect the transceiver and the

fiber to find tight bends or damage. If equipment is not connected

firmly, they reconnect it. If tight bends or damage are found on

the fiber, the technicians replace the fiber. If they cannot find any

problem visually, they may choose to clean the connector with an

optical cleaning kit [30].

If the repair does not address the actual cause of packet corrup-

tion, the link will continue to corrupt packets as soon as the link is

enabled. Figures 7 and 9 show examples of successful repair. In con-

trast, Figure 12 shows a series of two unsuccessful repair attempts.

Both include cleaning the fiber and reseating the transceiver. Fi-

nally, on the third try, the technician replaces the fiber and fixes

the corruption.

This whole process takes several days. In between repair at-

tempts, the link is enabled and a new ticket is generated when it is

disabled again. Generated tickets are placed in a FIFO queue; thus,

the exact time needed for a fix depends on the number of tickets in

the queue. Our analysis of 3400 tickets shows that, on average, it

takes two days for technicians to resolve a ticket; this means, each

failed repair attempt adds two more days during which the link

must be disabled.

Unsuccessful repairs also increase the likelihood of collateral

damage because technicians need to enter the facility more often.

Each entry poses a risk of them affecting something unrelated (e.g.,

Algorithm 1 CorrOpt’s recommendation engine

1: function Recommend Repair(l ink )
2: neighbors← links sharing same component (i.e., switch)

3: if has_corruption (neighbors) then
4: return Replace shared component

5: if has_corruption (opposite_side) then
6: return Replace cable/fiber

7: Rx1← RxPower of link
8: Rx2← RxPower of opposite side of link
9: Tx2← TxPower of opposite side of link
10: if Tx2 ≤ PowerThreshT x then
11: return Replace transceiver on the opposite side

12: if Rx1 < PowerThreshRx and Rx2 < PowerThreshRx then
13: return Replace cable/fiber

14: if Rx1 < PowerThreshRx then
15: return Clean fiber

16: else
17: if Transceiver is not reseated recently then
18: return Reseat transceiver

19: else
20: return Replace transceiver

tripping over cables, replacing the wrong cable or transceiver, or

accidentally powering off equipment).

In CorrOpt, we seek to improve the accuracy of repair by leverag-

ing our observations of the most likely symptoms of corruption root

causes (§4) in terms of optical power levels and the link’s history.

Our strategy is listed in Algorithm 1. It first uses packet corruption

rate on neighboring links to identify shared component failures.

Then it uses TxPower on the opposite side to detect decaying trans-

mitters. CorrOpt uses RxPower to separate optical and non-optical

issues. With non-optical issues, the only solution is to try reseating

the transceiver, and then to replace it.

CorrOpt uses PowerThreshRx (PowerThreshT x ) per optical tech-
nology as the minimal RxPower (TxPower) threshold. When both

ends of a link have RxPower below PowerThreshRx , this suggests
bent or damaged fiber. Connector contamination tends to cause

RxPower to be low in one direction. Cleaning connectors with fiber

cleaning kits can often fix corruption.

CorrOpt’s recommendation engine has been deployed in our

DCNs since October 2016. §7.2 evaluates its effectiveness. In our

experience, machine learning techniques can produce similar repair

accuracy. We choose our approach because it is more intuitive.

6 IMPLEMENTATION
Figure 13 shows the workflow and system components of CorrOpt.

When a switch detects packet corruption, it reports to the CorrOpt

controller. The controller uses the fast checker logic to quickly de-

termine if the link can be safely disabled. If the link is disabled, the

recommendation engine (§5.2) generates a ticket with a suggested

repair procedure, based off the monitoring data (collected by an-

other system). When a link is activated, CorrOpt uses the optimizer

logic to check if any active corrupting links can be disabled.

We prototyped fast checker and optimizer with around 500 lines

of python code. We integrated CorrOpt’s recommendation engine

into the cloud provider’s infrastructure with around 50 lines of C#

code.
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Figure 13: CorrOpt’s system components and workflow.

7 EVALUATION
We now evaluate CorrOpt for i ) its ability to protect applications

by safely disabling corrupting links, while meeting capacity con-

straints; and ii ) its ability to speed repairs by correctly identifying

the root cause. The first evaluation uses simulations based on data

from our DCNs, and the second uses our deployment of CorrOpt’s

repair recommendation engine for three months. We study these

two factors individually in §7.1 and §7.2, and we quantify their

combined impact in §7.3.

7.1 Disabling Links
We simulate the impact of CorrOpt using the topologies and link

corruption traces from two production DCNs, a large DCN with

O(35K) links and a medium-sized DCN with O(15K) links. The trace

period is from Oct to Dec 2016.

We quantify the effectiveness of CorrOpt at disabling links using

“total penalty.” Each corrupting link l with corruption rate fl incurs
a penalty of I ( fl ) per second (§5), and the total penalty per second

is

∑
l ∈links (1 − dl ) × I ( fl ), where dl is 1 if the link is disabled and 0

otherwise. For simplicity, results in this paper use I ( fl ) = fl . Thus,
the total penalty is proportional to corruption losses (assuming

equal utilization on all links).

We compare CorrOpt with “switch-local,” the link disabling tech-

nique used today. As we discussed earlier, for this method to guaran-

tee a capacity constraint of c , it should be configured with sc =
√
c

for three-stage DCNs (which is what we study).

To isolate the impact of link disabling strategy, we couple both

methods with the same repair effectiveness (as CorrOpt’s). When a

link is disabled, it is put into a queue of links that are waiting to

be fixed. Links stay in that queue for two days, the average service

time in our DCNs (§5.2). Based on our observed repair accuracy

(§7.2), 80% of the links are repaired correctly after this time. The

remaining take two rounds of fix, so the overall it takes them four

days to be enabled again.

Figure 14 shows the performance of both methods for the two

DCNs, when the capacity constraint is c=75% for every ToR. The

x-axis is time, and they-axis is total penalty per second. We see that

the penalty of the switch-local checker is much higher, because of its

sub-optimality that we illustrated earlier. It is flat for switch-local

approach because there is a set of corrupting links switch-level

(a) Medium DCN (b) Large DCN

Figure 14: Total penalty per second of switch-local and Cor-
rOpt when the capacity constraint is 75% for every ToR.

(a) Medium DCN (b) Large DCN

Figure 15: Fraction of available paths to the spine for the
worst ToRs when the capacity constraint is 75%.

(a) Medium DCN (b) Large DCN

Figure 16: Fraction of available paths to the spine for the
worst ToRs when the capacity constraint is 50%.

approach is not able to disable and in our model, they corrupt

packets at constant rates. In contrast, CorrOpt can disable the vast

majority of the corrupting links, leading to a much lower penalty.

The penalty varies with time based on the number and relative

locations of corrupting links in the data.

The inability of the switch-local checker to disable links is visi-

ble in Figures 15 and 16, which show the worst ToR’s fraction of

available paths to the spine when the capacity constraint is 75%

and 50%. When lines overlap, it means for some period of time,

performance of CorrOpt is the same of switch-local check. Over-

all, we see that CorrOpt can hit the capacity limit as needed, but
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(a) Medium DCN (b) Large DCN

Figure 17: Total penalty of CorrOpt divided by switch-local
for different capacity constraints.

(a) Penalty Ratio over Time (b) Penalty Ratio CDF

Figure 18: Gain of optimizer over using fast checker alone in
the large DCN. (a) The ratio of total penalty of CorrOpt (fast
checker + optimizer) divided by using fast checker alone. (b)
The CDF of this ratio over the entire simulation period.

switch-local does not disable enough links even though it is not

limited by the capacity constraint.

Impact of the capacity constraint. The advantage of CorrOpt over
today’s switch-local checks depends on the capacity constraint. If

the constraint is lax, bothmethods are expected to perform similarly,

as both can turn off almost all corrupting links. However, when the

constraint is more demanding, the intelligent decision making of

CorrOpt begins to shine. For different capacity constraints, Figure 17

shows the total penalty, integrated over time, of CorrOpt divided

by that of the switch-local checker. Since our penalty function is

linear in corruption losses, this ratio represents the reduction in

the amount of corruption losses.

We see that when the capacity constraint is lax (c=25%), as ex-

pected, there is no difference between the two methods. However,

when the capacity constraint is 50% or higher, a more realistic

regime, CorrOpt outperforms the switch-local checker. On the

medium size data center, with a capacity constraint of 50%, CorrOpt

can eliminate almost all corruption while the switch-local check

keeps some corrupting links active. Thus, the total penalty ratio

drops to 0. When the capacity constraint is 75%, CorrOpt’s total

penalty is three to six orders of magnitude lower.

Fast checker vs. optimizer. To isolate the performance gain of

fast checker and optimizer, we simulate the large DCN using fast

checker alone, which is run both when new corrupting links appear

and disabled links are activated. We bin time into one-hour chunks

and estimate the total penalty incurred using fast checker alone

and with the full CorrOpt logic. Figure 18a shows the total penalty

ratio of using CorrOpt versus using fast checker only for a month-

long period. We see most of the time, optimizer does not reduce

penalty. However, during certain periods, it can significantly reduce

corruption losses compared to using fast checker alone. Figure 18b

shows CDF of the average ratio of penalty of CorrOpt over that

with using fast checker alone. Optimizer does not lower the ratio

for 90% of the time. For 7% of the time, optimizer can reduce the

total penalty per second by at least one order of magnitude.

7.2 Accuracy of Repair Recommendations
CorrOpt’s repair recommendation engine has been deployed across

70 DCNs of different sizes since Oct 2016. Because of certain limita-

tions of the current infrastructure, the deployed version is simpler

than the version outlined in §5.2. It uses a single RxPower threshold

rather than customizing it to the links’ optical technology (infor-

mation about which was not readily available), and it does not

consider historical repairs or space locality. As a result of these

simplifications, the results below underestimate the efficacy of our

repair recommendations.

To evaluate CorrOpt, we analyze tickets generated between Oct

22 and Dec 31 2016. In this period, it generated close to two thou-

sand tickets with a repair recommendation. Not all generated tickets

have a repair recommendation because we cannot get optical power

information from all types of switches. We deem repair successful

if we do not see another ticket for the same link within a week.

Because corruption faults are infrequent, if a link experiences cor-

ruption soon after a repaired, it is likely that the repair was not

successful.

Based on this analysis, the success rate of repair was 58.0%, which

is much lower than our expectation. To investigate, we read diaries

of 322 tickets. We found that 30% of the time, technicians were

ignoring the recommendations! Since CorrOpt is newly-deployed,

not all operators have been informed or trained to leverage the

information it provides.

When the technicians followed our recommendation, the success

rate was 80%. In contrast, our analysis of tickets before CorrOpt’s

deployment revealed that the previous repair success rate was 50%.

The higher success rate of CorrOpt implies the links can be put

back into service sooner; at the same time, it reduces the risk of

collateral damage that occurs with each manual intervention.

CorrOpt’s higher accuracy of repair also lowers corruption losses

because that leads to more healthy links in the DCN, which allows

more corrupting links to be disabled while meeting capacity con-

straints. To quantify this effect, we ran simulations similar to those

in the previous section and considered two different repair pro-

cesses. With CorrOpt, 80% the links are repaired in two days and

the rest in four days (i.e., requiring two attempts). Without CorrOpt,

50% of the links are repaired in two days and the rest in four days.

In both cases, CorrOpt’s algorithm was used to disable links.

Figure 19 shows the results for different capacity constraint for

both medium and large DCNs. The penalty is normalized to that

of the setting without CorrOpt. We see that, in addition to their

other benefits, CorrOpt repair recommendations reduce corruption

losses by 30% when the capacity constraint is 75%.
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(a) Medium DCN (b) Large DCN

Figure 19: CorrOpt’s repair recommendations also help
lower corruption loss. The graph plots the ratio of total
penalty with and without CorrOpt’s recommendation en-
gine.

7.3 Combined Impact
We conclude by evaluating the combined impact of CorrOpt’s strat-

egy of disabling links and repair recommendations. (Previous sec-

tions studied their impact individually.)We compare it to the current

practice of using switch-local checks to disable links and 50% repair

accuracy.

In terms of reducing packet losses, the results are similar to those

in Figure 17. That is because most of the gain stem from its strategy

for disabling links, though its higher repair accuracy has other

benefits noted above. Overall, in the realistic capacity constraint

regime of 75%, CorrOpt reduces corruption losses by three to six

orders of magnitude.

Finally, we also find that the massive reduction in corruption

losses with CorrOpt does not come at the expense of significantly

reduced network capacity.Wemeasure the average fraction of paths

to the spine available for each ToR when the capacity constraint

is 75%. We find that, compared to the current practice, CorrOpt

reduces this average by at most 0.2% across all one-second time

intervals.

8 FUTURE EXTENSIONS
We discuss a few directions for extending CorrOpt.

Accounting for the impact of repair. While disabling a link

has limited local effect, we found in our deployment that repairing it

can sometimes cause collateral damage. For example, when one link

in a breakout cable has packet corruption, to repair the breakout

cable, an additional three, healthy links have to be turned off. A

future extension of CorrOpt would be to account for such collateral

impact, when deciding which links to disable for repair, based on a

finer-grained view of the topology and its dependencies.

Removing traffic instead of disabling links Today, when

CorrOpt completely disables corrupting links (when capacity con-

straints permit that), but based on our deployment experience, we

believe that removing traffic from the link (e.g., by increasing its

routing cost) is a better strategy. This way, when the link is repaired,

we can run test traffic to confirm if the repair succeeded without

affecting actual traffic. Further, monitoring data on optical power

levels will continue to flow in (which otherwise stops when the

link is disabled).

Figure 20: Example of topology segmentation. The corrupt-
ing links to D affect ToRs G,H, and the leftmost link affects
G, resulting in Segment 1. The corrupting link from A to F
affects ToRs I,J, with the uplinks of I,J only affecting them-
selves respectively, resulting in Seg 2. We can thus optimize
Seg 1 and Seg 2 independently. Pruning shrinks Seg 1,2 fur-
ther, depending on capacity constraints.

Speeding optimizer with topology segmentation. Our opti-
mizer suffices for today’s DCNs, but it may need to be extended

for larger DCNs or for those with more corrupting links. We can

do so by dividing corrupting links into non-overlapping segments

such that the decision of disabling them is independent of other

segments. Figure 20 shows an example. Such segmentation signifi-

cantly reduces the search space.

Load balancing. CorrOpt disables corrupting links and thus

makes the network topology asymmetric. Advanced network load

balancing is needed when utilization is high or a significant sub-

set of links are off. Standard load balancing techniques [1] work

seamlessly atop CorrOpt. Links taking offline by CorrOpt can be

seen as link failures which is a standard input into load balancing

schemes. Flows on corrupting links have to be re-routed before

CorrOpt taking the links off. This can cause packet re-ordering and

lower network performance temporarily. Flowlet re-routing [1] can

avoid this problem.

9 RELATEDWORK
Ourwork follows a rich body of work on understanding, diagnosing,

and mitigating faults in large, complex networks. While it is not

possible to cover everything here, we place our work in the context

of the most relevant, recent work.

Packet corruption in DCNs. Some work has acknowledged

corruption as a problem. For instance, NetPilot [34] observes that

corruption hurts application performance and develops a method to

locate corrupting links without access to switch counters. RAIL [38]

studies the optical layer of DCNs, finding that RxPower is generally

high, but instances of low RxPower can cause packet corruption.We

study packet corruption in more detail, including its characteristics

and root causes (we find these go beyond low RxPower).

Faults inDCNs.Many prior studies have considered other types

of faults in DCNs [6, 8, 19]. For instance, Gill et al. [18] study equip-

ment failures in DCNs, characterizing different elements’ downtime

and failure numbers, combined with an impact estimation and re-

dundancy analysis. Our focus is on a different type of fault—packet

corruption—and its mitigation.
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Fault mitigation. Most work on fault mitigation focuses on

congestion or fail-stop faults, using techniques such as load bal-

ancing and fast rerouting [1, 7, 25, 33, 35]; however, these are less

relevant for corrupting links (e.g., reducing traffic on the link will

not alleviate corruption). RAIL [38] studies a setting where cor-

ruption is the norm (because optical transceivers are used in a

non-conventional manner) and places only loss-tolerant traffic on

corrupting links. We view corruption as an anomaly and mitigate it

by disabling corrupting links, so they can be repaired. zUpdate [24]

and NetPilot [34] depend on knowledge of future traffic demand to

further reduce congestion loss when handling corrupting links or

network update. Those techniques are complementary to CorrOpt’s

link disabling techniques. CorrOpt can work in data center settings

where future traffic demand is not available.

Root cause diagnosis. Using optical-layer characteristics to

diagnose network faults was previously proposed by Kompella

et al. [23]. Ghobadi et al. [16] use optical-layer statistics to help

predict failures in backbone networks. Our work uses an optical-

layer monitor to help determine the root cause of packet corruption

in DCNs.

10 CONCLUSION
Our analysis of packet corruption across many DCNs showed that

the extent of corruption losses is significant. It also showed that,

compared to congestion, corruption impacts fewer links but im-

poses heavier loss rates, and the corruption rate of a link is tempo-

rally stable and uncorrelated to its utilization. CorrOpt, our system

to mitigate corruption, lowers corruption losses by three to six

orders of magnitude by intelligently selecting which corrupting

links to disable while meeting configured capacity constraints. It

also generates repair recommendations that are guided by common

symptoms of different root causes. This recommendation engine

is deployed on all data centers of a large cloud provider, where it

improved the accuracy of repair by 60%.
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A PROOF OF THEOREM 1
To prove Theorem 5.1, we first prove the following Lemma:

Lemma A.1. Let N = (V ,E) be a degraded Fat-Tree, where some
links are turned off. Let L ⊆ E be the set of enabled links with cor-
ruption. Finding a set L′ ⊆ L whose removal minimizes the impact of
packet corruption s.t. all ToR switch pairs are still connected the the
spine via valley-free routing after the removal of L′ is NP-hard.

Proof. Our NP-hardness reduction is via the NP-complete prob-

lem 3-SAT, in the variant with exactly three literals per clause. Let

I be an instance of 3-SAT [15], with k clauses C1, . . . ,Ck and vari-

ables x1, . . . ,xr , k ≥ r . We create an instance I ′ of our problem as

follows: Consider a 4k-Fat-Tree, consisting of the three layers ToR,

Agg, and the spine, where the Agg switches have 2k links down-

and upwards, respectively. Pick one pod P with 2k ToR switches,

C1, . . . ,Ck , corresponding to the clauses in I , and H1, . . . ,Hk , as

helper switches, and lastly, 2r Agg switches X1,¬X1, . . . ,Xr ,¬Xr ,
corresponding to the possible literals in I , and, 2k − 2r ≥ 0 further

Agg switches A1, . . . ,A2k−2r . Let only the following three sets of

links not be turned off in this pod P : 1) For eachCi , the links point-
ing to the Agg switches representing the corresponding literals

contained in the clause in I , 2) for each Hj from H1, . . . ,Hr , one

link each to X j ,, X j , 3, for each Hr+1, . . . ,Hk , one link each to

X1,¬X1. For the connection of the Agg switches in P to the neigh-

boring spine switches, let only the following links L not be turned

off, with |L| = 2r : From each Agg switchX1,¬X1, . . . ,Xr ,¬Xr in P ,
one link to a neighboring spine switch. We set all links in L to have

the same corruption properties greater than zero. The construction

is illustrated in Figure 21.

To guarantee valley-free connection of all ToR switches in P to

all other ToR switches in the other pods via the spine, each ToR

switch Ci and Hj needs to have a connection to the spine, with the

last part of each of those paths being a link from L. To maximize the

set of links L′ ⊆ L that can be turned off, consider the following:

First, for each pair of Agg switches X j ,¬X j , at least one needs

to remain connected to the spine, or the ToR switch Hj would be

disconnected (or for the case of j = 1, even more switches), meaning

|L′ | ≥ r . Second, to connect each switch Ci to the spine, at least

one its Agg switches (representing the literals of the clause) have

to be connected to the spine. As thus, a solution to a satisfiable

3-SAT instance I tells us how to to pick which of the links from each

Xi ,¬Xi pair should remain connected to the spine, and vice versa,

a solution with |L′ | = r from I ′ shows how to satisfy I . On the other

hand, should I not be satisfiable, then no solution with |L′ | ≤ r
can exist for I ′, and vice versa as well. We note that the size of the

instance I ′ is polynomial in k , i.e., we showed NP-hardness. □

Since we assumed the same fl on every link, I can be chosen

arbitrarily, as long as I ( fl ) > 0. We can now prove Theorem 5.1:

(a) Clause gadget forC = (X1∨X2∨¬X3 ). Each clause needs
to connect to the spine via one of its contained literals.

(b)
Variable
gadget

Figure 21: Reduction from 3-SAT: Each clause C is repre-
sented by aToR switch, the literalsX and¬X of each variable
are represented by Agg switches. The ToR switches C are
connected to the literals contained in their corresponding
clause, cf. the clause gadget in 21a: Hence, at least one of the
three literals needs to be connected to the spine. Each literal
pair X ,¬X is connected to at least one further ToR switch H ,
as shown in the variable gadget in 21b, ensuring that at least
one literal of each variable is connected to the spine. The lit-
erals (Agg switches) only have one connection each to the
spine, and all these connections are faulty, with the same er-
ror properties each. Finding a maximum set of these faulty
links to turn off, s.t. all Tor switches still have valley-free
connections to the remaining network, is NP-hard.

Proof. Lemma A.1 assumed the network to be already degraded,

i.e., some links L are turned off. Note that a Fat-Tree is a special case

of a Clos topology. We can extend the NP-hardness to the setting

of Theorem 5.1 as well, by the following change in construction:

Assume the errors on every link in L are so high in comparison

to the errors on the links from L, that for every link l ∈ L holds:

Disabling l is more efficient regarding the impact of currption than

turning off all links in L. Lastly, to show that the underlying decision

problem is in NP, observe that checking the capacity constraints

and total impact of packet corruption of a given solution can be

performed in polynomial time. □

The above proof constructions can also be used as follows:

Optimizing for link removal. Another objective instead of total

packet corruption could be the number of further links that can be

removed. However, as all links in the proof of Lemma A.1 had the

same error properties, NP-completeness still holds.

From ToR-spine connectivity to ToR-ToR connectivity. Lastly, in
the above problem formulations, we wanted to maintain the ToR to

spine connectivity of all ToR switches. However, we just considered

a single pod P in each Fat-Tree construction, with the ToR switches

in all other pods retaining all their connectivity to the spine. As thus,

the above problems are also NP-complete for ToR-ToR connectivity,

with the same proof constructions.
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