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ABSTRACT
Batfish is a tool to analyze network configurations and forwarding.
It has evolved from a research prototype to an industrial-strength
product, guided by scalability, fidelity, and usability challenges
encountered when analyzing complex, real-world networks. We
share key lessons from this evolution, including how Datalog had
significant limitations when generating and analyzing forwarding
state and how binary decision diagrams (BDDs) proved highly
versatile. We also describe our new techniques for addressing real-
world challenges, which increase Batfish performance by three
orders of magnitude and enable high-fidelity analysis of networks
with thousands of nodes within minutes.
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1 INTRODUCTION
Batfish is a tool to validate network configurations before they are
applied to the network. It uses a model of the network control plane
(e.g., routing protocols like BGP) to derive the data plane that will
result from the configurations, and then it verifies that the data
plane adheres to the network’s availability and security policies
(e.g., ensure that no packet from A reaches B).
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Batfish is in use at many large enterprises [12, 30, 31, 46, 53, 59].
It also serves as the backend for the Oracle Network Path Ana-
lyzer [48], which analyzes cloud virtual networks. Batfish has a
large user community of network engineers, with over 1700 mem-
bers in Slack channels [54, 55], and many research tools are built on
top of it [1, 6, 7, 13, 19–21, 29, 37, 58, 60]. Batfish began as a research
project a decade ago [16]. It has evolved significantly since then
into an industrial-strength tool. Since its original development, we
added support for many new router vendors (e.g., Arista, SONiC),
stateful firewalls (e.g., Palo Alto, Check Point), load balancers (e.g.,
F5, A10), advanced network protocols (e.g, EVPN, VXLAN), and
virtual cloud networks (e.g., AWS). We re-architected key parts of
Batfish to overcome challenges related to performance and usability
that we faced along the way.

This paper describes five lessons we learned from Batfish’s evo-
lution. We hope that these lessons, also relevant for other network
modeling and analysis tools, will inform the design and develop-
ment of the next generation of tools.
Lesson 1: Datalog was great for prototyping, but not for production
use. The original version of Batfish used Datalog, a declarative logic
programming language, to model the network control plane, derive
the data plane, and run verification queries. We removed all uses of
Datalog because it was difficult to express complex control plane
behaviors and we lacked control over execution order, which is key
to performance and deterministic convergence.
Lesson 2: Binary decision diagrams (BDDs) are great for data plane
analysis. There is a longstanding tradeoff for data plane verification
between the ease of tool development and performance [62]. Tools
based on general solvers (e.g., SAT/SMT, Datalog) [43, 45, 56, 57]
are easier to develop because much heavy lifting can be outsourced,
but they face performance challenges because domain-specific op-
timizations can be hard to express. Custom encodings [33, 61, 62],
on the other hand, perform well but are hard to build and extend.
We discovered that casting data plane analysis as a dataflow analy-
sis [35] using BDDs [2] can resolve this tradeoff and provide the
best of both worlds. It let us compactly encode rich data plane
behaviors and express many optimizations.
Lesson 3: Analysis fidelity is hard, but not why you think. Batfish uses
a model of how the router software interprets the configuration
instead of running actual software. The risk that the model might
deviate from the actual router behavior is commonly attributed to
bugs or evolution of router software; after a minor version change,
Cisco IOS may interpret some configuration commands differently.
Instead, we found that most modeling issues stem from the diversity
of language features and undocumented interactions among them.
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Lesson 4: Usability is hard for reasons you think, and then some.
Batfish faces usability challenges seen in other verification do-
mains [9, 51], such as the lack of precise specifications. However,
it also faces challenges unique to networking. Network engineers
are familiar with concrete testing tools like traceroute, which
take a specific flow (combination of starting location and packet
header) as input and output specific paths of that flow. Using net-
work verification tools requires a mental shift, where engineers
must reason about large sets of flows and paths as input and output.
The completeness of analysis can also uncover many scenarios that
technically violate tested properties but are uninteresting to users
(e.g., when guaranteeing reachability from A to B for all traffic,
traffic with spoofed source IPs may be uninteresting). A haystack
of such uninteresting violations can easily conceal real issues.
Lesson 5: Deep configurationmodeling hasmany applications. Though
the original goal of Batfish was analysis of network forwarding, we
discovered that network engineers wanted the tool to check many
other properties, such as the compatibility of BGP configuration
across neighbors and the uniqueness of assigned IP addresses in
the network. Fortunately, we found that Batfish’s detailed model of
network configurations and their behavior—a prerequisite for data-
plane generation—made it easy to support these other applications.

The rest of this paper elaborates on these lessons and describes
how the design of Batfish evolved. It includes our current approach
to configuration modeling and generating the data plane in a scal-
able, deterministic manner; the new BDD-based engine for data
plane verification; and the techniques we developed to improve
usability and analysis fidelity.

We also describe how network engineers use Batfish today and
benchmark the performance of the current version using data from
11 real networks. Compared to the original version, the new tech-
niques improve data plane generation by three orders of magnitude
and data plane verification by an order of magnitude. The analysis
finishes in minutes, even on networks with thousands of nodes.

These results and the large user community confirm that Batfish
has evolved and matured considerably, but challenges remain. We
conclude the paper by discussing the main ones, including the lack
of automation inside most networks, modeling diverse forwarding
pipelines, and current bottlenecks for usability and scaling.

2 ORIGINAL BATFISH
Batfish was originally developed to analyze network forwarding
proactively, i.e., before configuration changes are deployed. This
capability helps network engineers find configuration errors that
cause undesirable packet forwarding—when a packet that should
reach its destination is dropped, or vice versa—before the network
is impacted by the error.

Before Batfish, there were two main approaches to finding net-
work configuration errors. The first statically analyzed configura-
tion text [3, 14, 47, 64] to proactively find a class of errors (e.g.,
a BGP session is not configured on both ends). However, this ap-
proach did not model the semantics of configurations in sufficient
detail and could not analyze packet forwarding. The second ap-
proach analyzed snapshots of the network’s data plane state (i.e.,
forwarding tables) pulled from the live network [33, 45]. Though it
could analyze packet forwarding , it could not find configuration

errors proactively because it needed to pull state from the network.
Batfish aimed to provide the best of these two approaches.

The original Batfish used a model-based approach: a high-fidelity
model simulated the network control plane based on its topology
and configurations to produce the resulting data plane state. It then
verified that this state matched engineers’ expectations. We chose
Datalog for control plane modeling because it let us outsource to a
Datalog engine tasks such as simulation and tracking provenance
of violations. Batfish had a four-stage workflow.

Stage 1: Configuration parsing and modeling. The first stage
translated configuration text of all network routers to a normalized
representation. Unlike the configuration text, where the syntax is
specific to a router OS (e.g., Arista EOS, Cisco IOS), the internal
representation was vendor-independent. Specifically, a configura-
tion was represented as a collection of logical facts in a variant of
Datalog used by the LogicBlox engine [40]. If the configuration of
node N declared an OSPF link cost of 500 on interface I, then we pro-
duced the Datalog fact OspfCost(N, I, 500), where OspfCost is
a Datalog predicate that we defined. There were similar predicates
for all other aspects of network configurations that affect routing,
and we populated facts about these predicates.

This stage used Antlr [50] to parse the configuration text into an
abstract syntax tree (AST) and then converted the AST to Datalog
facts. This parsing-based approach was a departure from prior
configuration analysis tools [14], which extracted a few specific
configuration elements of interest using regexes. It was motivated
by the need to extract all configuration elements that could impact
the data plane state.

Stage 2: Data plane state computation. The second stage derived
the data plane state from the configuration facts and a user-provided
environment. The environment, also represented internally as Dat-
alog facts, included link states (up/down) and routing messages
from external neighbors. Batfish defined a model of the network
control plane, including protocols like BGP and OSPF, static routes,
and route redistribution. The model was essentially a function that
took the two preceding inputs and produced the data plane state of
each node.

The model was encoded as Datalog rules that specified how to
derive new facts from existing facts. Rules defined how to compute
OSPF routes, encoded as facts like OspfRoute(node, nextHop,
nextHopIP, cost), from other facts, such as the OSPF link cost
fact. These rules were recursive since the OSPF routes at one node
depend on those at its neighbors; Datalog’s support for recursion
made it a natural fit. There were similar rules for other proto-
cols, additional rules that determined best routes across protocol-
specific best routes, and finally rules that produced the forwarding
state as facts of the form Forward(node, flow, neighbor) and
Drop(node, flow). Batfish used the LogicBlox Datalog engine [40]
to derive all facts implied by these rules and the initial set of facts
until reaching a fixed point, resulting in a representation of the
network’s data plane state.

Stage 3: Data plane verification. The third stage verified the
network’s forwarding behavior. Its inputs were the data plane state
computed above and a property of interest (e.g., HTTP packets
should be able to reach B from A), encoded in first-order logic.
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The output was either a "thumbs up" (the property holds) or a
counterexample with a concrete packet header and starting node.

This stage used Network Optimized Datalog (NoD) [43] and
the Z3 SMT solver. NoD took as inputs the data plane state and
the (negation of the) property and, if the property were violated,
output a boolean formula for constraints on the set of packets that
violated the property. Batfish then used Z3 to derive a concrete
counterexample from the constraints.

Stage 4: Explaining violations. This final stage aimed to help
users understand why their property was violated. It translated
the concrete counterexample packet into the Datalog model of the
data plane and used LogicBlox to simulate the behavior of this flow
through the network. This simulation produced a set of Datalog
facts that identified all forwarding rules the counterexample packet
touched along its path(s).

The produced facts included information on the specific route
used at a node, how the node learned that route (e.g., via OSPF), and
how that route was produced from the configuration. Producing
this extra information was trivial in Datalog since the dependencies
among facts and rules are explicit.

3 LESSONS FROM EVOLUTION
Faced with analyzing large real-world networks, the design and
implementation of Batfish evolved significantly. While the model-
based approach and the four-stage workflow remained, we com-
pletely re-wrote Stages 2, 3, and 4, sometimes multiple times. We
also significantly changed Stage 1 and created an additional, offline
stage focused on analysis fidelity. We take a retrospective view
and first highlight five key lessons from this evolution. In the next
section, we describe the new Batfish components.

Lesson 1: Datalog was great for prototyping but
not for production use
The original Batfish used Datalog extensively, which enabled use
of an off-the-shelf solver and simplified development. However,
early in the journey of transforming Batfish to a real-world tool,
the limitations of a Datalog-based control-plane model became
critical roadblocks. We encountered three main limitations, which
are relevant not only for network modeling but also for network
protocol implementations [41, 42].

1. Expressiveness. As we faced more complex configuration con-
structs, it became increasingly difficult to precisely model semantics
in Datalog. For example, route maps can use regular expressions
and arithmetic. Datalog is not Turing-complete (though LogicBlox’s
Datalog variant had some extensions), so it may be impossible to
exactly model semantics in some cases. Even when we found a way
to encode certain advanced semantics, it often required a subtle,
unwieldy encoding that was hard to understand and maintain.

2. Performance. For large networks, Batfish’s data plane generation
was too slow. With a Datalog solver, we did not control the order
in which rules and facts were considered. Indeed, not having to
specify execution order is a big advantage of declarative models.
However, ordering has a huge impact on performance for routing
computation. BGP best paths are based on IGP (e.g., OSPF) best
paths. It is thus better to first compute IGP paths and then compute

BGP paths. A Datalog solver might instead compute BGP paths
based on the current IGP paths, which then required the BGP paths
to be updated all over again after IGP paths were updated.

Additionally, the Datalog engine retains in memory all interme-
diate facts, including routes that are eventually deemed sub-optimal
and discarded. With non-monotonic routing computations (as is
the case here), with no additional context, this retention is neces-
sary [44]. However, it also consumes substantial memory. Many
intermediate facts are unnecessary to retain, but in a declarative
model we lacked a way to specify which intermediate facts should
be retained and which could be safely forgotten.
3. Deterministic convergence. We encountered networks where, un-
less execution order is controlled (which is not possible with Data-
log), routing would not converge deterministically or not converge
at all. See § 4.1 for examples.

Because of these limitations, we rewrote Batfish’s control-plane
model as imperative code. Stage 1 of Batfish still parses configura-
tion text into a vendor-intermediate format, but it now uses a Java
data structure rather than Datalog facts. With the elimination of
Datalog, provenance tracking for counterexamples was no longer
automatic, and we thus also had to develop new mechanisms for
that functionality.

Lesson 2: BDDs are great for data plane analysis
As we scaled Batfish to large networks, the performance of data
plane verification also became a bottleneck. Our optimizations of
NoD and Z3 SMT queries did not yield needed levels of performance.
We eventually developed a new verification engine based on binary
decision diagrams (BDDs), which represent boolean functions as
decision DAGs. The BDD-based engine became the production
implementation for data plane verification in Batfish in early 2018.

We discovered that BDDs can resolve the long-standing ten-
sion between custom and general backends for data plane verifi-
cation [62]. Tools based on general backends [43, 45, 56, 57], such
as Datalog or SMT, are easier to develop—heavy lifting is done by
another engine. But they perform worse because many domain-
specific optimizations can be difficult or impossible to express. On
the other hand, "vertically integrated" tools based on custom en-
codings [33, 61, 62] perform well but are harder to develop and
extend. Adding a new data plane function (e.g., NAT) requires inva-
sive changes to both the data-plane encoding and the underlying
engine. For example, adding packet transformations to the original
Atomic Predicates [61] tool required development of an entirely
new theory [62].

Our new engine, which uses a BDD-based dataflow analysis
(§ 4.2), resolves this tension because (1) it can easily encode domain-
specific optimizations, including topology and path related ones
that are hard for SMT solvers [5]; (2) the number of BDD variables is
largely independent of the network size; and (3) even advanced data
plane functions, such as NATs and firewalls, tend to have compact
BDD representations.

Lesson 3: Analysis fidelity is hard but not why
you think
Batfish uses a model of how devices interpret configuration. This
approach scales better than running actual device OS and routing
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software [38]. However, it runs the risk of model inaccuracies and
incorrect analysis. This risk is commonly attributed to different
minor versions of the router software potentially processing config-
uration commands differently because of bugs or by design. Batfish
may not know the version based on configuration text alone. We
rarely encountered analysis fidelity issues due to this reason.

Instead, analysis fidelity issues arose mostly from undocumented
semantics of router software. Though there are many commonly
used configuration idioms, and even vendor-recommended tem-
plates, there are also many ways to deviate from these idioms,
intentionally or accidentally. A simple example: What should hap-
pen to incoming routing announcements when a BGP neighbor is
configured to use a route map that is not defined anywhere? This
situation and many others are not documented by router software
vendors, but there is a long tail of such situations that must be
handled properly to correctly support real-world configurations.

Initially, we addressed such issues in an ad hoc manner as they
arose, but by 2019 we were proactively testing deviations from
standard configurations in an emulator (§ 4.3). Our approach does
not guarantee that models match reality, but it has significantly
reduced analysis fidelity issues. We also found that 100% fidelity is
not required for Batfish to be useful. Even buggy models can find
serious errors because there are classes of analyses (see Lesson 5)
that are less likely to be impacted by modeling bugs.

Lesson 4: Usability is hard for reasons you think
and then some
Based on experiences with software verification [9, 51], we expected
usability challenges in making network verification accessible to
engineers on the ground. Indeed, we faced some similar challenges,
such as the absence of formal specifications. But we also faced three
classes of challenges unique to networking.
1. Unclear invariant semantics. Network verification offers a differ-
ent abstraction than tools like traceroute and ping, which are
more familiar to network engineers. These other tools deal with
individual concrete endpoints (sources, destinations), packets, and
paths. Batfish originally accepted properties as first-order logic
formulas that quantify over these entities. Requiring network en-
gineers to write and understand such formulas was not practical.
Therefore, we provided queries that could be richly parameterized
with endpoints, packets headers, and paths based on intended in-
variants. But even simple invariants expressed in English can be
highly ambiguous. “Set A of hosts should reach set B of hosts”
could mean any of: all A hosts should reach all B hosts; some A host
should reach all B hosts; all A hosts should reach some B host; some
A host should reach some B host. Possibilities explode combinatori-
ally if we also factor in packet headers and paths. Such ambiguities
cause incorrect usage and confusion.
2. Uninteresting violations. Verification tools analyze all possible
packet headers and paths. This completeness enables strong guar-
antees but also causes usability issues if flagged violations are un-
interesting to users. In real networks, we encountered situations
where a specified property was violated even though the network
was configured correctly. For a simple query like "host A should
reach service B," this could happen in a few ways: (a) when A sends
packets with spoofed source IPs, which are then dropped at the

access switch; (b) when A sends packets with low-numbered (priv-
ileged) source ports, which are then dropped at the firewall that
protects B; (c) when A sends TCP packets with flags that indicate
a response to a SYN from B, which the firewall blocks because B
is not expected to send such packets. None of these may be an
interesting violation for the user.

One could view the root issue as poor specification of the prop-
erty. However, real networks have many such behaviors that are
either not in the configuration (and caused by default device behav-
iors) or are in the part of the configuration that the user does not
manage. It is unreasonable to expect network engineers to know
and specify exact properties that preclude all uninteresting cases.

3. Explaining violations. Batfish originally provided one counterex-
ample packet for violated properties that was picked by the SMT
solver (randomly) from the violating header space. This approach
has drawbacks. The counterexample does not indicate why it was
picked (e.g., is the packet’s source IP at fault or its source port?),
lacks context (e.g., the specific source IP is not as meaningful as
saying the source IP was in a user-defined prefix list), and can be
confusing (e.g., the solver might pick 1.1.1.1 as the source IP, which
cannot occur in their network). We also tried communicating the
set of all packets that violate an invariant, but we found that it was
difficult to do so in a way that does not overwhelm users but does
lead them to the root configuration error.

We have not found a silver bullet for usability challenges, but,
through trial and errorwe have discovered helpful techniques (§ 4.4),
including creating narrowly scoped queries, applying reasonable
defaults to analyses, and carefully selecting violation examples.

Lesson 5: Deep configuration modeling has many
applications
The original goal of Batfish was analysis of network forwarding,
but we soon found that network engineers wanted the tool to
check many other configuration properties. These include checking:
configuration settings (e.g., NTP servers), compatibility of BGP
configuration across neighbors, whether all referenced routing
policies are defined, uniqueness of IP addresses in the network,
whether an access control list (ACL) attached to an interface allows
a certain packet, and so on. Custom tools exist for some of these
applications, but Batfish’s detailed model of network configurations,
which is a prerequisite for data plane generation, made it easy to
support all these applications in one tool.

Most of these analyses are local, typically involving only a small
portion of configurations of one or two nodes, and offer unique
benefits. Users can easily localize identified errors. If a missing
route-map results in bad forwarding, it is much easier to find this
error by checking for undefined route-maps than by debugging
based on the counterexample to a data plane verification query. As
a complement to end-to-end forwarding guarantees, these analyses
also help network engineers directly ensure that specific parts of
the configuration are correct. This ability is particularly useful for
management plane configuration (e.g., NTP servers), which does
not directly impact forwarding.

Engineers also started using Batfish in workflows other than
proactive configuration analysis. These workflows, described in
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Figure 1: Two common network design patterns with non-
deterministic convergence. (a) The aggregation switches ex-
port a route to the ToR (top-of-rack) switch, which uses the
first one received (multipath is off). (b) Border routers prefer
routes via each other to keep paths for certain prefixes in-
ternal, if possible. When both get such a prefix from outside,
the network converges based on which receives the prefix
first and exports it to the other.

§ 5, emerged because of limitations of the infrastructure in their
organizations and of other testing tools.

4 DESIGN OF NEW COMPONENTS
We now describe the main elements of Batfish’s new design.

4.1 Data plane generation
The new data plane generation engine in Batfish differs from the
original in three main ways.

4.1.1 Imperative evaluation. The new engine is fully imperative
and encodes the route exchange logic in custom Java code that runs
a fixed-point computation. This aligns with supporting arbitrarily
complex control plane models and enables Batfish to support a wide
range of complex features (e.g., BGP add-path) and new protocols
(e.g., EIGRP). It also allows us to control intricate dependencies be-
tween control plane and data plane state without having to encode
them in Datalog. For example, the establishment of a BGP session
between two peers depends on a successful TCP connection, which
can be prevented by misconfigured ACLs or NAT (network address
translation). We thus need to re-evaluate the viability of such ses-
sions at key points in the data plane generation using partial data
plane state.

Our imperative model lets us easily implement optimizations,
such as allowing IGP protocols to converge prior to beginning BGP
computation. We can also speed up the computation by introducing
high levels of parallelism.

4.1.2 Optimized, deterministic convergence. Imperative evaluation
by itself does not suffice because there are BGP networks for which
it does not always converge or does not converge to a unique state.
Figure 1 shows two routing patterns with non-deterministic con-
vergence. With uncontrolled parallelism, where all nodes exchange
routes with all their neighbors in the same iteration, simulating
such networks triggers pathological cases where equally good rout-
ing advertisements trigger unnecessary re-computation. Or worse,
routers get stuck in a re-advertisement loop because they proceed
in lockstep, like the border routers in Figure 1b, where both: 1) ex-
port externally received 10.0.0.0/8 to each other; 2) both select the
received internal paths (higher preference); 3) withdraw the direct

external paths (exported in Step 1) because those are no longer
selected; 4) select their own direct external paths because the inter-
nal paths were withdrawn; 5) export external paths to each other,
which is the same as in Step 1, and the cycle repeats. This problem
is not likely to occur in the actual network because both routers
are unlikely to repeatedly and simultaneously export to each other.

To converge deterministically, we need to carefully limit paral-
lelism without completely eliminating it (which hurts performance).
Randomizing the processing order of routers can avoid the prob-
lem [15], but we also need consistent results across simulations
to aid in debugging and presenting stable results to users. Paths
should not change unnecessarily across network snapshots.

Batfish uses two convergence techniques. The first is a protocol-
specific graph coloring. For each routing protocol, it computes the
adjacencies, colors the graph [27], and allows only nodes of the
same color to participate in the message exchange at the same
time (for that routing protocol). This technique eliminates race
conditions caused by neighbors exchanging routes given their par-
tially converged state. Second, we add logical clocks [36] to our
BGP RIB implementation, helping us to tie break routing advertise-
ments based on arrival time, like routers do. This technique removes
pathological re-advertisement loops. It does not, by design, force
convergence on networks that do not converge in reality. Batfish
detects and reports non-convergence of routing.

4.1.3 Optimized memory footprint. To scale to large networks, we
need to optimize memory usage too. The classic fixed-point compu-
tation method—i.e., maintaining full RIB state for both the previous
and current iteration to determine convergence—proved too expen-
sive. We also tried the classic message-passing approach, where
only current RIBs are stored but incremental updates (RIB deltas,
i.e., routes added and removed) are processed by export policy and
pushed onto queues to receivers. However, this approach keeps one
distinct copy of each exported route per protocol neighbor, which
is many more than the number of RIBs, until these queues are pro-
cessed later by the receivers’ import policy. When import policies
can reject routes, it forces us to maintain considerable amounts of
intermediate information in memory just to discard it later.

We settle on a hybrid approach with no queues. In addition
to active RIBs, Batfish keeps only RIB deltas for the current and
previous iteration. It can elide the queues because each receiver
directly pulls from each protocol neighbor’s RIB delta, combining
the steps of processing the neighbor’s export policy, processing the
receiver’s import policy, and merging accepted routes into its own
RIBs. This lets Batfish efficiently determine when the computation
converges by checking the emptiness of RIB deltas and reduce
peak memory consumption to about the number of routes actually
accepted by routers.

We also optimize the memory footprint of routing data itself.
Batfish requires only a small fraction of the total memory capac-
ity of the routers it simulates because it leverages the single Java
process to intern common objects. The number of unique values
for routing attributes is orders of magnitude lower than the total
number of routes. Hence, we intern IP addresses, IP prefixes, BGP
communities, and more complex routing attributes, such as BGP
AS paths and BGP community sets (which also speed up equality
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Figure 2: (a) An example network. Tables depict node forwarding tables (FIBs), mapping prefixes to outgoing interfaces. R1 uses
multipath routing for P3 and has an outbound ACL on i3. (b) A simplified dataflow graph for the network. Edges are labeled
with packet headers that can traverse them.

checks). We further reduce memory consumption with an aware-
ness that combinations of these attributes are typically few. Many
BGP advertisements that follow similar paths (e.g., because of mul-
tipath routing across data center network tiers) will share attributes
such as administrative distance and BGP communities, AS path,
and local preference. Moving 13 properties of a BGP route into
a single interned object reduces the memory size of each route
by 88 bytes, and there are typically 10x–20x fewer combinations
of those properties than routes. This technique reduces memory
consumption in typical networks by 50%.

4.2 BDD-based data plane analysis
The fundamental task of a data plane verification engine is to com-
pute the set of packets that can reach particular nodes in the net-
work. Like HSA [33], we use a form of dataflow analysis [35]: we
build a dataflow graph that represents the paths through the net-
work and then traverse the graph to compute the sets of packets
that can reach each node. However, in Batfish we encode and ma-
nipulate sets of packets using BDDs, which provides a sweet spot
between implementation complexity and performance. On one
hand, unlike custom structures such as differences-of-cubes [33]
and ddNF [10], we can leverage years of work on optimizing BDDs.
On the other, unlike SMT solvers, we maintain complete control
over the dataflow analysis and so can easily incorporate a host of
extensions and optimizations. After reviewing the dataflow analysis
with a small example, we describe our BDD-based representation;
we then describe our main extensions and optimizations.

4.2.1 Overview of dataflow analysis. Consider the network in Fig-
ure 2(a), which shows the FIB (forwarding table) for each device.
When R1 receives a packet destined to prefix P1, it forwards the
packet out interface i0. It also has an outbound ACL on interface i3
that allows only ssh traffic.

Figure 2b shows the dataflow graph that Batfish builds for this
network. It has three nodes representing the FIB lookups on each

device and a node for the ACL on R1.i3. For each interface, there is
also a source node for packets that it originates or receives from
outside the network and a destination node for packets that it sinks
or sends outside the network. The figure elides the source and
destination nodes for internal interfaces (e.g., i2 for R1). It also
elides a special "dropped" node to represent dropped traffic.

Edge labels in the dataflow graph indicate the set of packets that
can flow along the edge, represented as a logical constraint, and are
derived from FIBs and ACLs. For example, the edge from R1.fwd
to D1 indicates that only traffic destined for an IP address in prefix
P1 can traverse the edge, thereby accounting for the first row in
R1’s FIB. For real networks, the edge constraints are richer since
they also encode the semantics of longest-prefix matching, ordering
among ACL entries, and packet transformations.

The dataflow graph lets us compute the set of packets that can
traverse between any pair of nodes. Following standard dataflow
analysis, we start with the set of packets of interest at the source and
iteratively traverse edges in the graph to update the set of packets
that can reach each node, until we reach a fixed point. Suppose
we want to compute all TCP packets that can enter the network
via interface i0 at R1 (R1.i0.src in Figure 2b) and leave via i0 at R3
(R3.i0.dst). Initially, the set of packets at R1.i0.src is all TCP packets
(whose IP protocol is 6), and the set of packets everywhere else is
empty.

In every iteration, each node forwards its set along all outgoing
edges, and receivers union the received set into their set to re-
flect everything reachable in prior iterations and everything newly
reachable. In the first iteration, R1.fwd will receive the set of TCP
packets from R1.i0.src and update its set accordingly. In the next
iteration, R1.fwd will forward this set on its three outgoing edges,
but the set is intersected with the set of packets denoted by the
edge label in order to respect the constraints imposed by FIBs and
ACLs. So R1.i3.out.ACL will receive the set of TCP packets that are
destined for an IP in 10.0.3.0/24. This process inherently models
multipath routing since the analysis traverses all paths. The process



Lessons from the evolution of the Batfish configuration analysis tool ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

continues until there are no more updates, at which point the set
of packets at R3.i0.dst represents the answer to the original query.

4.2.2 Sets of packets as BDDs. Representing sets of packets explic-
itly is prohibitive, and various compact representations have been
considered in the past [10, 33]. Batfish uses BDDs to represent the
set of packets at each node as well as the edge labels in the dataflow
graph. A BDD is a data structure that encodes a logical formula. We
represent a set of packets as a logical formula over header bits and
other information. For example, a BDD for the formula (dstIP ∈ P1)
represents the set of packets destined for an IP address in prefix P1.

To understand how a BDD represents a formula over 𝑛 bits,
imagine a complete binary decision tree of height 𝑛 + 1 (which
has 2𝑛 leaves). Each 𝑛-bit value corresponds to one path from the
root to a leaf, taking the left (right) branch at depth 𝑖 if the 𝑖-th
bit is zero (one); each leaf node is labeled as true or false based on
whether the formula is true for that value. A BDD optimizes this
naive representation in two ways: (1) nodes at the same level that
have identical subgraphs are merged, with all parents pointing to
the single merged node (i.e., BDDs are DAGs, not trees); and (2)
nodes where both branches point to the same child are deleted, with
all incoming edges pointing to that child instead. Importantly, the
resulting data structure is canonical for a given order of variables,
and it can be substantially smaller than the original binary tree.
BDDs also support efficient implementations of standard logical
operations such as conjunction and disjunction, which respectively
have the effect of intersecting and unioning sets of packets.

By expressing our computation using these operations, these
facilities and various optimizations become available to us (e.g.,
we exploit canonicity to short-circuit full BDD traversals using
identity-based operation caches). At the same time, the framework
is flexible enough to facilitate extensions needed for real networks.

A key choice that we need to make is the BDD variable order,
which dramatically affects the size of the resulting BDD. Batfish or-
ders bits for the variables of an IPv4 packet using a simple heuristic.
Subtree reuse is key to BDD efficiency, so fields that are filtered or
transformed often should come first. We thus order header fields
based on how frequently they are constrained, which leads to this
order: Destination IP, Source IP, Destination Port, Source Port, ICMP
Code, ICMP Type, IP Protocol, and finally less used fields, such as
TCP Flags and Packet Length. Within a field, Batfish orders the bits
with the most significant bit first.

Crucially, the number of BDD variables needed to represent a
set of packets is primarily the number of bits in an IPv4 header, so
it is independent of network design and size. As described below,
we add more bits to model certain extensions, which can depend on
network, but in practice they require very few additional variables.
The real-world networks evaluated in § 6, which have 75–2735
devices, require only 0–6 additional BDD variables beyond the 261
(network-independent) variables that encode IPv4 header.

4.2.3 Extensions and optimizations. We now describe how we ex-
tend the basic dataflow analysis outlined above.

Packet transformations. Batfish supports precise reasoning about
packet transformations such as NAT. We encode NAT rules as a
BDD that has a second set of the variables corresponding to IP
addresses and TCP/UDP ports (96 bits in total) and can thereby

represent a function from the original packet to the transformed
one. NAT edges intersect the BDDs for the input set of headers
with the BDD for the NAT rule, then erase (existentially quantify)
the input headers to get only the output headers, and finally remap
variables in that BDD to those used to represent reachable sets
(which are the same as the input variables in the NAT rule BDD).
For efficiency, we implemented an optimized BDD operation to
execute these three steps simultaneously.

Batfish encodes relationships between packets only on edges in
the dataflow graph; at nodes, we always encode only sets of indi-
vidual packets. This property keeps the BDDs in the reachability
table small and enables the analysis to support arbitrarily many
NATs without increasing the number of variables. In contrast, in
SMT encodings [4, 45] each NAT doubles the variable count for the
entire analysis, which significantly impacts performance. We inter-
leave the variables for input-output packet pairs since a variable
in the output packet tends to closely depend on the corresponding
variable of the input packet.

Zone-based firewalls. Unlike ACLs, firewalls can filter packets
based not just on headers but also on incoming and outgoing zones,
where a zone is a set of interfaces. We model these using additional
BDDs variables that represent incoming and outgoing zones. These
variables are set to record the zone as the packet enters the firewall,
are tested in subsequent edges that encode the firewall behavior, and
are erased when the packet exits the firewall. Since the constraints
are local to parts of the forwarding graph that encode a single
firewall, we can reuse the same BDD variables to model zones
on different firewalls. The number of variables needed to model
firewalls for the entire network is logarithmic in the maximum
number of firewall zones on any device, and in practice we have
never needed more than four bits.

Stateful devices and bidirectional reachability. Bidirectional
reachability reasons about packet sets that can make the round trip
from A to B and back. In the presence of stateful behavior (e.g., NAT,
firewalls), it is not the same as the intersection of two directions
because what is permitted in the reverse direction depends on the
state setup in the forward direction. (Most scalable data plane veri-
fication tools [33, 45, 62] do not analyze bidirectional reachability.)
To analyze it, we first do a forward dataflow analysis, after which
the reachable sets at nodes for stateful devices represent all firewall
sessions that could be installed. We then instrument the dataflow
graph by adding constraints to existing edges and inserting new
ones to represent the session "fast path" for matching return traffic,
and we then run the analysis in the other direction.

Waypoint queries. Batfish supports waypoint-based queries as
well, where the goal is to ensure that paths between nodes traverse
(or do not traverse) certain other nodes. We introduce variable(s)
in packet sets that denote whether waypoint(s) of interest have
been traversed. Initially unset, these bits are set when a waypoint
is traversed during propagation. Though in principle waypointing
constraints could be as complex as the size of the network, the
typical verification has the form "all traffic from the Internet to a
Webserver must traverse a Firewall" and requires only 1 bit.

Graph compression. Many nodes in the dataflow graph are sim-
ple, i.e., they have only one incoming or outgoing edge and do
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not transform packets. Despite their simplicity, these nodes in-
duce many edges in the graph, which slows down the analysis.
We implemented an optimization that identifies and deletes these
nodes. When a node is deleted, each pair of an in-edge from tail T
and out-edge to head H is replaced by a single edge from T to H,
representing the composition of those edges.
Query-based specialization. The dataflow analysis generally
moves forward from sources to all destinations and dropped nodes,
but a query may have a narrower interest. We implemented opti-
mizations that, given a query, prune the graph. If a query is only
for specific sources (or destinations), other sources (respectively,
destinations) and corresponding edges are removed. Graph pruning
is fast (no BDD operations), and it creates additional opportunities
for graph compression. We also optimize how we walk the graph
based on the query. For instance, if the query is interested only in
traffic accepted at a single device, we walk the graph backwards
from the destination toward the sources, propagating packet sets
from edge head to tail. Backward propagation is achieved by "re-
versing" the original BDD. The reverse BDD represents what packet
set could have arrived at the tail given a packet set at the head; it
saves us from walking the edges that do not lie on the destination’s
forwarding tree.

4.3 Analysis fidelity
Two testing frameworks help us improve analysis fidelity.

4.3.1 Validation against ground truth. To make Batfish’s analysis
robust to a range of configuration patterns, we use a validation
framework with real device software and emulation engines like
GNS3 [22]. Our framework has the following workflow: 1) Create
small networks (i.e., labs) exercising the features of interest using
recommended configuration and possible deviations. 2) Collect
device configurations and runtime state from the network, such as
show commands for interfaces, routes, and VRFs as well as ping and
traceroute data. 3) Validate that, given the collected configurations,
the Batfish model aligns with the collected runtime state.

Such a validation framework has several advantages. It lets us
leverage network engineer experts to create labs without their need-
ing to know Batfish internals. When on-boarding new networks,
we can re-use steps 2 and 3 to validate Batfish models against data
from the live network. Data from labs and live networks goes into
a repository, and step 3 is run daily on all networks, reducing the
risk of regressions as Batfish code evolves.

The level of protection against modeling gaps this framework
provides depends on the likelihood of encountering an untested
deviation. Today, we use the expertise of network engineers to
create possible deviations, which has worked well judging by the
low occurrence of users reporting modeling issues. In the future,
we will automate this process to increase coverage.

4.3.2 Differential engine testing. Batfish has two independent for-
warding analysis engines: the BDD-based engine (described in § 4.2)
and a traceroute engine that operates on concrete (not symbolic)
packets. Validating that such engines produce identical results is
instrumental in uncovering modeling bugs.

To validate equivalency, we perform two tests, one in each di-
rection, with one engine serving as the “verifier” for the other. We

first execute reachability queries for each final location in the net-
work (with location roughly corresponding to node/interface pair),
collecting a set of start location and headerspace tuples. Then, for
each tuple, we pick a representative packet from the headerspace
and run the traceroute engine to ensure that the final location and
packet disposition match that reported by the reachability engine.

In the other direction, we first walk over each node’s FIB, and
for each entry, we randomly choose a packet with a destination
that matches the entry’s prefix. Then, we run the traceroute engine
to find the terminal packet location and disposition. Finally, we run
the reachability analysis from the terminal location and check if the
set of computed start locations contains the original start location
of the traceroute.

Routinely running this cross-validation enabled us to detect
incorrect handling of complex features in production networks,
such as policy-based routing, cross-VRF leaking, and session-based
NATs. Similar to forwarding, Batfish has symbolic and concrete
engines for analyzing ACLs and routing policies.We plan to develop
differential testing engines for these analyses, as well.

4.4 Improving usability
We use three techniques to improve the usability of Batfish.

4.4.1 Specialized queries. As noted earlier, general-purpose queries
that can be parametrized flexibly are hard to use because they lead
to semantic ambiguities. Batfish now wraps the underlying general
mechanisms with highly task-specific queries. Checking if a service
endpoint is reachable from its intended client locations is a separate
query from checking if a service cannot be reached. Query special-
ization also helps with scoping the search and picking examples,
which we describe next.

4.4.2 Scoping the default search space. To minimize uninteresting
violations, unless explicitly overriden by the user, Batfish automat-
ically scopes the search space of headers and locations based on
the query. Consider an "all pairs" reachability query to check that
all hosts connected to the network can reach each other and the
external world. For this query, we limit the search space of starting
and end locations (interfaces) to those that face hosts or the external
world because inter-router interfaces are commonly not of interest
(and blocked). We identify host-facing interfaces using heuristics
based on interface IP address and prefix-length, configured proto-
cols, and whether we have the remote end of the link. We also limit
the set of source and destination IPs to those that can likely origi-
nate or sink at those interfaces. Task-specific queries help devise
reasonable defaults (e.g., defaults for a reachability-oriented query
differ from those for a security-oriented one), and such defaults
work well for a large majority of cases.

4.4.3 Positive examples and example selection. Example packets
that violate an invariant are key to helping users understand the
violation. However, this has limitations, as described earlier. To
aid in understanding, instead of showing only the counterexample,
Batfish also shows a positive example, i.e., a packet that does not
violate the property. Contrasting the two examples is helpful. If they
differ only in source ports, the source port of the counterexample
is problematic.
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Batfish picks examples (positive or negative) carefully to match
what is likely for the network. The source and destination IPs of
the packet should match where the packet starts and ends, even
if specific addresses are irrelevant (e.g., because filtering is based
on ports), and common protocols (e.g., TCP) and applications (e.g.,
HTTP) are prioritized. BDDs help to select positive and negative
examples quickly by intersecting the answer space with preferences
constraints (also encoded as BDDs). Finally, we annotate example
packets with as much context as possible, such as the routing and
ACL entries that they hit along their path.

5 PRIMARY USE-CASES IN THE FIELD
As Batfish matured, network engineers began to use it in a variety
of ways beyond its originally designed use-case. We discuss the
three primary use-cases that have emerged. "Use-case" here refers
to how and when Batfish is used as part of network management;
another dimension of usage is analysis types (§ 3); users employ
multiple analysis types within each use-case.

5.1 Proactive validation
Proactive validation, where configuration changes are analyzed
before being pushed to the network, was the original use-case for
Batfish. For this, two distinct workflows have emerged depending
on how the organization generates and vets configuration changes.

5.1.1 Automated workflow. Some organizations automatically gen-
erate configuration changes fromhigh-levelmetadata (such as topol-
ogy and IP addresses) and then review those changes. Sometimes
called network CI (continuous integration), this process is similar to
software CI pipelines. Batfish is invoked as part of this process.

Unique to this workflow are the types of analysis used. Engi-
neers are less likely to use linting or consistency checks (e.g., Are all
referenced route maps defined? Are NTP servers consistent across
all devices?). With auto-generated configurations, the chances of
such errors are low. On the other hand, engineers are more likely to
use checks that validate end-to-end forwarding behavior or behav-
ior of ACLs. Creating such checks requires engineers to know the
intended network behavior, a more likely scenario in organizations
with automated workflows.

5.1.2 Manual workflow. Organizations that automatically generate
and test configuration changes are a minority today [18]. Most
invoke proactive validation using custom scripts or a browser-based
UI. They are more likely to use simpler analyses (e.g., consistency).
For behavior validation, they tend to use checks that target the
change being made (e.g., a new BGP session should come up, or
traffic should not traverse a link that is being shut for maintenance).

The most interesting anecdotes about the value of Batfish emerge
from this setting. In one instance, an engineer was testing a config-
uration change to switch how the network connected to its transit
provider. They initially thought that only two border devices needed
changing. But after testing the change with Batfish by analyzing
packet forwarding and routing tables, they realized that additional
devices needed updates because of unexpected interactions in rout-
ing policies across devices. After iterating a few more times, they
ultimately discovered that the configuration of ten devices needed
updates for the change to be correct. The engineer told us that

Batfish saved them days of frustration and configuration debugging
(which is difficult to do on a live network).

5.2 Continuous validation
In this use-case, network engineers periodically analyze the lat-
est snapshot of deployed network configurations. Doing so does
not prevent errors from reaching the network, but it flags errors
introduced since the last run, hopefully before the error impacts ap-
plication traffic. This use-case is popular because getting started is
easy: one needs only periodic snapshots of network configurations,
which most organizations already have. It does not need infrastruc-
ture for gating configuration changes based on validation. We find
that continuous validation is used even in organizations that have
gating configuration infrastructure because it can detect errors in-
troduced by out-of-band changes, which are common inside most
networks.

An interesting aspect of real-world network operations that we
learned via this use-case is that completely error-free configura-
tions are generally not a high-priority goal. When Batfish is used
in a network whose configurations have evolved over the years, it
invariably finds errors and inconsistencies. However, unless these
issues pose a serious risk, engineers do not fix them urgently; the
act of fixing imposes overhead and risks (e.g., another error may
be introduced, or the router may not reset properly). Fixing such
issues becomes a low-priority, background project. Batfish helps
monitor network progress and ensure that new errors are not intro-
duced. Further, we see a greater willingness to go fix new errors
immediately.

5.3 Design validation
An unexpected use-case of Batfish has emerged: it is used as a design
tool. This is due to its ability to reason about configurations offline
in the absence of a corresponding network. Network engineers who
are designing new networks use Batfish as a first gate for validating
newly developed configurations. Before Batfish, they would use
emulations or a physical lab environment, which require hardware
or software that may not be available (yet). These environments
are also hard to scale to the size of the real network, and root
causing errors is difficult. After Batfish certifies the configurations,
the engineers may optionally test them in a small-scale emulation
environment and then on the real network. Since the network is
not yet carrying real traffic, Batfish’s key added value is not outage
prevention, but accelerating development and testing by days or
even weeks.

A use-case that lies between validating new designs and validat-
ing daily configuration changes is validating large-scale refactoring
of network design. Common refactoring operations include com-
pressing large ACLs by removing redundant, no-longer-relevant, or
unreachable entries (e.g., see [12]) or changing the routing design
from OSPF to BGP. As with new designs, engineers use Batfish to
test refactored configurations before using other forms of testing.

When Batfish is used as a design tool, we observe a tendency to
modify configurations in order to make validation easier or faster.
This ranges from minor configuration elements (e.g., preferring
Batfish-supported syntax) to major aspects of the design. One net-
work engineer discussed disfavoring iBGP full meshes because



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Matt Brown, Ari Fogel, Daniel Halperin, Victor Heorhiadi, Ratul Mahajan, and Todd Millstein

Batfish takes longer to generate the data plane for such networks.
Their reasoning, which is correct in this case but may not be in
general, 1 was that if Batfish takes longer to compute the data plane,
the convergence time of the real network will be longer, as well.
As automated testing became popular for software, it became more
likely for engineers to develop it in a way that aids testing [17]. We
are starting to see a similar trend with configuration testing.

6 PERFORMANCE BENCHMARKING
We evaluate the current version of Batfish by comparing it to the
original Batfish and benchmarking it on 11 real networks. We focus
on the performance of parsing, data plane generation, and verifica-
tion. We point to Batfish’s burgeoning usage as indicating that our
usability and fidelity analysis techniques have been effective.

Table 1 lists the 11 networks that we study. They are of diverse
types and sizes and use different vendors and configuration features.
To our knowledge, ours is the first study of a verification tool on
such a broad array of real networks.

6.1 Improvement over the original
We compare the performance of the current and original Batfish.
We use the original Batfish code and NET1, a network also used
in the original paper [16]. The original code does not support the
configuration features of our other real networks. To evaluate data
plane verification, we use the multipath consistency query. It checks
if there is any flow (starting location and packet headers) in the
network that is accepted along some paths and denied along others.
It simultaneously reasons about all forwarding rules in the net-
work and thus provides an appropriate benchmark for data plane
verification. This experiment uses an Intel Xeon E5-2683 computer.

Figure 3 shows that the performance of current Batfish is notably
better than the original. Data plane verification sped up by 12x
because we replaced NoD and Z3 with a BDD-based engine. Users
commonly run multiple verification queries on a network snapshot,
so the absolute advantage of faster verification accumulates. Data
plane generation sped up by 1500x because we replaced Datalog with
an optimized imperative engine. Finally, parsing sped up by 37%
because of better coding discipline. Parsing experts will appreciate
the changes: elimination of semantic predicates; minimization of
expensive adaptive prediction by shaping parser rules to make most
decisions LL(1); and liberal use of lexer modes, which have replaced
almost all usages of cache-disabling lexer predicates.

The net impact of these performance improvements is that Bat-
fish went from an offline analysis tool that takes hours to run to
one that can be run interactively or inside a CI pipeline for every
configuration change. This represents a significant shift in how and
how often it can be used.

6.2 Current performance
Table 2 shows the performance of current Batfish on all networks.
These experiments use an Apple M1 Max Macbook.2 To benchmark
data plane verification, we study three tasks: (1) full dataflow: build
1We have not systematically validated conditions under which Batfish’s convergence
time can be used as a proxy for the real network’s convergence time.
2The computer is different from the one in § 6.1 because we could not copy some
networks’ data to the other machine for confidentiality reasons, and the LogicBlox
engine used by the original Batfish does not run on the M1 chip.

Figure 3: Performance of original and current Batfish for
NET1. X-axis is log scale.

and optimize the dataflow graph along which all possible packets
can propagate from all sources used for subsequent queries; (2)
destination reachability: compute which sources can reach a des-
tination using which packets; and (3) multipath consistency. This
query runs substantially faster for NET1 than the results in Figure 3
because it reuses the full dataflow result.

We see that all stages perform well. For NET11, which has 2735
nodes and nearly 16 million routes, the user can initialize the snap-
shot, generate the data plane, and run 100 destination reachability
queries serially, and the analysis will finish in 5 minutes.

We also see that analysis performance depends only weakly on
network size—network design and configuration features matter,
as well. As a rule of thumb, DC networks perform better because
they tend to have simpler policies. NET2 and NET3, both DCs,
outperform the smaller NET1, a campus network. Similarly, NET8
(a DC) outperforms the smaller NET7 (backbone).

Finally, because configurations files are large, parsing time is
a substantial component, as well, which is why we made parsing
incremental in Batfish. Configuration files that have not changed
since the last network snapshot are not parsed again. The figure
shows the time to parse all files from scratch.

6.3 Comparison to the state of art
We place the performance of current Batfish in context with other
state-of-art tools based on published benchmarks. Head-to-head
comparison on identical data is difficult because the code for those
tools is not available or the tools use different inputs (configurations
versus FIBs).

For data plane generation, FastPlane [44] is the fastest tool to
our knowledge. It works only for networks with monotonic rout-
ing, where routes once deemed non-best during route computation
can never be best later. Monotonicity enables FastPlane to speed
data plane generation by retaining only current best paths in mem-
ory and comparing new routes against this much smaller set. The
authors show that FastPlane is speedier than the original Batfish
by two orders of magnitude, while Batfish’s current imperative
engine, based on graph-coloring based parallelism and memory
optimizations, is faster than the original version by three orders of
magnitude. Batfish also works for non-monotonic networks, which
all networks other than eBGP-only datacenters tend to be.
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Network type Devices (links) LoC (k) Routes (k) Device types Routing protocols
NET1 Campus 75 (312) 156 69 Cisco IOS, Juniper OSPF, eBGP, iBGP
NET2 DC 124 (1,690) 178 151 Cisco NX-OS eBGP, iBGP
NET3 DC 139 (6,306) 193 262 Arista, Cisco ASA eBGP, iBGP
NET4 Paired DCs 205 (1,278) 335 35 Cisco IOS/NX-OS, Juniper IS-IS, OSPF, eBGP, iBGP
NET5 DC 211 (1,280) 338 301 Cisco IOS, F5, Juniper IS-IS, OSPF, eBGP, iBGP
NET6 Hybrid cloud 217 (2,584) 41 14 AWS, Cisco IOS eBGP
NET7 Backbone 244 (3,946) 254 774 Arista, Cisco IOS/IOS-XR/NX-

OS
EIGRP, eBGP, iBGP

NET8 DC 268 (1,486) 469 165 Cisco IOS, F5, Juniper OSPF, eBGP
NET9 Backbone+DCs 1,095 (17,100) 1,496 473 Arista, Aruba, Cisco IOS,

Fortinet
OSPF, eBGP, iBGP

NET10 DC 1,283 (18,218) 7,016 180 A10, Check Point, Cisco
IOS/IOS-XR/NX-OS

EVPN, OSPF, eBGP, iBGP

NET11 DC 2,735 (40,126) 8,651 15,947 Arista, Cisco NX-OS, Juniper eBGP, OSPF

Table 1: Real networks that we study. In the network type column, "DC" refers to data center and "paired DCs" refers to two
nearby data centers that provide backup connectivity to each other. "LoC" is configuration lines across all files, and "routes" is
the total number of routes in the main RIB (which contains the best route to a prefix across all protocol instances) across all
devices. Among device types, F5 and A10 are load balancers; Cisco ASA, Fortinet, and Check Point are stateful firewalls. In
addition to the listed routing protocols, all networks have ACLs and static routes.

DP Full Dest Multipath
Parsing gen dataflow reach consistency

(s) (s) (ms) (ms) (ms)
NET1 11.1 6.1 4,126.7 1.3 2,439.0
NET2 4.9 4.8 775.7 0.9 320.1
NET3 8.6 4.6 916.5 0.8 380.0
NET4 8.8 2.8 461.2 2.4 403.5
NET5 9.1 6.2 1,197.8 4.3 416.2
NET6 2.3 2.0 384.2 0.1 191.0
NET7 13.5 11.9 1,382.5 16.5 4,635.0
NET8 12.7 4.2 1,668.6 2.2 340.3
NET9 16.6 11.9 1,719.8 11.7 6,880.0
NET10 46.6 47.7 7,456.0 7.7 19,840.0
NET11 71.6 200.6 19,013.0 52.7 16,889.0

Table 2: Performance of current Batfish. "DP gen" is data
plane generation, and "Dest reach" is destination reachability.

Data plane verification can be incremental or non-incremental.
In the incremental case, forwarding rule updates atop a current data
plane state snapshot are processed [23, 24, 32, 34]. This setting is
relevant for networks where SDN controllers generate rule updates.
In the non-incremental case, a full snapshot is analyzed [33, 45, 61,
62]. Batfish targets this setting, where the best performing tool to
our knowledge is APT [62].

The largest network the APT authors study has 92 nodes. For
this network, on an Intel Xeon E5-1650 processor, APT takes 335
seconds (not ms) to generate atomic predicates, which, like our
full dataflow graph, is a one-time analysis that is reused by subse-
quent queries; further, APT takes 78 ms for destination reachability
queries. In contrast, for NET2, which is 35% larger than APT’s

92-node network, Batfish builds the dataflow graph and answers
destination reachability queries almost two orders of magnitude
faster. This large difference is unlikely the result of differences in
experimental hardware.

7 OUTLOOK
The following challenges, if addressed, will make it easier to build,
deploy, and use network verification tools like Batfish.

7.1 Automation woes
The dominant hurdle toward broader use of network verification
is the lack of automation in most networks. Hyperscalers have
sophisticated network automation, but the practice of networking
in other organizations is starkly different. When network configu-
ration changes are created, reviewed, and deployed manually, it is
difficult to inject automated validation. In manual workflows, the
exact configuration change may not even be instantiated until an
engineer logs into the router and types it in. Before that, the artifacts
that are created and reviewed are semi-structured at best. Using
automatic validation here is a high-friction activity, undertaken
only for high-risk changes.

Even in networkswhere automation exists, the diversity of frame-
works makes it challenging to develop and deploy verification tools.
Diversity in automation frameworks exists because how one gets
configurations from devices, pushes changes, and monitors them
varies across router vendors and platforms. Consequently, many
networks have custom solutions atop a mix of methods. Standard-
izing the APIs of automation frameworks, akin to POSIX, will go a
long way toward accelerating the adoption of validation tools.
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7.2 Heterogeneous data plane pipelines
Heterogeneity of networking devices poses a challenge to tool de-
velopment and maintenance, as well. Batfish tackles configuration
syntax heterogeneity by translating a vendor-specific configuration
into a general representation. It takes a similar approach to data
plane pipelines. The original Batfish design had a simple, 3-step
data plane pipeline: packets go through the ingress interface ACL,
then through forwarding table lookup, and then the egress inter-
face ACL. To support more devices, we needed more steps, such as
stateful firewalls, source NAT (network address translation), and
destination NAT. Unfortunately, vendors do not use the same order
for these steps. Some may NAT before routing lookup and some
after, some may firewall based on pre-NAT headers and some on
post-NAT headers, etc. Whenever we encountered a different be-
havior, we generalized the vendor-independent pipeline to include
more steps so that any device’s behavior could map to a subset of
steps in that general pipeline. Data plane analyses operate off of
this general pipeline.

Over time, this general pipeline has become complex, and every
time it changes, we must update all analyses that use this pipeline
as input. This complicates the addition of new features and creates
a risk of analysis bugs. A language-based approach, instead of
our current data-model based one, offers a potential solution [8].
An intermediate language could express the data plane pipeline
functionality, and each device’s pipeline would be a program in the
language. Analysis tools could then more easily analyze a pipeline
of programs in that language.

7.3 Usability and performance
Our techniques to improve the usability and performance of Batfish
made a significant difference, but there is room for further im-
provement. For usability, a key challenge is that Batfish normalizes
configurations to support many vendor-specific languages. This lets
it easily analyze many vendors, but it also loses important source-
level information that can help users debug errors. Compilers face a
similar problem since they translate code into different lower-level
intermediate representations and optimize these representations.
A common compiler mitigation technique includes metadata with
each intermediate-level instruction that contains information, such
as the corresponding source-level locations, and updates this meta-
data through transformations and optimizations [39]. These kinds
of techniques would likely prove helpful for tools like Batfish.

To improve performance, a promising opportunity is to make
data plane generation even faster via incremental computation.
Instead of cold starting the simulation, one could start with the
last computed state. This would be helpful because changes in
topology or configuration across successive network snapshots are
small. For correctness, we must carefully determine what needs
recomputation when some aspect of the network changes.

8 RELATEDWORK
This paper is inspired by researchers who have shared experiences
of transitioning tools based on formal methods to practice [9, 11, 25,
51]. Their experiences helped us anticipate challenges, such as the
lack of formal specifications, heterogeneity of language constructs
across organizations, and how users view bug-finding tools. We

also faced challenges unique to networking, and we hope their
description will improve future networking analysis tools.

Hoyan [63] and RCDC [26] developers shared their experiences
of deploying network verification tools in cloud networks. Like
Batfish, Hoyan focuses on configuration analysis, and some of the
challenges it faced, such as analysis fidelity, were similar, too. How-
ever, our usage context—analyzing arbitrary third-party networks
instead of a first-party network—markedly differs from these prior
works, which changes the nature of our challenges and solutions.
We cannot rely on intimate knowledge of network design to im-
prove scalability [26] or on continuous, live data from the network
to improve analysis fidelity [63]. At the same time, we must support
a broader range of vendors as well as users who are not deeply
familiar with the tool’s internals.

Our new data plane generation engine builds on past work in this
domain. Several tools, including C-BGP [52] and FastPlane [44], sim-
ulate network routing. Our engine scales two orders of magnitude
more than C-BGP, which experimented with networks with tens of
nodes. Unlike FastPlane, which works only for datacenter networks
with monotonic routing, our engine works for any network. Most
real networks that we have encountered are non-monotonic.

There have been many data plane verification tools [23, 24, 26,
32–34, 45, 49, 56, 57, 61, 62, 65]. Our graph walking is similar to
HSA [33], but we use BDDs instead of a custom data structure
(called differences of cubes). BDDs let us use a general backend
and easily implement a range of optimizations and rich data plane
functions. Bonsai [7] and Atomic Predicates [61] inspired our use
of BDDs, though they use BDDs for different purposes (route map
modeling and equivalence class inference). BDDs have recently
been used to implement rich network forwarding, as well [28].

9 CONCLUSIONS
Batfish has evolved from a research prototype to a mature tool
for analyzing network configuration. While its original goal and
architecture stood the test of time, many of its underlying tech-
niques had to be revamped to address the scalability and usability
challenges presented by complex, real-world networks. This evolu-
tion offers many lessons, including the limitations of Datalog and
the effectiveness of binary decision diagrams (BDDs) for network
analysis. Replacing Datalog with an imperative routing simulation
engine and a BDD-based data plane verification engine improved
performance by three orders of magnitude; a host of additional tech-
niques to improve analysis fidelity and usability enabled Batfish’s
use inside a diverse range of real networks.
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