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ABSTRACT
Service meshes play a central role in the modern applica-
tion ecosystem by providing an easy and flexible way to
connect microservices of a distributed application. However,
because of how they interpose on application traffic, they can
substantially increase application latency and its resource
consumption. We develop a tool called MeshInsight to help
developers quantify the overhead of service meshes in de-
ployment scenarios of interest and make informed trade-offs
about their functionality vs. overhead. Using MeshInsight,
we confirm that service meshes can have high overhead—up
to 269% higher latency and up to 163% more virtual CPU
cores for our benchmark applications—but the severity is in-
timately tied to how they are configured and the application
workload. IPC (inter-process communication) and socket
writes dominate when the service mesh operates as a TCP
proxy, but protocol parsing dominates when it operates as
an HTTP proxy. MeshInsight also enables us to study the
end-to-end impact of optimizations to service meshes. We
show that not all seemingly-promising optimizations lead to
a notable overhead reduction in realistic settings.
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1 INTRODUCTION
Service meshes are becoming the de facto communication
substrate for cloud applications. A survey by the Cloud Na-
tive Computing Foundation (CNCF) found that 90% of the
organizations are using or evaluating them [29]. Service
meshes solve important problems related to communication
among loosely-coupled microservices—the dominant para-
digm for cloud applications [1, 42, 50]—including discovering
where services are located, establishing secure connections,
and handling communication failures. They also offer ad-
vanced capabilities such as rate limiting, load balancing, and
telemetry, via additional message processing filters.
However, the overhead of service meshes is a key con-

cern for both their users and developers [4, 23, 35, 68]. In
most common scenarios where service meshes are employed,
application traffic traverses software proxies called side-
cars, which increases request latency and consumes more
resources. Service meshes can add tens of milliseconds to
request latency in some settings [4], and they can consume
multiple CPU cores even at moderate load [23]. These over-
heads can degrade the end-user experience, increase opera-
tional costs, and decrease revenue [40, 52].
Today, the only way users can learn service mesh over-

head is by running their application with and without ser-
vice meshes and measuring the increase in latency or CPU
usage. This black box approach, employed by some stud-
ies [4, 23, 28, 68] and the MeshMark tool [13], has significant
limitations. There aremanyways to configure a servicemesh,
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each with different performance implications, and it is in-
feasible to measure them all. Thus, application developers
cannot evaluate functionality-performance trade-offs and
discover the best way to configure the service mesh for their
specific application and deployment environment.
The concerns around the performance of service meshes

and the lack of alternatives to black box measurements is
apparent in the documentation of Envoy (a popular side-
car) [20]:

We are frequently asked how fast is Envoy? or
how much latency will Envoy add to my re-
quests? The answer is: it depends. Performance
depends a great deal on which Envoy features
are being used and the environment in which
Envoy is run. · · · We encourage users to bench-
mark Envoy in their own environments with a
configuration similar to what they plan on using
in production.

The black box measurement approach has another limita-
tion. There are several ongoing efforts on optimizing service
mesh overhead [3, 12]. Without a detailed accounting of the
underlying contributors to overhead, it is hard to quantify
the effectiveness of such optimizations, especially as it relates
to the end-to-end impact on a wide range of applications.
Instead of a blackbox approach, MeshInsight models the

sidecar’s operation as a combination of independent com-
ponents (e.g., read, write, and IPC) and key aspects of the
workload. By characterizing individual components, we can
estimate the overhead of a sidecar based on the components
used in a given configuration. Then, given workload char-
acteristics such as the call graph, request rate, and message
sizes, MeshInsight can estimate the end-to-end overhead for
the application without needing to deploy the application un-
der that configuration. Similarly, if a service mesh developer
wants to evaluate an optimization that reduces the overhead
of some component(s), MeshInsight can estimate its end-to-
end performance impact across a wide variety of application
workloads.

Using MeshInsight, we study the overhead of Envoy. En-
voy is the dominant sidecar, used by many service meshes [9,
10, 14, 26, 27, 45] including Istio [24], one of the most popu-
lar service meshes today [2]. Our experiments confirm that
service meshes can have substantial performance penalties.
Across two popular benchmark applications [8, 42], depend-
ing on the configuration, request latency increases by 27-
269% and CPU usage increases by 42-163%. In a large dataset
of microservice-based applications [58], we find that using
Envoy increases latency by up to 100ms and consumes 200
more virtual CPU cores for a quarter of the call graphs. We
also find that, for a given service mesh configuration, the
overhead for different applications varies by multiple orders

of magnitude. Such high variation based on service mesh
configuration and on application characteristics validates
the need for a tool that developers can use for their specific
deployment scenarios.
MeshInsight’s compositional approach provides insight

into the sources of overheads. We find that when configured
as an HTTP or gRPC proxy, protocol parsing alone repre-
sents 63-77% of the total overhead. When configured as a
TCP proxy, most overhead stems from inter-process commu-
nication (IPC) and socket write operations. The overhead of
individual filters (i.e., network functions) varies significantly.
Some increase latency by as little as 3% atop the baseline
overhead, while others increase it by as much as 85%.

We also use MeshInsight to evaluate the end-to-end over-
head reduction for service meshes using two Linux kernel
features: 1) Unix domain sockets in place of TCP connec-
tions for IPC, and 2) zero-copy writes for TCP sockets. Given
that IPC and socket writes are substantial contributors to
overhead, we wanted to understand if these features help
reduce overhead. We model the performance of our compo-
nents in the presence of these two features and evaluate their
end-to-end impact using the large microservices dataset [58].
We find that Unix domain sockets are helpful, reducing the
average latency overheads by 27% and the CPU overheads
by 18%, for TCP proxy. But, surprisingly, zero-copy socket
writes have negligible improvements. For small message
sizes that are common to microservice workloads, the ad-
ditional system calls in implementation negate the savings
from avoiding the copy operation.

We make two key contributions in our work:
• We develop a tool that application and service mesh
developers can use to quantify overhead. It allows ap-
plication developers to make informed decisions re-
garding trade-offs between performance and function-
ality while enabling service mesh developers to assess
the overall impact of their optimizations. MeshInsight
accomplishes this without requiring the deployment
of each setting in a production environment.

• We conduct the first systematic study of service mesh
latency and CPU overheads across a wide range of
realistic microservices. It confirms that the overhead
is generally high, but it also shows that it varies signif-
icantly based on the sidecar configuration and applica-
tion characteristics. Our study also provides a detailed
accounting of performance overheads and informs fu-
ture optimizations.

Our tool and the results of our study will inform work on
improving the performance and reducing the resource con-
sumption of service meshes, which now play a central role in
the modern application ecosystem. MeshInsight is available
at https://github.com/UWNetworksLab/meshinsight

https://github.com/UWNetworksLab/meshinsight
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Figure 1: Bookinfo application with a service mesh.
Image Redrawn from [11].

2 BACKGROUND
Service meshes emerged to solve challenges that arose when
applications moved from monoliths to the microservices ar-
chitecture. Instead of being a large binary, applications are
composed of multiple microservices. Figure 1 shows an ex-
ample where the BookInfo application from Istio [11] uses
five microservices. Each microservice is run as an indepen-
dent process (or container), often on different hosts, and can
be scaled independently. Such decomposition enables agile
application lifecycle management, fault-tolerance, scalabil-
ity, and reuse of building blocks across applications [44].
It is common for modern applications to use tens of ser-
vices [1, 44, 50].

But decomposing applications into multiple microservices
creates new problems as well. What used to be a function call
now becomes an RPC over the network. Developers must
figure out how services discover, communicate, and authen-
ticate with each other. They must also figure out how to
monitor and secure inter-service communication and how to
handle failures. Early adopters of microservices built custom
communication frameworks to solve these problems [19, 21].
Service meshes emerged to solve them in a reusable manner,
and they further evolved to provide other functions such as
rate limiting and load balancing.
The convenience of service meshes comes at the cost of

performance and resource overhead. The overhead could be
in the control plane or the data plane. The control plane han-
dles service discovery, metric collection, and certificate man-
agement, and it appropriately configures the data plane. For
example, in Figure 1, to balance load acrossmultiple instances
of the Product service, the Frontend data plane can spread
Frontend-to-Product connections across different Product
instances (multiple instances not shown in the figure). The
service mesh control plane tracks where all the instances are
running and configures the Frontend data plane accordingly.
We focus on the data plane overhead as it impacts every
request and is on the critical path of user experience.
The most common implementations of the service mesh

data plane use software proxies called sidecars. The sidecar
is a separate process that is co-located with each instance of

Service Mesh
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Figure 2: Outbound (left) and inbound (right)
messages with a service mesh. WriteA/ReadA and
WriteS/ReadS denote, respectively, the write/read of
the application and its sidecar. TCP/IPX denotes the
TCP/IP stack of network namespace X. The figure
assumes that the application uses the same event
notification interface (i.e., epoll). The extra steps
added by the service mesh are in the dashed box.

an application service, which enables the sidecar to mediate
all of the service’s network access to apply network policies,
enforce encryption, and log statistics. Recent service mesh
proposals (e.g., Cilium [12] and Ambient Mesh [22]) aim
to inline (in the kernel) some data plane functionality and
propose per-host proxies. However, kernel acceleration does
not eliminate sidecars, which are still needed for complex
functionality, and sidecars have some significant benefits
over per-host proxies. Thus, sidecars are likely to persist [16,
17] for the foreseeable future. We focus on the sidecar model
and leave the analysis of hybrid models to future work.

Sidecar Data Path Figure 2 shows the data path for both
outbound and inbound traffic. In this paper, while we apply
our modeling approach and analysis to Envoy [18], other
sidecar proxies [31] share this architecture. During initial-
ization, the control plane adds iptable rules that redirect all
inbound and outbound traffic to the sidecar. As a result, logi-
cal connections between microservices are broken into three
separate connections: two connections between the sidecars
and their associated microservices, and one connection be-
tween the sidecars. When the application sends a message,
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Figure 3: Message processing inside a sidecar. Filters
operate on individual messages and form a chain.

it executes a write system call. The kernel network stack
and the loopback device process the message and notify the
sidecar. The sidecar then reads the data from the kernel, pro-
cesses it, and writes it back to the kernel. Finally, the NIC
driver transmits the message. Similar to the inbound traffic,
upon receiving a message, the sidecar intercepts the message
before it is passed to the application.
The exact processing done by the sidecar depends on its

configuration; Figure 3 shows the general data flow. When a
message arrives, it is parsed based on the protocol of choice
(e.g., TCP, HTTP, gRPC). In TCP mode, traffic is treated as
an opaque TCP stream; in HTTP and gRPC mode, messages
are parsed as per the protocol, which enables additional
functionality specific to the protocol. After the message is
parsed, it is processed by one or more filters. Filters are short
programs that process individual messages and implement
network functions like traffic monitoring, rate limiting and
fault injection. Envoy filters can be written using 1) C++ code,
2) Lua scripts, or 3)WebAssemblymodules. All of Envoy’s 40+
built-in filters are C++-based, while application developers
tend to write custom filters using Lua or WebAssembly.

Given the data paths in Figures 2 and 3, we can see a num-
ber of sources of overhead. First, without a sidecar, to send a
buffer, the kernel copies the application buffer into a kernel
buffer, which the NIC can subsequently access through Di-
rect Memory Access (DMA). With a sidecar, the buffer must
additionally be copied to the sidecar buffer and then back
into a kernel buffer (resulting in two extra copies). Second,
there are many additional system call invocations, such as
the sidecar waiting for data through epoll and reading and
writing buffer from/to kernel. Finally, using sidecars incurs
extra IPC invocations (e.g., the loopback interface in Istio).
In addition, sidecars may need excessive computation on the
buffer, including parsing the data stream into data structures
for HTTP, JSON, and RPC data formats.

3 MODELING SERVICE MESH
OVERHEAD

Our goal is to characterize the overheads of service meshes
in a way that supports two classes of developers. First, we
want to enable application developers who are looking to
deploy service meshes to understand overhead as a function

of service mesh configuration (e.g., proxy and filter config-
urations), so they can appropriately trade off functionality
and overhead. Second, we want to enable service mesh devel-
opers to understand the impact of their optimizations (e.g.,
zero-copy writes) on a wide range of real-world applications
without having to necessarily implement them fully. Neither
class of developers is well-served by currently available tools
and techniques.
A key challenge we face is the large operational space of

service meshes. An application may be running Envoy in
one of many possible ways, each with different performance
implications. There are at least three dimensions of varia-
tions: 𝑖) type of proxy (e.g., TCP, HTTP, and gRPC); 𝑖𝑖) which
filters are used; 𝑖𝑖𝑖) application workload, where the salient
characteristics are message sizes and rates. These variations,
and their combinatorial combinations, mean that a black-box
approach to measuring overhead is a non-starter.

We must instead model the overhead of finer-grained com-
ponents and then compose the individual component over-
heads to predict overhead for a given deployment scenario.
Our models are a concise representation of performance
overheads over the entire operation space, including both
the service mesh configuration and application workloads.
This modeling approach allows us to reason about a service
mesh’s large operation space. For example, for an applica-
tion developer to choose an appropriate configuration for a
service mesh, instead of benchmarking every possible con-
figuration, we can use our models to quickly predict the
performance overheads for any service mesh configuration
for their workloads.

This approach is necessarily an approximation. It charac-
terizes each component in isolation, ignoring interactions
that may arise when they contend for resources (under high
utilization). The overhead of contention is hard to model
and sensitive to co-located workloads and background sys-
tem activity [41, 63]. Consequently, MeshInsight predicts
the best-case overhead (i.e., a lower bound) and cannot be
used to predict tail latency. As we show later, MeshInsight’s
predictions track actual overhead well enough to effectively
distinguish between the configurations with different over-
heads.

MeshInsight overview To be practical, we must carefully
choose the granularity and nature of the components. If
they are too fine-grained, accurately characterizing their
overhead (and composing them) will be difficult; if they are
too coarse-grained, we’ll suffer from the same challenge as
with black-box measurements. The overheads of the chosen
components should also be largely independent, allowing us
to easily compose their overheads to estimate total overhead.
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Component Description

1 IPC Data transfer between
sidecar and application

2 Read Read syscall and data
copy from kernel to user
space

3 Write Write syscall, data copy
from user to kernel space,
and network stack’s TX
processing

4 Notification I/O event notification pro-
cessing

5 Sidecar Parsing Protocol parsing in side-
car

6 Sidecar Filter Filter chain processing in
sidecar

7 Sidecar Other Baseline processing in
sidecar

Table 1: Components in MeshInsight’s performance
model. The total performance overheads of a service
mesh are the sum of these components.

Table 1 shows the component-level breakdown we use.
The first four represent the sidecar’s interactions with the
application and the kernel: 1) inter-process communication
(e.g., loopback) between the application and its sidecar proxy,
2-3) writes and reads from the sidecar proxy to the kernel,
which also include the data copies (note that write also in-
cludes the TX’s TCP/IP processing), and 4) blocking waits on
socket ready notifications (e.g., from epoll). The next three
breakdown message processing inside the sidecar: 5) parsing
the messaging protocol (e.g., HTTP), and 6) processing done
by user-configured filters; and 7) baseline processing by the
sidecar to move packets between the two components above.
Figure 4 shows the workflow of MeshInsight. It has an

offline profiling phase and an online prediction phase. The
offline phase generates performance profiles of components,
and the online phase predicts the service mesh overhead
based on these profiles, sidecar configuration, and applica-
tion workload.

MeshInsight models the performance of a component as a
function of message size and request rate because these two
workload properties are the primary determiners of perfor-
mance. In our experience, simple linear functions of these
two properties suffice (see next section for details). The pro-
file of a component is specific to the platform, which includes
the hardware (e.g., CPU, memory), OS, and Envoy version,

but independent of individual microservices. Overhead pre-
dictions are made only for previously profiled platforms.1
While we focus on Envoy in this work, our approach can be
extended to other existing service mesh proxies (e.g., linkerd)
with minor configuration changes.

The online prediction phase uses performance profiles
from the offline phase to provide performance predictions
in the context of a specific application deployment scenario.
These predictions are based on an extended call graph (de-
scribed in Section 4.2) that captures application behavior.

4 MESHINSIGHT DESIGN
We now describe the design of MeshInsight in more detail.

4.1 Building Component Profiles
In the offline phase, for each component in Table 1, MeshIn-
sight builds performance profiles that characterize compo-
nents’ message processing latency and CPU usage as a func-
tion of message size and rate. The profiler exercises the com-
ponents under a few different settings and then extrapolates
their performance to other settings.
We conduct two types of profiling runs: 𝑖) sidecar con-

figured as TCP, HTTP, or gRPC proxy, with no additional
filters; and 𝑖𝑖) sidecar configured with only the filter(s) of
interest. Profiling uses an echo server paired with a sidecar.
We use wrk [32] and wrk2 [33] for load generation as well as
high-precision measurement of end-to-end latency. To mea-
sure request processing latency and CPU without contention
effects, the wrk client generates requests such that at most
one request is outstanding at any time.

To quantify the overhead of individual components during
a run, we exploit the fact that all components (except filters–
see below) correspond to specific kernel- or user-space func-
tions. We measure the latency of each component using a
modified version of BCC’s funclatency [15], an eBPF-based
tool that uses Kprobe and Uprobe to monitor time spent on a
function. We measure CPU usage of each component using
the standard sampling technique [46], which allows us to
quantify the CPU consumption of any function. We identify
the function for a component using a mix of the name, the
input/output, and process ID.
Filters present two wrinkles in this process. First, most

of them do not have a known function. We measure the
overhead of a filter by subtracting the overhead of a setup
without the filter from an otherwise identical setup with it.
Second, the overhead of some filters depends significantly on

1This does not impact application developers, who can use MeshInsight on
their own platforms. But service mesh developers may want to understand
overhead on platforms that they do not have access to. To support them,
we are developing a shared repository of profiles for common platforms
(e.g., AWS instances) to enable the reuse of profiling data.
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Figure 4: Overview of MeshInsight (MI) workflow. The MeshInsight Database stores performance profiles asso-
ciated with a hardware and software platform configuration, which are generated by the MeshInsight Profiler
during the offline profiling stage §4.1. In the online phase §4.2, these profiles are used by the MeshInsight Predic-
tor, in conjunction with Jaeger Traces provided by the user, to compute latency and CPU performance predictions
for application deployment. The user can optionally provide a speedup profile, which MeshInsight uses to adjust
the predictions accordingly.

certain configuration parameters. For instance, the overhead
of the Rate Limit filter, which limits the network traffic to
a service, depends on whether the developer needs to limit
traffic rate on the entire service mesh (global rate limiting) or
on per service instance basis (local rate limiting). Likewise,
the overhead of the Tap filter, which logs traffic, depends on
whether the log is written to a file or sent over the network.
In our profiling, we treat such filters as different components.
Data from the profiling runs and the following assump-

tions (empirically validated in §5) enable us to estimate the
sidecar’s overhead in any setting.

• A1: The total latency and CPU overhead of the sidecar
is the sum of components’ overhead.

• A2: Latency overhead is a linear function of message
size (see below).

• A3: CPU overhead is a linear function of message size
and proportional to message rate.

Thus, to estimate the overhead of the sidecar in a config-
uration with multiple filters, which has not been measured
directly, we can add the overhead of the base configuration
without filters and the overheads of filters that are employed.

To estimate the latency of a component 𝑥 for a message
size 𝑠 , per prior work [54, 72], we use this linear function:
𝐿𝑥 + 𝑠 × 𝑙𝑥 , where 𝐿𝑥 is the base message processing latency
and 𝑙𝑥 is the per-byte latency. We assume that latency for
processing a message does not vary based on the request
rate.
To estimate CPU consumption of a component 𝑥 for re-

quest rate 𝑟 , we use the following linear function: 𝑟 × (𝐶𝑥 +
𝑠 × 𝑐𝑥 ), where 𝐶𝑥 denotes the baseline per-message CPU
usage and 𝑐𝑥 denotes the per-byte CPU usage.

The impact of message size captured in the two equations
above assume that a message is processed by each compo-
nent (e.g., read or written) as one unit. This assumption may
be violated for huge messages that are split into multiple
units. Size threshold at which a message is split may be over-
ridden by applications or Envoy, but is typically at least a
few KB; it was always above 4KB for platforms that we have
experimented with. The implication for MeshInsight is that
it will underestimate the overhead for messages that are split;
the actual latency and CPU cost are higher for such messages.
We quantify this underestimation in §5.3. Fortunately, the
vast majority of message sizes are small [61, 69, 74], and the
impact of our modeling approximation is therefore minimal.

To estimate (𝐿𝑥 , 𝑙𝑥 ) and (𝐶𝑥 , 𝑐𝑥 ), MeshInsight profiles com-
ponents using five different message sizes (100B, 1KB, 2KB,
3KB, 4KB) and four different request rates (25%, 50%, 75%,
and 100% of the application’s maximum achievable through-
put). We then apply linear regression to the collected data.
These two tuples represent the latency and CPU profile of
a component for a particular platform. The message size
and rate are chosen empirically; we find that these choices
have minimal impact on profile accuracy given sufficient
data points.

4.2 Predicting Overhead
Application developers can use MeshInsight to estimate ser-
vice mesh overhead in any deployment scenario of interest
by providing an extended call graph (ECG). The ECG cap-
tures the details of the deployment and interactions among
microservices in response to a request.

Formally, an ECG is a tuple (𝑉 , 𝑃, 𝑆,𝐺), where 𝑉 = {𝑣1, 𝑣2,
..., 𝑣𝑛} is a set of vertices representing microservice instances;
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Figure 5: An example call graph for the Bookinfo ap-
plication.

𝑃 is a map from microservice instances to platforms; and 𝑆
is map from microservices instances to configurations (i.e.,
protocol and filters). 𝐺 is a DAG (directly acyclic graph) of
microservice invocations. Each node in the graph is an invo-
cation, and the edge represents an invoked-after relationship.
An invocation 𝑘 is a tuple (𝑢𝑘 , 𝑑𝑘 , 𝑠𝑘 , 𝑟𝑘 , 𝑡𝑘 ), where 𝑢𝑘 is

the calling microservice (empty if called externally), 𝑑𝑘 is
the microservice invoked, 𝑠𝑘 , 𝑟𝑘 are the expected size (in
bytes) and rate of messages (in requests/second) along this
invocation, and 𝑡𝑘 is the timestamp of the invocation with-
out a service mesh. ECGs are extracted automatically with an
openTelemetry-standard distributed tracing tool like Jaeger [25]
and a trace analysis tool CRISP[76]. Since Jaeger traces do
not contain the message size and rate for each invocation, we
collect these using custom scripts. MeshInsight can also han-
dle dynamic call graphs by using all available Jaeger traces
and generates a probability distribution of the overhead for
an API.

Figure 5 shows an example of 𝐺 for the Bookinfo applica-
tion in Figure 1. An external client calls Frontend, which in
turn calls Product. The Product service calls Reviews and De-
tails in parallel. Reviews calls Ratings and responds to Prod-
uct after getting the response. Product responds to Frontend
after both Details and Reviews respond. Finally, Frontend
responds to the external client.

Generating Predictions. Given an ECG, MeshInsight es-
timates the latency and CPU overhead. It starts by com-
puting the overhead of each invocation. For an invocation
(𝑢𝑘 , 𝑑𝑘 , 𝑠𝑘 , 𝑟𝑘 , 𝑡𝑘 ), the overhead is based on messages of the
given size and rate leaving the service at 𝑢𝑘 and entering
the service at 𝑑𝑘 . The sidecar configuration for these ser-
vices tell us which components are exercised. We compute
the component-level overhead (using 𝑠𝑘 and 𝑟𝑘 ) and then
sidecar-level overhead by summing component overheads.
In some configurations, not all components are subjected
to the same 𝑠𝑘 and 𝑟𝑘 . For instance, if a fault injection filter,
which can be configured to drop some messages, is present,
downstream filters will see a lower message rate. Currently,
we ignore such intra-sidecar variations, though our model
can be extended to account for them if needed.

MeshInsight computes end-to-end request-level overheads
using sidecar-level overheads computed above. For the CPU,
it simply adds all the sidecar-level overheads. For latency,
simple addition does not work because computations can
happen in parallel, and we thus need critical path analysis.
In the Bookinfo example above, the end-to-end latency de-
pends on which of Details or Reviews is slower to respond
to Product, and the latency of the faster one is not critical.
To this end, MeshInsight uses 𝑡𝑘 to compute the critical path
of the application and only report the end-to-end latency
overheads along the critical path. It is important to note
that introducing a service mesh might alter an application’s
critical path. To accommodate such changes, MeshInsight
executes a critical path analysis (i.e., CRISP) after adding the
overhead predictions for each hop to the ECG.

Quantifying the impact of servicemesh optimizations.
The prediction techniques described above can be used by
service mesh developers to estimate the end-to-end impact
of their optimizations. To enable this estimation, service
mesh developers need to provide information on the im-
pact of their optimization for the component(s) they have
optimized. That is, they need to update the performance
profiles. This update may be based on the estimated impact
of their planned optimization (which has not been imple-
mented yet). For example, the developer may estimate that
their optimization will lower the baseline write overhead by
50%. Alternatively, new performance profiles may be based
on running the MeshInsight profiler after implementing the
optimization.
Once information on new performance profiles is pro-

vided, MeshInsight can estimate the overhead of the new
system and how much improvement it brings compared to
the original.
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5 CHARACTERIZING SERVICE MESH
OVERHEAD

We now use MeshInsight to characterize the overhead of
service meshes for benchmark applications and validate the
accuracy of its predictions. We study overhead for both ba-
sic deployments and when filters are added. We also study
how individual components contribute to the overhead and
the impact of message size and rate. In the next section,
we demonstrate how MeshInsight can help application and
service mesh developers.
Our experiments use Cloudlab [37] machines with two

16-core Intel Xeon Gold 6142 CPUs (2.6 GHz) and 384GB
RAM, Ubuntu 20.04 LTS (Linux kernel v5.4.0), Kubernetes
v1.12.5, Istio v1.13.0, and Envoy 1.21.0. We disable Turbo-
Boost, CPU C-states, and dynamic CPU frequency scaling to
reduce measurement variance.

Application Benchmarks. To characterize the overhead of
service meshes on realistic applications, we consider two
popular microservices benchmarks: Online Boutique [8] and
Hotel Reservation [42]. Online Boutique (Figure 6) has 11
microservices. It is a web-based e-commerce application
where users can browse items, add them to the cart, and
purchase them. Microservices are written in different lan-
guages (Python, C#, Java, and Go) that communicate using
gRPC. Hotel Reservation (Figure 7) has 17 microservices
and supports searching for hotels using geolocation, mak-
ing reservations, and providing hotel recommendations. All

microservices are implemented using Go and communicate
using gRPC.

We deploy these applications on multiple Cloudlab hosts
and consider two deployment scenarios: TCP and gRPC.
(HTTP cannot be used because the applications are gRPC-
based.) In TCP mode, all sidecars are configured as a TCP
proxy that relays the message to the application service. In
gRPC mode, the sidecars parse the gRPC stream and collect
basic application-level metrics.

We consider three queries for each benchmark. For hotel
reservations, the queries are:
(1) (Q1) User: Checks the username and password. Calls

User and its MongoDB.

(2) (Q2) Search: Returns available hotels based on loca-
tion and check-in/check-out dates. Calls Search, Rates,
Geo, Profile, Reserve and their MongoDB and Mem-
cached storage.

(3) (Q3) Reservation: Reserves a hotel room. Calls Re-
serve, User and their MongoDB and Memcached stor-
age.

For online boutique, the queries are:
(1) (Q1) Index: Returns the home page. Calls Currency,

Products, Cart and Ad.

(2) (Q2) Browse_Product: Returns product details. Calls
Product, Currency (twice), and Cart.

(3) (Q3) View_Cart: Returns the user’s shopping cart.
Calls Cart, Shipping, Product, and Currency.

We derive the ECG (extended call graph) for each query
and intentially force a cache miss on each memcached access
for a deterministic call graph. The message sizes in each ECG
are based on the actual traffic of the application; we find that
most messages are small (a few hundred bytes). We set the
request rates close to the maximum the machine can sustain
in gRPC mode for each query.

Figure 8 shows the base (without the service mesh) latency
and CPU usage of the application along with predicted and
measured overheads. The measured overhead is the latency
or CPU usage of running the application with the service
mesh minus that of running it without the service mesh.
Latency is end-to-end, measured at the client.

We see that service meshes can be a significant source of
overheads. When operating in gRPC mode, it can increase
latency by up to 269% and consume 163% more CPU. In TCP
mode, the overhead is lower but still substantial–latency
increases by up to 61% and CPU usage by up to 92%. The
next section sheds light on why these two modes behave
differently.

Service mesh overhead will increase further as filters are
added (see below). These high overheads, and differences in
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Figure 8: Predicted andmeasured overhead for Online Boutique andHotel Reservation applications. Base denotes
latency and CPU usage when the application is run without a servicemesh. The error bars formeasured overhead
are standard deviations.

overheads in different settings, is why MeshInsight is needed
to enable developers to appropriately trade-off performance
and functionality. For instance, TCP mode might be enough
for most services, and gRPC mode is limited only to services
where extra control or visibility is required.

In Figure 8, we can also see that MeshInsight predictions
track well the overhead for all queries across both bench-
marks even though their individual performance varies sig-
nificantly. Predicted overhead tends to be lower than mea-
sured overhead. Underestimation is more pronounced for
gRPC. The primary factor is that in gRPC (and HTTP) mode
Envoy adds extra headers and increases the response size.
Larger responses slightly increase the latency and CPU use
of downstream components that are outside of the service
mesh (e.g., client-side processing).We currently do not model
this effect.

5.1 Breaking down the Overhead
To shed light on sources of overhead, Table 2 shows how
much each component contributes when Envoy is run in
different protocol modes and without any filters. This experi-
ment uses a synthetic application (echo server) with 100-byte
messages at 30K requests per second. We use a synthetic ap-
plication so that we can completely control the workload
and can study the HTTP mode as well (which benchmark
applications do not allow). For benchmark applications, rela-
tive contributions of different components in TCP and gRPC
modes are roughly similar to those in Table 2.

We can draw several conclusions from this data. First, us-
ing HTTP and gRPC is substantially more expensive than
TCP. The additional overhead of HTTP is roughly 4x for
latency and 3x for CPU; for gRPC it is 5x for latency and 4x
for CPU. The bulk of this additional overhead stems from
protocol parsing, accounting for 63-77 % of the total over-
head.

Parsing overhead is unfortunate because the application
code will spend resources on parsing as well. Because of the
way sidecar data path is organized, its parsing effort cannot
be shared with the application. If enabled, such reuse will
have a notable impact on the architecture of service meshes.

Second, we see that IPC overhead is notable (30% for TCP)
and notification overhead is small (3% for TCP). This ob-
servation implies that asynchronous processing between
the application and sidecar is not expensive by itself, but
the default IPC mechanism in Envoy is expensive. We can
tackle this overhead by either putting the sidecar in the same
process as the application. However, this can have security
implications because a malicious application may circum-
vent the network policies. In addition, upgrading a sidecar
more complicated would require recompiling the application.
Another option is to use a more lightweight IPC mechanism.
We will consider the second option in the next section.

Third, some components have disparate impacts on la-
tency and CPU. This disparity is most pronounced for "Side-
car Other", where its contribution to CPU overhead is far
greater than its contribution to latency, but occurs for other
components as well (e.g., Write). It implies that some op-
timizations may impact one type of overhead but not the
other, and developers need to be careful that optimizing for
latency does not hurt CPU and vice versa.

5.2 Impact of Filters
We find that sidecar filters can be quite expensive, even when
configured as a no-op. We also empirically confirm that, as
assumed by MeshInsight’s model, their overhead is additive.
We study five different filters, covering all three ways to

write an Envoy filter: 1) Fault Injection: a built-in, C++ filter
that helps test the resilience to communication failures; 2)
(Local) Rate Limit: a built-in, C++ filter that rate limits traffic
to a service instance. 3) Tap (File): a built-in, C++ that records
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Latency (us) CPU Usage (Virtual Cores)

TCP HTTP gRPC TCP HTTP gRPC

IPC 12.17 (30%) 12.73 (8%) 13.40 (7%) 0.46 (14%) 0.50 (5%) 0.57 (4%)
Read 8.71 (21%) 9.19 (6%) 9.24 (5%) 0.27 (8%) 0.28 (3%) 0.31 (2%)
Write 14.11 (34%) 13.57 (8%) 14.91 (8%) 0.48 (14%) 0.49 (5%) 0.57 (4%)

Notification 1.27 (3%) 1.32 (1%) 1.28 (1%) 0.26 (8%) 0.27 (3%) 0.26 (2%)
Sidecar Parsing - 122.07 (74%) 147.03 (77%) - 6.07 (63%) 9.26 (69%)
Sidecar Other 4.83 (12%) 6.29 (4%) 5.81 (3%) 1.88 (56%) 2.09 (22%) 2.39 (18%)

Total 41.09 165.17 191.67 3.35 9.70 13.36

Table 2: Contribution of different components to the overhead of a single sidecar instance in different protocol
modes. The numbers report both inbound and outbound overheads.

Latency (us) Virtual Cores

Fault Injection 5.74 (3.5%) 0.20 (1.9%)
Rate Limit 8.19 (5.0%) 0.21 (2.0%)

Tap 156.09 (85.0%) 2.95 (30.4%)
Lua 80.59 (43.9%) 3.18 (30.2%)

WebAssembly 26.30 (14.3%) 0.69 (6.6%)

Table 3: Latency overhead of five filters. The percent-
age in parentheses denotes the additional overhead
atop baseline HTTP mode (without any filters).

traffic and is configured to log to a file; 4) Lua: a custom, no-
op filter written as a Lua script; 5) WebAssemtly: a custom,
no-op filter written as a WebAssembly module. We add these
filters on Envoy configured in HTTP mode.
Table 3 shows the overhead of each filter inferred by

MeshInsight when subjected to the sameworkload as the pre-
vious section (100 byte messages, 30K requests per second).
We see that different filters have widely different overheads.
The baseline overhead of C++ filter is low, as evidenced by
the low overhead of Fault Injection and Rate Limit filters.
The overhead of Tap (file) is high because of its interaction
with the file system. On the other hand, even no-op Lua or
WebAssembly filters have substantial overheads, with Lua
being 3x more expensive for latency and nearly 5x more
expensive for CPU.
To study the composability of filters’ overheads, we con-

sider five different filter configurations, each with a different
way to combine filter types: 1) C𝐶 : combines all three types
of C++ filters; 2) C𝐿𝑊 combines the Lua and WebAssembly
filters; 3) C𝐶𝐿 : combines the Lua filter with all three C++
filters; 4) C𝐶𝑊 : combines the WebAssembly filter with all
three C++ filters; and 5) 𝐶𝐶𝐿𝑊 : combines all five filters.

Figure 9 shows both predicted and measured overheads of
each of these combinations. The measured overhead denotes
latency and CPU usage with the filters minus that without
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Figure 9: Prediction results of different filters configu-
rations.

the filters. We see that filter combination overheads can be
quite high when multiple expensive filters are employed
(something that the developers must avoid). We also see
the predictions of MeshInsight, based on adding individual
overheads on top of base HTTP proxy overhead in Table 3,
are quite accurate.

5.3 Impact of Message Size and Rate
We now show how sidecar overhead increases with message
size and rate. We vary message sizes from 100 bytes to 16KB.
The upper end of this range is well beyond the maximum
size that we directly profile (4KB). We vary message rates
from 10K to 50K requests per second.

Figure 10 plots latency overhead for HTTP proxy without
filters. The latency increase is similar for other protocols.
We see that latency overhead increases slowly with message
size. Going from 100 bytes to 16 KB (which represents a
very large message), the latency overhead increases by 53ms.
This increase represents only a 30% increase for HTTP. The
presence of filters does not significantly change the impact of
message size on latency, as most filters operate on message
headers, not payload (which has the most bytes).

We also see in Figure 10 that MeshInsight models the im-
pact of latency increase well, though its prediction accuracy
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Figure 11: Impact of message size and rate on service
mesh CPU overhead of service meshes.

drops for very largemessages (which are uncommon [61, 69]).
As mentioned earlier (§4.1), the reason for this lower accu-
racy is that messages larger than a few KB are split into
multiple units, which have higher latency and CPU costs.

Figure 11 shows CPU usage for HTTP proxy. We see that
the CPU overhead increases linearly with message sizes (for
a fixed rate) and linearly with message rate (for a fixed size),
and that MeshInsight tracks this increase well. Large mes-
sages have a relatively higher impact on CPU usage than
they did on latency. CPU usage increases by 62% when the
message size increases from 100 bytes to 16 KB.

6 HELPING DEVELOPERS PREDICT
OVERHEAD

In addition to characterizing service mesh overhead in detail,
MeshInsight has two more use cases: (1) helping applica-
tion developers determine how to configure service meshes,
and (2) helping service mesh developers evaluate potential
optimizations.

6.1 Application Developers
Given the application call graph, MeshInsight can predict
service mesh overhead for different configurations. With

this knowledge, application developers can make the right
trade-off between desired functionality and overhead.

We demonstrate this use case using the Alibaba microser-
vice traces [58]. These contain over 20M call graphs from
microservices-based applications, collected over 7 days in an
Alibaba cluster. While most call graphs have a small number
of microservices, 10% of them have over 40 microservices and
the largest ones have thousands of microservices. We ran-
domly select 1M call graphs for our experiments. The traces
do not contain message sizes or rates; we assume these to be
100 bytes (because service mesh messages tend to be small)
and 30K requests per second, which represents a moderate
load.
Figure 12 shows the latency and CPU overheads for five

different service mesh configurations: three protocol modes
without filters, HTTP with filters, and gRPC with filters (all
five filters described in §5.2). Since a call graph can have mul-
tiple paths, the latency overhead is computed for the critical
paths, which we extract from the Alibaba trace based on both
invocation’s timestamp and response time. We see in Fig-
ure 12 that in any given configuration, the sidecar overhead
across applications varies by multiple orders of magnitude.
Even for the simplest configuration (TCP), latency overhead
varies from 0.2 to 100 ms and CPU from 3 to 1000 virtual
cores. Thus, different applications are impacted disparately
by service meshes.
We also see that the overhead of different service mesh

configurations varies by an order of magnitude for both
latency and CPU. The median latency overhead is 0.2ṁs in
TCP mode but it is 2ms in gRPC mode with filters, and the
75th percentile varies from 1 to 10ms. Similarly, the median
CPU overhead varies from 20 virtual CPU cores in TCP mode
to over 200 in gRPC mode with filters.
These massive variations based on service mesh configu-

ration and application characteristics are why we need a tool
like MeshInsight using which application developers can
learn the overhead of their specific deployment scenarios of
interest.

6.2 Service Mesh Developers
MeshInsight enables service mesh developers to judge the
impact of potential optimizations. There are several ongoing
efforts to optimize service meshes [3, 12]. While such opti-
mizations can be benchmarked in isolation, it is difficult to
understand the end-to-end impact on real-world applications.
MeshInsight allows service mesh developers to estimate the
potential performance changes without excessive software
prototyping effort.
To demonstrate this use case, we consider the potential

use of two Linux kernel features in Envoy. Porting Envoy to
use new kernel features is a big effort and may also introduce
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Figure 12: Latency and CPU overhead for application
call graphs in the Alibaba trace.

some functional limitations, so the Envoy developers may
want to estimate the impact even before taking on this work.
All they need to provide MeshInsight is an estimate of new
performance profiles for various components. To estimate
these speedups we enable these features in the context of a
simple sidecar (with 676 lines of C++) that has the same data
path architecture as Envoy. We then profile the components
to learn their new performance profiles when these features
are active. The Linux features we study are:

Unix domain sockets In §5.1, we saw that IPC overhead
is a significant contributor to overhead, adding at least 11
microseconds to latency and consuming 0.5 virtual cores,
representing 30% of latency overhead and 15% of CPU over-
head in TCP mode. By default, Envoy-to-application IPC
uses a TCP connection, which traverses the TCP/IP network
stack for the loopback interface. One potential option to
reduce overhead is via Unix domain sockets [30], which is
lighter weight than TCP sockets while providing the same
API. When using a Unix domain socket, the kernel copies
the data to kernel space and directly puts the constructed
socket buffer on the receiving side’s socket queue, avoiding
the expensive network stack processing.

ReducingWrite Overhead A second significant source of
Envoy overhead is the latency and CPU usage of copying
data, which is embedded in the Read and Write component.
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Figure 13: End-to-end latency reduction in theAlibaba
trace with Linux features.
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Figure 14: End-to-end CPU usage reduction in the Al-
ibaba trace with Linux features.

It is already noticeable with 100 byte messages (Table 2)
and gets worse with larger messages. Linux kernel supports
zero-copy TCP sockets starting from version 4.14. For write
calls, applications can pin memory buffers in userspace; the
kernel signals to the application after sending the buffers
to enable garbage collection or re-use of the buffers. This
eliminates the need for copying the data from the userspace
to the kernel. Linux does not support zero-copy for read
calls.

We use MeshInsight to evaluate the performance implica-
tions of these optimizations using the same Alibaba work-
loads as above. We consider TCPmode sidecars. The absolute
savings for HTTP or gRPC mode will be similar but the rel-
ative advantage in those modes will be small because their
performance is bottlenecked by parsing rather than IPC or
data copy.
Figure 13 shows the latency overheads when using Unix

domain socket and zero-copy write. We observe substantial
improvement from the domain socket when message size is
100 Bytes: the average speedup is 0.71ms. For 4KB messages,
the average speedup 0.78ms. However, because the latency
prior to the optimization is higher (4.01ms versus 2.88ms),
the relative decrease in latency is lower with 4KB. This result
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is in line with IPC overheads constituting less to the total
latency overheads when the message size is large.
We also see that zero-copy writes bring negligible per-

formance improvement in our setting. This optimization
has additional performance cost for buffer lifecycle manage-
ment [7]. For the message size regime of most interest for
microservices, the gains of avoiding a copy is negated by
this additional cost.

Figure 14 shows the CPU overheads with the two optimiza-
tions. When messages are 100 bytes, the average CPU over-
head reduces from 86 to 71 virtual cores with Unix domain
sockets. The difference is quite substantial. When messages
are 4KB, Unix domain sockets reduce the CPU overheads
from 107 to 91 virtual cores. As for latency, zero-copy writes
do not improve the CPU overheads notably, reducing the
CPU overheads from 86ms to 84ms for 100-byte messages.

7 DISCUSSION
MeshInsight provides a systematic way to understand the
overhead of service meshes and confirms that they can sig-
nificantly increase latency and CPU usage of distributed, mi-
croservices applications. While we focused on the currently-
dominant sidecar architecture, our work has implications
also for alternative architectures being considered in the
industry.

In-Kernel Proxies The Linux kernel has increasing support
for extensibility using eBPF. Researchers have also proposed
using safe languages, such as Rust, for kernel extension de-
velopment [60]. One approach to reducing the system call
overheads and the data copy overheads (across userspace
and kernel) is to implement a sidecar’s functionality inside
the kernel. Katran [6] offloads layer-4 load balancers into
the kernel using BPF. It is now possible for Envoy to run a
limited set of filters directly in Cillium [5], a popular frame-
work for using eBPF on the network data path. However,
our study shows that while removing the system call and
data copy overhead can be useful for TCP proxies, it will
offer limited performance improvement for HTTP and gRPC
proxies because protocol parsing is the major overhead in
those configurations.

Hardware Offloading Another direction being currently
explored is to offload the sidecar logic to programmable net-
work hardware [36]. While this is a promising direction,
there are substantial challenges. For example, it is still ques-
tionable if programmable network hardware can do complex
layer-7 protocol processing efficiently. There are a variety
of layer-7 protocols (e.g., HTTP, gRPC, MySQL). These pro-
tocols are more complex than the fixed functions people
typically offload to programmable network hardware, such

as firewalls, NATs, and layer-4 load balancers [55, 59, 75]. In
addition, many filters in sidecars (e.g., encryption) require
reconstructing the original data stream, and this means pro-
grammable network hardware also needs to run TCP/IP
packet processing (e.g., packet loss recovery, congestion
control). Prior works on offloading application logic to pro-
grammable network hardware use UDP as the transport to
circumvent this issue [66].

NewDirections onReducing ServiceMeshPerformance
Overheads. Our work shed light on some new directions
that are worth exploring. We observe that protocol parsing
is a major overhead for HTTP and gRPC proxies. Unfortu-
nately, using a sidecar today means that there is duplicated
protocol processing. A sidecar parses an HTTP request from
TCP streams, optionally modifies it, and serializes it into
a TCP stream again. The application service receiving this
stream has to parse the HTTP request yet again.

There are two potential methods to eliminate this double
parsing. The first is by linking sidecars to libraries that appli-
cations use to parse various protocols. Another is to create
a new transport protocol for efficient parsing by sidecars,
which is possible in this context where both ends of the com-
munication are sidecars. Both of these methods, however,
have limitations. The first one does not work with unmod-
ified applications, and the second one does not help when
filters need to inspect HTTP headers added by applications.
In future work, we will investigate these and other methods.

8 RELATEDWORK
Our work is related to several threads of prior work.

Microservices. The microservice architecture has intro-
duced many additional challenges to the research commu-
nity, and many recent works have been trying to address
various aspects of the microservice architecture, including
reducing tail latencies [51, 70, 71], fault-tolerance [50], debug-
ging [43], isolation mechanisms [34], energy efficiency [57],
monitoring [53], and ensuring correctness [64]. Because the
application logic is decomposed into many independent mi-
croservices, this increases the amount of communication
between various microservices within an application.

Today, operators increasingly use service mesh to deploy
microservice applications for enabling better visibility and
control over the communication between microservices. Un-
fortunately, the networking aspect of the microservice archi-
tecture and the service mesh has received little attention. We
provide the first systematic study of the performance aspects
of a service mesh, and we show that the service mesh can
lead to major performance overheads.
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Performance of the host network stack. Understanding
the host networking stack performance is a common goal
in many previous works. Peter et al. [65] breaks down the
latency overheads of the Linux network stack. Neugebauer
et al. [62] studies how PCIe affects network performance
in host networking. Farshin et al. [39] examines how Intel
Data Direct I/O technology (for NIC to access CPU’s last-
level cache directly) speeds up host networking performance.
More recently, NSight [47] uses Intel Processor Tracing to
diagnose latency in network stacks.

Whilewe share data gathering primitives from theseworks,
our focus is on the data path of service meshes (which tra-
verses the network stack multiple times and has a substantial
userspace processing component). We decompose the over-
head of a sidecar proxy in the datapath of host networking,
and we identify the key contributors to high overhead such
as IPC and protocol parsing.

Performance of online services and network proxies.
Many works have investigated the performance of network
proxies and developed improvements such as hardware of-
floading [59, 67, 75], kernel offloading [12, 68] and re-homing
TCP connections [48]. However, these works mostly focus on
layer-4 proxies, while sidecars are layer-7 proxies. Our mea-
surements of sidecars provide insights into performance bot-
tlenecks of layer-7 proxies. We plan to combine insights from
our study and techniques for improving the performance of
layer-4 proxies to develop high-performance layer-7 proxies.
Similar to our approach, Stewart et al. [72] uses linear

models to profile the performance characteristics of online
services, treating them as black boxes. Conversely, our model
breaks down the overhead of sidecars into distinct compo-
nents, highlighting the main contributors to service mesh
overhead. This not only spotlights the primary contributors
but also empowers service mesh developers to assess the
cumulative impact of their improvements.

Reducing inter-process communication overheads. Re-
ducing IPC overheads is one of the oldest research topics
in the operating system community. Immich et al. [49] and
Venkataraman et al. [73] study the existing IPC mechanisms’
performance on Linux. IPC performance is a critical design
aspect for microkernels [38, 56]. The goal of our work is not
to develop techniques to lower IPC overhead but to build a
tool that helps evaluate the impact of such techniques on the
end-to-end performance of service meshes.

9 CONCLUSION
This paper presents a tool, MeshInsight, that systematically
quantifies the overhead of service mesh sidecars. Its compo-
sitional approach can analyze a wide range of deployment

scenarios (i.e., the combination of service mesh configuration
and application characteristics), without the need to directly
measure them. This ability can help application developers
pick the appropriate service mesh configuration for their spe-
cific application needs; as we showed using a large dataset
of microservice applications, the overhead of service meshes
can vary by orders of magnitude based on the configuration,
and in a given configuration, the overhead can again vary
by orders of magnitude across applications.
MeshInsight can also identify the primary contributors

to the overhead in any scenario. We find, for instance, that
IPC and socket writes are the main contributors when the
service mesh is configured in TCP mode but protocol parsing
dominates in other modes. This ability can help service mesh
developers as they work to lower the overhead of service
meshes.
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