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Abstract
Our analysis of a large public cloud ML training service

shows that resources remain unused likely because users

statically (over-)allocate resources for their jobs given a de-

sire for predictable performance, and state-of-the-art sched-

ulers do not exploit idle resources lest they slow down some

jobs excessively. We consider if an anticipatory scheduler,

which schedules based on predictions of future job arrivals

and durations, can improve over the state-of-the-art. We

find that realizing gains from anticipation requires dealing

effectively with prediction errors, and even the best predic-

tors have errors that do not conform to simple models (such

as bounded or i.i.d. error). We devise a novel anticipatory

scheduler called SIA that is robust to such errors. On real

workloads, SIA reduces job latency by an average of 2.83×
over the current production scheduler, while reducing the

likelihood of job slowdowns by orders of magnitude relative

to schedulers that naïvely share resources.

CCS Concepts
• Information systems→Computing platforms; •Com-
puter systems organization→ Cloud computing.
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1 Introduction
For running their ML training jobs in the public cloud, users

request a pool of resources against which they can submit

jobs. When cloud resources are partitioned across multiple

pools, we consider the problem of sharing resources such

that jobs receiving idle resources will speed up without slow-

ing down jobs from the donor pool. The problem is trivial

when jobs are short-lived and can fit anywhere because the

donor jobs, that is, the jobs belonging to pools whose re-

sources have been given away to other jobs, can start as

soon as they would have started otherwise. However, when

jobs are long-lived or require a collection of resources with

locality constraints, as is the case for ML training jobs that

may ask for tens to hundreds of GPUs co-located within one

rack [37, 67], the donor jobs may have to wait until many

running jobs finish and hence can slow down substantially.

Preempting recipient jobs can alleviate these slowdowns,

but to our knowledge, no public cloud supports preemption,

and most execute jobs to completion based on arrival or-

der [32, 67]. We believe that the reason is likely because

modern training-as-a-service clusters support a wide variety

of training frameworks (e.g., TensorFlow [1], PyTorch [26]),

take code containers as inputs and have limited visibility due

to privacy or intellectual property concerns and it is unten-

able to support preemption uniformly across a wide variety

of code, container frameworks, and hardware. Consider an

example usage from public clouds today:

$ xc loud a i −p l a t f o rm jobs submi t . . . $JOB_NAME

−−package−path $APP_PACKAGE_PATH

−−module−name $MAIN_APP_MODULE −−job−d i r $JOB_DIR

−− r e g i on us− c e n t r a l 1 −−c on f i g c on f i g . yaml

−−use r _ a rg_1 va lue_1 . . . −−use r_a rg_n va lue_n

Here, the user specifies the code as a container, a resource

pool, and I/O storage locations [22, 45]; the cloud provider

has limited ability to take checkpoints or restart workers.

From a large public cloud’s ML training clusters, we have

analyzed the job arrivals, sizes, and durations for a period

of several months. Our per-pool analysis shows that job

sizes and durations are skewed, ranging from jobs that need

one GPU and finish in minutes to jobs requiring hundreds

of GPUs and running for multiple days. Jobs also arrive

in bursts and, consequently, can experience long queuing
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Figure 1: Example comparing anticipatory scheduling and instan-
taneous max-min fairness with the baseline scheduler. Jobs J0 and
J1 are already running, and jobs J2. . .J7 arrive later. Jobs from user
1 (J0, J2. . .J5) are shown in green, and user 2 (J1, J6, J7) are shown
in orange. The table below compares the completion time of each
job relative to the baseline; ✔ means better relative to the baseline,
✘ means worse, and - means no change.

delays. Furthermore, the expensive GPUs are not always

readily available [20, 21, 57, 58, 61, 67] and, perhaps as a

consequence, we see that several users allocate resources but

do not fully use their allocations.

We posit that effectively sharing idle resources from these

pools without causing slowdowns requires anticipation. Specif-

ically, to harvest idle resources safely, we must anticipate

when future jobs will arrive, their sizes (how many GPUs

they need), and their durations. A large family of sched-

ulers (e.g., FCFS, DRF [18], max-min fair [74]) determine

allocations based only on the currently pending jobs and can

slow down future arrivals, which are not factored into their

schedule. Consider the example in Fig. 1, where donating

idle resources in the orange pool to a job from the green

pool J2 delays jobs J6 and J7, which arrive later. Notice that

the slowdown can be especially excessive if jobs have highly

skewed durations (e.g., J2’s duration) or when jobs have lo-

cality constraints for gang-scheduled resources (e.g., J6 may

have some locality constraints that may not fit even after J0
finishes). Users may perceive slowdowns as SLA violations

since they cannot use their pre-allocated resources. In this

example, the anticipatory
1
scheduler donates resources out-

of-order to jobs that have shorter durations (J3 and J4) and
ensures that the orange pool is free when new jobs arrive.

The challenge in practically realizing these gains is that we

1
We co-opt the term anticipation from prior work on disk scheduling[35].
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Figure 2: Utilization of resources across pools atCloudML; each point
on the CDF is the aggregate utilization over all pools every hour.

must rely on predicted (and inaccurate) future information.

Forecasting job arrivals is challenging in particular because

common predictive features such as task-DAGs [27, 28] or

recurring job logs [11, 38] are lacking in ML training clusters.

The size of a job (e.g., #GPUs) is known only when the job

arrives, and job duration is known only when the job finishes.

Given the limited visibility into job code, inputs, and interac-

tivity patterns, only coarse-grained predictions are typically

available [12, 32]. An anticipatory scheduler thus must work

with workload-specific coarse-grained predictors.

In this paper, we present SIA, a novel co-design of coarse-

grained predictors and a heuristic scheduler that is specific

to the problem of sharing idle resources without slowdowns

and generalizes well to multiple examined traces.

• SIA predicts job durations at coarse granularity and, in-

stead of per job arrivals, predicts the total future load of

pools in geometrically increasing time windows.

• SIA intuitively adapts virtual-clock-based schedulers to

work with above coarse-granular predictions.

• SIA also handles domain-specific sharing constraints such

as locality-aware GPU allocation (§5.5).

We discuss how to build our predictors using only the fea-

tures available in two different production systems (§5.4). In

our experiments on a testbed and in large-scale simulations,

SIA substantially speeds up ML training jobs while reducing

slowdowns (§6). For example, SIA reduces job latency by an

average of 2.83× (16.6× at 90th percentile) over the current

production scheduler while reducing the extent of jobs being

slowed down by orders of magnitude relative to schedulers

that naively share idle resources.

2 MLaaS workloads

To help develop effective schedulers for machine-learning as

a service [4, 23, 46], we analyze ML training jobs from Azure

Machine Learning [46], henceforth referred to as CloudML.
Over several months, we collected O(10

7
) jobs from clusters

worldwide. For each job, we collect its size (#VMs), arrival,

start and finish times, and other metadata.
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(a) Job inter-arrival times
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(b) Job arrival burstiness
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(c) Job durations
Figure 3: Variability along different dimensions in resource pools. Each figure is a CDF over the pools.

Compared to prior datasets from ML clusters [32, 37, 67],

our dataset is unique in the following ways: (1) It is from a

public cloud environment with tens of thousands of internal

and external users; all prior datasets were from private clus-

ters. (2) Unlike [32, 37], our jobs have heterogeneous GPU

needs, and our measurement duration, cluster size, and the

number of jobs are all atleast ten times larger than in [67].

To understand if sharing opportunities exist, we analyze

data in terms of resource pools [25, 44, 47]. A pool is a collec-
tion of fungible VMs, optionally colocated. Users provision

pools and submit their jobs against allocated pools. Allo-

cated pools go idle when no jobs exist. Even though idling is

expensive, users may hold their allocations to ensure that re-

sources are available when needed. The scarcity of resources

(e.g., GPUs) means that users may not get desired pools if

they were to request them only when needed. We aim to

share these allocated but unused resources.

Substantial resource idling: Figure 2 shows cumulative

density functions (CDFs) of the fraction of the VMs that are

allocated to running jobs. We study both CloudML data and

Helios [32], which has internal users. We see that substantial

fractions of resources are allocated but not used even on

expensive pools where VMs have multiple GPUs. CloudML
pools generally have lower utilization. We conjecture that

this is due to the greater scarcity of GPUs in the public cloud.

Users have a greater incentive to hold on to their allocations.
2

Lower utilizations imply greater opportunities for sharing.

We observed no correlation between pool size and utilization.

Job arrivals are bursty: Figures 3a and 3b show that job

arrivals are bursty. The former shows that inter-arrival times

are skewed, and the latter shows that the cause, in part, is

jobs arrive in bursts–the x-axes in Figure 3b is the ratio of the

maximum total load arriving in a five-minute period over the

size of the pool. We see that the maximum burst size is over

100% in over half of the pools; that is, many pools have at

least one five-minute period in which jobs that arrive within

the period request more VMs than the size of the pool. We

also see evidence of closed-loop behavior where new jobs are

2
We recognize the irony; the more scarce a resource, the more aggressive

users get about “squatting,” making the resource even more scarce.

more likely to arrive in a pool soon after prior jobs conclude.

This finding is, to our knowledge, unique. Prior datasets [2,

11, 38] report that the bulk of their workload recurs peri-

odically and hence is highly predictable. Our conjecture is

that users (or automated parameter selection techniques) are

launching multiple, simultaneous jobs and, when the jobs

finish, launch new jobs after studying the results. The former

leads to bursts, and the latter leads to closed-loop behavior.

Taken together, bursts of activity and low overall utilization

imply that large fractions of a pool may be idle, which makes

sharing more attractive. On the other hand, however, since

jobs arrive in large bursts, simply setting aside some fraction

of spare resources may not suffice to avoid slowdowns.

Sizable variation in job durations: Figure 3c shows that
in over 50% of the pools, the ratio of the 99th percentile du-

ration to the median is over 10 (x=10). Job durations range

from minutes to several days. Such large variation appears

across all of the pool sizes. The internal jobs from Helios [32]

exhibit an even larger skew. There are, again, strong im-

plications for sharing. Preferentially serving jobs that are

short is a common tactic [29, 67]; however, the gains can

be considerably large here because these short jobs could

otherwise be queued behind some long-running jobs. Prior

works [29, 32, 67] promote short jobs to improve JCT while

slowing down other longer-running jobs. However, offering

idle resources in a pool to short jobs from other pools can

improve overall performance without slowdowns.

Variability in job widths: In CloudML, most pools consist

of jobs with the same identical job widths (# of VMs), though

there are some exceptions. In Helios [32], most pools have a

sizable skew in job widths. The implication here, for sharing,

is that the solution may have to be specialized to the job

characteristics.

3 Problem definition

Given a collection of pools, each with a fixed amount of

resources, we aim to schedule jobs so as to reduce job com-

pletion time (JCT) subject to the constraint that every job

finishes no later than it would when resources are strictly



allocated to each pool. For practicality, we support addi-

tional scheduling constraints (such as locality) and leverage

pre-emptions for the subset of jobs that are amenable to pre-

emption. We will use coarse predictors of future arrivals, job

sizes, and job durations to meet our goal.

State-of-the-art: Table 4 summarizes prior work related to

the above goal. Schedulers for most production ML train-

ing clusters [32, 37, 67], including CloudML, do not share

resources across pools. We are unaware of systems that lever-

age predictions of future jobs in this context; notably, [29, 33,

42] use duration estimates of jobs that have arrived. Most

opportunistically allocate idle resources and, when new jobs

arrive in the donor pool, reclaim the resources by preempting

the recipient jobs or dynamically changing their allocations,

such as reducing their worker count [8, 27, 29, 42, 53, 78].

Doing so is a challenge because one must account for GPU

state [13, 24]. Recently proposed checkpointing and dynamic

scaling schemes [15, 29, 49, 71] only support a subset of

jobs (e.g., data-parallel, but not model-parallel and not RL,

and none support interactively launched training sessions on

pre-allocated VMs which is a common case at OpenAI [55]

and CloudML). Similar to [78], we assume that preemption

and dynamic re-sizing may only be possible for a subset

of the jobs. Some research [33, 41, 60, 64, 72, 73] addresses

strong performance isolation when sharing a GPU across

jobs. Newer GPUs such as the A100 [54, 60] natively sup-

port fine-granular sharing with strong isolation, and our

approach directly extends; we can share a GPU between jobs

in different pools by leveraging hardware-native isolation.

However, our work indicates that there is significant poten-

tial to improve efficiency simply by using unused resources,

even without sharing GPUs among jobs.

Fair schedulers [18, 74] can substantially hurt jobs in donor

pools as we saw in Figure 1. Specifically, these schemes are

instantaneously fair; an idle pool’s resources will be propor-

tionally distributed among pools that have pending jobs,

and new jobs that arrive later in a donor pool must wait

until resources free up. The slowdown is exacerbated when

job durations are skewed. Works that generalize fairness to

longer time horizons [62] focus on allocating elastic resources

(e.g., memory) whereas GPUs are allocated in large discrete

batches in ML training clusters. Coflow schedulers [10, 27]

also do not protect future jobs from slowing down. We dis-

cuss related work further in §7.

4 Using anticipation to sharewithout slowdowns
In contrast to a classical job scheduler, an anticipatory sched-

uler also considers future jobs.

4.1 Potential of Anticipatory Scheduling

To understand the potential of using anticipation to share

idle resources without slowing down jobs, we built an oracle

SIA
MaxMin [74], Themis [42],

HiveD [78]

Tiresias [29]

Karma [62]

DRF [18],.. Gavel [53],.. CoDDL [34],..

Gang

✔ ✔ ✔ ✔ ✔ ✘
Scheduling

Sharing b/w

✔ ✔ ✔ ✔ ✘ ✔
pools

No dynamic

∼ ✔ ✘ ✘ ✘ ✘allocation

changes

Uses duration

✔ ✘ ✔ ✘ ✔ ✘
estimates

Uses future

✔ ✘ ✘ ✘ ✘ ✘
Predictions

Reduces
✔ ✘ ✔ ✔ ✘ ✘slowdowns

Table 4: Comparing selected prior works relative to SIA (§5); SIA
reduces JCT by sharing unused resources across pools, while mini-
mizing slowdowns relative to the baseline.

Inputs:
Ji jobs in queue i (1)

sj , dj , nj for job j , the submit time, duration, and size (2)

mj cut-off start time of job j (e.g., based on FIFO) (3)

ci resources allocated for queue i (4)

Outputs:
X j , t ∈ {0, 1}: Does job j start at time t? (5)

Helpers:
Yj , t ∈ {0, 1}: Is job j running at time t? (6)

αt ∈ R+: Fair-share multiplier at time t (7)

min

∑
j
∑

t : sj ≤t≤mj (t − sj )X j , t + β
∑
t αt (8)

s.t. ∀j :
∑

t : sj ≤t≤mj X j , t = 1, (9)

∀j , t ′ : t ′ < sj ∨ t ′ > mj , X j , t ′ = 0 (10)

∀(j , t ) : Yj , t =
∑

t ′∈[t−dj+1, t ] X j , t ′ (11)

∀ t :
∑
j njYj , t ≤

∑
i ci (12)

∀(i , t ) :
∑
j∈Ji njYj , t ≤ ciαt (13)

Figure 5: Optimization problem that minimizes the total queuing
delay without slowing down jobs given perfect information; see §4.

mixed integer linear program (MILP).

Oracle Formulation: Figure 5 shows an optimal offline
scheduler that, given jobs from a collection of pools, mini-

mizes the total queuing delay of jobs without slowing down

any job past their start times in the reference schedule which

does not share resources.

Inputs: We compute the reference start times (line#3 in

Fig. 5) by simulating job execution without sharing resources.

The oracle also takes perfect information about when future

jobs arrive (sj in line#4), job durations (dj ), and their resource
needs (nj ). The total resources allocated to the i’th queue (or

pool) are denoted as ci .

Outputs: The algorithm emits a starting time for each job

(line#5). This schedule minimizes a weighted combination of

the total waiting time of jobs and a fairness index. A higher

value of the weight parameter (β in line#8) will distribute the

performance gainsmore equitably across pools. The schedule

guarantees that no jobs will experience a slowdown using

the constraint in line#9. Specifically, jobs must begin no later

than their start time in the reference schedule.

Details: The schedule uses binary (indicator) variables X



and Y to denote when a job starts and whether a job is run-

ning respectively.We use capitalized terms to denote decision

variables and non-capitalized terms to denote constants.

The constraints, in order, specify that each job must start

once, that jobs can only start after they arrive and before

the cutoff time (mj ) so as to not slow down any job, identify

jobs that are running currently (Yj ,t ), and constrain total

allocation by the total capacity. The slowdown constraint (see

mj ) can be relaxed if desired. Furthermore, the last constraint

and the term with α variables in the objective ensure that the

total resources are fairly apportioned [51]; these are optional

and included here only to show that fairness can be added

to this basic form.

The above algorithm is novel in terms of the goal it achieves

(sharing to reduce overall waiting time without slowing jobs

down) but many of the underlying techniques used are, by

themselves, not novel. Note that this mixed integer linear

program (MILP) has variables and constraints that are per

job and per time window. We reduce the problem size sub-

stantially by adding variables only when a job is active, i.e.,

X and Y for a job exist only for t ∈ [sj ,mj + dj ].

Impracticality: We take care to note that this MILP is un-

likely to scale to production cases. Moreover, adapting this

scheduler to the online case (when new jobs arrive or when

previously predicted information is found to be incorrect)

is non-trivial because naïvely the whole problem must be

resolved at each step. We only use this algorithm to quantify

the maximum gains possible from anticipation.

We compare the oracle with the following schedulers:

• FCFS: first-come-first-serve within each pool with no shar-

ing, which resembles the production scheduler inCloudML.

• SSF: shortest service first within each pool with no sharing.
SSF optimizes job completion times (JCT) when resources

are not shared between pools but can slow down jobs

relative to FCFS since it schedules shorter jobs earlier.

• gSSF: a global form of SSF that assumes that all resources

are in one global shared pool. By sharing resources be-

tween pools, gSSF achieves an even better JCT than SSF

but can cause even more slowdowns.

• MMFS: shares resources in a max-min fair manner be-

tween the pools that have pending jobs. MMFS allows

sharing but can slow down jobs, as we saw in Figure 2,

and JCTs are worse than with SSF.

Note: Both SSF and gSSF require job durations (to schedule
the shortest first); we give them accurate values. Thus, the

analysis below underestimates the value from anticipation.

Workload: We evaluate the above schedulers on synthetic

job data generated to mimic the characteristics at CloudML

and other clusters [37, 67]. Each run lasts 3 days. Jobs are sub-

mitted into 4 queues (or pools), each of which has 8GPUs.

• We use bimodal job durations, drawn uniformly at random

from [
√
10, 102] and [102, 103] minutes with probabilities

0.8 and 0.2 respectively.

• We set job width (#GPUs) to 1, 2, 4 or 8 with probabilities

0.7, 0.1, 0.15 and 0.05 respectively [29, 53].

• Jobs arrive in bursts; the total width of jobs in a burst is

uniformly sampled from [1, queue_size]; the inter-arrival
time between bursts is Poisson distributed to match a

desired total load per queue, which is uniformly randomly

chosen between [0.6, 0.95).

Metrics:We compare the schedulers on (i) mean JCT speedup

and (ii) slowdown, both worst-case and aggregate, experi-

enced by jobs relative to FCFS (i.e., no sharing).

Results: Figure 6 shows that the anticipatory scheduler (in

solid green bars) is Pareto dominant. We repeat each con-

figuration three times and show the distribution of metric

values. As the figure shows, the anticipatory scheduler en-

sures zero jobs slow down (y value=0 on the middle and the

right graphs) while significantly improving job performance

(higher y value on the left graph, note that y=10 indicates 10×

improvement). The figure also shows results for two work-

load variations – relative to the base workload, more queues
has 2× more pools and higher load has 5% more average

load; notice that performance improvements from sharing

increase in both cases.

Whydoes anticipationhelp? Intuitively, anticipation helps

here because it carefully picks jobs that can be promoted

without slowing down any other jobs. We can get large im-

provements when there are many small jobs and long idle

periods, which we saw in §2 arise due to the bursty arrivals

and skewed job durations prevalent in ML training clusters.

Naïvely distributing idle resources in a fair manner, as is

done by MMSF, also improves performance but importantly

leads to substantial slowdowns, as the graphs show. We also

see that the oracle performs even better than gSSF because

gSSF can only choose between the currently available jobs.

A simple example, similar to delay scheduling [75], is a case

where the oracle keeps resources idle for a short while and

offers them to a newly arriving job that is smaller than all of

the currently available jobs. The figure also shows that gains

from anticipation increase when there are more queues or

higher loads, likely due to more sharing opportunities.

4.2 Towards practical realization

A few concerns must be apparent by now. First, the sched-

uling problem above– sharing resources to minimize some

combination of JCT and fairness without slowing down jobs–

is hard even with perfect knowledge of future arrivals and
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Figure 6: Comparing different schedulers on synthetic workloads (see §4.1). Using knowledge of future jobs, an anticipatory oracle improves
job completion times without slowing down jobs; the compared alternatives have fewer gains and slow down jobs, sometimes by a substantial
amount. Each bar plots the range of metrics seen over different experiments with the middle point denoting the median value.

durations. The oracle from §4.1 is untenable to scale to large

instance sizes, and so any practical online scheduler will be

a simpler heuristic.

Next, the arrivals and durations of individual jobs can be

challenging to predict. Most jobs do not recur [2, 11, 38], his-

torical distributions have weak predictive power [29], there

is no apriori declared DAG structure [27, 28] and potentially

useful metadata such as the name of the submitting user, the

input size or the job code [36, 56, 76] are not available due

to privacy concerns in public clouds. Prior works show that

predictors are inaccurate even when such metadata is avail-

able (in private clusters) [32, 67]. Leveraging coarse-grained

predictors, for example, that predict a range or an interval, is

a common tactic in such cases [6, 7, 12, 48]. However, there

are nuances in the design.

Among the many possible coarse-granular predictors, we

must find ones that can (1) be realized with reasonable accu-

racy on a given trace and (2) retain as much of the potential

gains from sharing the idle resources without slowing down

jobs. We believe that such a coarse-granular predictor will

be specific and customized to the problem at hand (sharing

without slowdowns) and the trace characteristics.

Third, the scheduling algorithm depends on the predictor

choice. An algorithm that works well with one predicted

input (say per-job arrival information such as the oracle

in §4.1) is not even guaranteed to work, let alone work well

on a different predicted input (e.g., total load in each queue).

In the following, we will describe our choice of scheduler

and coarse-granular predictors that are specialized to the

problem of sharing idle resources without slowdowns and

generalize well to multiple examined traces.

To our knowledge, both aspects are novel. Our predictors

clearly differ and perform better than coarse-grained predic-

tors devised for other problems [6, 7, 12, 16, 30, 32, 39, 59, 65].

We also show that our scheduling algorithm improves over

numerous algorithms proposed in prior work that we have

adapted to the problem at hand [29, 42, 78].

5 Scheduler Design

We first describe a virtual-clock based algorithm that uses

per-job predictions to share idle resources without slow-

downs in §5.1. We describe practical coarse-granular pre-

dictors in §5.2, a scheduler that only relies on these coarse

predictions in §5.3 and how to train these predictors in §5.4.

Extensions to support constraints such as locality are in §5.5.

5.1 Stepping stone to the scheduler

SIAVC shares resources without slowdowns using predic-

tions of future job arrival times, durations, and widths. Rel-

ative to the oracle in §4.1, SIAVC is up to two orders of

magnitude faster in running time but is approximate in the

sense that it can only identify a subset of all possible anticipa-

tory schedules that the oracle can discover. Nevertheless, it

performs well in practice on the evaluated traces. Although

these predictions are impractical, we offer SIAVC to (a) illus-

trate a concrete anticipatory scheduling approach for this

problem and how that differs from prior schedulers and (b)

develop intuitions that help explain the more practical sched-

uler and coarse-granular predictors later in this section.

SIAVC uses two mechanisms - virtual clocks [14, 77] to
determine the scheduling order of jobs and logical resource-
time plans [27, 28, 43, 62] to avoid slowdowns.

Virtual Clock: Beginning with the current state of each pool

(i.e., idle resources, running jobs, and their remaining exe-

cution times), we perform a forward simulation to calculate

the virtual start time (VST) for every pending job. This step

assumes no sharing and checks for relevant constraints (e.g.,

jobs start only after they arrive, locality constraints, etc.).

Logical Resource-Time Plan represents the state of a cluster

as a 2-dimensional matrix with resources and time being the

dimensions. At each scheduling event, we populate the plan

with the already running jobs and then use it to logically

reserve future resources.
• Reserve(resource r , start time t , duration d): marks re-

source r as busy for [t, t + d).



• MaxReservation(start time t , duration d): returns the max-

imum number of resources reserved for [t, t + d).

• ClearReservation(): releases resources for finished jobs.

Algorithm: At each scheduling event, calculate the virtual

start times for all current and future jobs using the virtual
clock mechanism. Next, the algorithm examines jobs in all

pools and determines which jobs to start now and what re-

sources to leave idle for other jobs. Specifically, the scheduler

examines all pending and future jobs in increasing order of

their virtual start times and performs the following actions.

Reserve: if a job cannot start immediately, i.e., arrives in

the future or requires more resources than are currently

available, create a reservation for the job beginning at its

virtual start time. The reservation will be for the duration of

the job and for as many resources as the job’s width.

Allocate: if the job can start immediately without violating

any future reservations, schedule it. This is where jobs ben-

efit from using idle resources from other pools. By visiting

jobs in increasing order of their virtual start times, notice

that jobs in pools that are under-share (i.e., using less than

dedicated share) will be considered before jobs in over-share

pools since the under-share jobs will have smaller virtual

start times.

Finally, the algorithm advances time to the earliest in-

stance when a currently scheduled job completes or some

new job arrives. Figure 7 shows our pseudocode.

Theorem 1. With perfect information about future jobs, the
above algorithm ensures that no jobs will slow down relative
to a baseline that does not share resources between pools.

The proof follows from the definition of virtual times.

Next, we call out a few key aspects of this algorithm.

Performance improves because jobs are scheduled early,

whenever possible, as long as they do not violate the reser-

vations of other jobs. Intuitively, the algorithm also prefers

giving resources to smaller and shorter jobs, since jobs that

have longer durations, require many GPUs or have strong

locality constraints are less likely to be schedulable given

existing reservations.

Runtime & Scalability: This algorithm is orders of magni-

tude faster and requires less memory than the Oracle MILP.

The required operations are a sort and linear-time examina-

tion of pending jobs.

Sub-optimality: Performance improvement may not be the

best achievable due to a few reasons. (1) At each event, the

scheduler greedily schedules as many jobs as possible. (2)

Reservations are sufficient but not necessary to avoid job

slowdown. (3) Visiting jobs in the order of their virtual start

times may not allocate available resources to the best job.

Sensitivity to prediction errors: It is easy to see that this

algorithm is extremely sensitive to errors. If a future job’s

arrival, duration, or width were to change, not only could

that job slow down, but the reservations for many other jobs

could be affected, leading to a cascade of slowdowns.

Non-triviality: It is perhaps noticeable that achieving high

performance without slowing down jobs is non-trivial.

5.2 Our coarse-granular prediction targets

Both the oracle MILP and the algorithm in §5.1 require per-

job predictions of arrival times, durations, andwidths.We are

not sure if these aspects can be predicted well using features

that are available in public clouds. Also, both algorithms are

extremely sensitive to errors in those predictions.

Instead of predicting each future job, SIA predicts the ag-

gregate future load of each pool in geometrically increasing

future time horizons. This information tells the scheduler

what fraction of a pool’s resources can be donated safely and

for how long into the future.

Specifically, SIA uses the following predictors:

• TotalNewLoad(time quanta k)→ [0,∞) predicts the total
new load that will arrive in each queue in next k future

time-windows ∀ k ∈ {k1,k2, ..,kn} where k1 < k2 · · · <
kn (e.g., next five minutes, next hour, etc.).

• JobDuration→ {[0..k1), [k1,k2), . . . , [kn,∞)} classifies a
pending job’s duration into a small number of ranges (e.g.,

the above prediction’s time horizons).

5.3 The SIA scheduler

At a high level, our scheduler differs from the stepping stone

(§5.1) in a few ways to better adapt to available predictions.

Given SIA only has coarse-granular predictions, we can-

not compute virtual start times accurately per job. Instead of

visiting jobs in virtual start time order and making a corre-

sponding reservation, SIA first allocates dedicated resources
at each pool (line#1 in Figure 8) and then makes bulk reser-

vations for future time windows based on the total load

anticipated to arrive in that window (line#4 in Figure 9).

Next, instead of allocating spare resources to any job that

fits without violating reservations, SIA uses the categorized

duration prediction to preferentially allocate resources to

jobs that have shorter durations (line#1 in Figure 9). Further,

SIA allocates dedicated resources, i.e., within a queue’s quota,

to jobs in FCFS order and uses out-of-order scheduling only

when allocating shared resources. Separating a queue’s jobs

in such a way has the desirable property that the jobs run-

ning out-of-order will not delay jobs that would have been

executed using the dedicated resources.

Third, visiting pools in increasing order of the ratio of

their CurrentAllocation to the Quota steers the allocation

of spare resources towards fairness and enables temporal



Procedure AllocateResources
Input: Q: set of queues

1 for q ∈ Q
2 CalculateVSTs(PendingJobs(q) ∪ FutureJobs(q), q)
3 do
4 some_job_started← false

5 for j ∈ PendingJobs(Q) ∪ FutureJobs(Q) in increasing order

of VST(j)
6 if not Schedulable(j) then
7 Reserve(Gpus(j), VST(j), Duration(j))
8 else
9 AllocateJob(j)

10 some_job_started← true

11 break

12 ClearReservations()

13 while some_job_started

Figure 7: Anticipatory scheduling algorithm using fine-
grained accurate information for scheduling decisions.

resource trading between queues. For example, two queues

that are simultaneously bursting, can borrow resources from

each other effectively interleaving their bursts. However,

queues do not get a higher preference in the future for past

idleness. This scheduling order thus follows the notion of

instantaneous fairness used in scheduling algorithms such

as fair queueing or max-min fairness.

Finally, we note that SIA’s scheduler is significantly more

robust to prediction error. Individual job arrival information

is neither predicted nor used. Given how we allocate spare

resources, the predicted durations of the jobs only need to

be accurate to within the size of the geometrically increasing

windows. Furthermore, SIA can adapt online based on ob-

served errors in its predictions. For example, if the observed

prediction accuracy were to dip for some pools or time win-

dows, SIA can selectively disable sharing on those pools and

time windows. At the same time, SIA neither guarantees

that no jobs will slow down (in the presence of prediction

errors) nor does it guarantee achieving the best possible per-

formance improvement. It is possible to tune the algorithm

sketched here in a few ways, and we fully expect a cluster

administrator to evaluate these choices and pick a scheduler

that works well for their context. For example, an admin can

choose to allocate spare resources differently, use different

prediction time horizons, or different slack factors to further

protect against errors.

5.4 Learning our Predictors

5.4.1 Predicting TotalNewLoad: Observe that queue idle-
ness is a key input for our scheduling problem—e.g., pool x
will be idle from 3p to 5p—because resources can be safely

stolen from idle queues. Low precision (i.e., predicting no

load when the pool will be loaded) will result in slowdowns,

and low recall will reduce sharing. Furthermore, these predic-

tions will be usable if and only if the time windows predicted

are large enough to fit typical jobs.

Procedure AllocateResources
Input: Q: set of queues,W: future prediction windows

1 AllocateDedicatedResources(Q)

2 AllocateSpareResources(Q,W)

Procedure AllocateDedicatedResources
Input: Q: set of queues

1 do
2 for q ∈ Q in increasing order of

CurrentAllocation(q)
Quota(q)

3 next_job← FindNextJob(queue=q, in_order=true)
4 if next_job is none then continue

5 AllocateJob(next_job, dedicated=true)
6 break

7 while next_job is not none

Figure 8: Scheduler pseudocode: Invoked when new jobs ar-
rive, running jobs complete, or some time has passed since
the previous invocation.

Procedure AllocateSpareResources
Input: Q: set of queues,W: future prediction windows

1 for w ∈ W in increasing order
2 do
3 for q ∈ Q
4 ReserveResourcesForFuture(q, w)

5 usable← cluster.idle−MaxReservation(now, w); for
q ∈ Q in increasing order of

CurrentAllocation(q)
Quota(q)

6 next_job←
FindNextJob(queue=q,max_resources=usable,

max_duration=w, in_order=false)
7 if next_job is none then continue

8 AllocateJob(next_job, dedicated=false)
9 break;

10 ClearReservations()

11 while next_job is not none

Procedure ReserveResourcesForFuture
Input: q: queue, w: allocation window

1 pending_load← sum(resources for pending jobs in q)
2 future_load← TotalNewLoad(queue= q, horizon= w)

3 unused_quota← Quota(i) − DedicatedAllocation(i)
4 reserved← min(pending_load + future_load, unused_quota)
5 Reserve(reserved, now, w)

Figure 9: Pseudocode allocating unused jobs to pending jobs
based on predictions; Jobs can be scheduled out of order.

Given the bursty arrival patterns, we decompose Total-
NewLoad into two simpler predictors, which together pro-

vide a conservative overestimate of load:

• WillJobsArrive(pool, time quanta k)→ {0, 1}; Predicts 1 if

any jobs will arrive in the pool in next k duration window

• NewLoadEstimate(pool, time quanta k)→ conservative

estimate of newly arriving load in any k duration window

We predict WillJobsArrive for different, geometrically in-

creasing time quanta into the future, and when jobs are

predicted to arrive, assume that the TotalNewLoadwill equal
NewLoadEstimate. Such a conservative overestimate pre-

vents slowdowns. The granularity of our estimates (per pool

and time quantum) ensures that the overestimates are not so

loose as to cut into gains. Multiple quanta help schedule jobs

that have different durations, and geometrically increasing

quanta allows a few predictors to cover a wide range.



Name Features (windows relative to current time)

Periodic

# new jobs in (−xp, −xp + k ]
for x ∈ {1, 2, 3} and p ∈ {one hour, one day}

Recent Arrivals # new jobs in [−xk , 0] for x ∈ {1, 10, 102 }
Recent Completions # finished jobs in [−xk , 0] for x ∈ {1, 10, 102 }
Future Completions # jobs expected to finish in [0, +k ] and [+k ,∞]

Table 10: The features SIA uses to predict whether jobs will arrive
in the timeperiod [+0, +k ], given quanta k . SIA uses an ensemble of
predictors for different geometrically-increasing values of k .

Quanta Precision Recall F-score

5 mins .66 .85 .74

60 mins .62 .72 .67

720 mins .66 .64 .65

Table 11: Accuracy ofWillJobsArrive for three different time quantas.

PredictingWillJobsArrive:We leverage the features shown

in Table 10. The first two rows account for periodic jobs and

burst arrivals respectively. The last two rows –recent and

future completions– account for closed-loop behavior. We

find new jobs arriving soon after the completion of previous

jobs likely because scientists issue jobs with new hyper-

parameter values or feature choices after examining the re-

sults of earlier jobs. Auto-ML engines [3, 40] also issue jobs

iteratively. Note that we learn and use one model for all pools.

Thus, newly arriving pools require no training. The features

that we use implicitly encode pool-specific aspects.

We train WillJobsArrive for three time quanta: 5 minutes,

1 hour and 12 hours. We picked these quanta because they

approximately fit the job duration distribution at CloudML.
Our training corpus is generated using history and contains

ground truths for the features in Table 10 for all pools in

CloudML for a period of three weeks. We use a set-aside

corpus from a different two-week period as the validation

set. We use XGBoost [9] to train WillJobsArrive models
3
.

Table 11 shows the quality ofWillJobsArrive predictors for
the CloudML dataset; a detailed analyses is in §6.6. We high-

light a few aspects here. First, longer time horizons generally

have larger errors, likely because errors accumulate. Next,

using different models, features, and longer traces did not

substantially improve predictor quality. We believe this indi-

cates that the quality is limited by the low predictive value

of the features available in public clouds [68]. Third, some

pools have consistently poor prediction quality. Such pools

tend to have fewer jobs or jobs with longer durations. We

believe that further feature engineering or fine-tuning [70]

can help. Finally, prediction errors appear to be temporally

correlated. That is, poor prediction quality for a pool at time

t often implies poor prediction quality at t + τ for small τ .
We also found that time-series models such as ARIMA and

LSTMs performed worse than XGBoost on this task. A more

3
using the default hyperparameters for XGBoost v1.4.1 for skewed datasets.

Tuning the parameters explicitly only lead to marginal improvements.

careful investigation is needed to tease apart the reasons.

Note that prior works [12, 32, 67] also find that such simpler

models (XGBoost and other tree-based) perform well.

Predicting NewLoadEstimate: For each queue, we con-

servatively estimate the total new load in a time quanta to be

a sliding max over the load that was observed in that queue

in the recent few time quanta of the same size.

5.4.2 Predicting JobDuration We only classify a job’s

duration into the appropriate range.
4
We estimate this based

on the durations of other jobs that have the same experiment
tag, which is an opaque CloudML hash that groups related

ML training jobs for analysis and visualization [66]. If too few

other jobs share an experiment tag, we base the prediction

on the duration of other jobs in the same pool with similar

resource requirements.

To sum, we want to call out that conservative upper-

bounds and coarse-granular predictions (e.g., for JobDu-
ration and TotalNewLoad) appear to be key enablers for

sharing resources without slowing down jobs in public ML

training clusters.

5.5 Extending SIA: Locality and (partial) Pre-emptions

We discuss two extensions to SIAwhile adhering to the same

scheduler framework described above.

Locality constraints may require that all GPUs of a job be

on the same socket or rack, which, in some cases, has perfor-

mance implications [37, 78]. To see why, note a job may not

start even when enough idle resources exist because the idle

resources may be fragmented across many racks or sockets

and do not meet the locality constraint. HiveD [78] offers a

locality-aware placement algorithm but requires preemption

to avoid late-arriving jobs from slowing down. We propose

an adaptation of the HiveD algorithm to the case when jobs

cannot be pre-empted or only a subset is preemptible. We

also propose a variant that more generally accounts for the

case when a subset of the jobs can be preempted or when

jobs have varying preemption overheads.

Quota (Resource Limits): Earlier, we defined quota and

reservations in terms of the numbers of GPUs. In this ex-

tension, we define quota and reservations in the form of

cells—each having a fixed # of GPUs and predefined locality

specification. Large cells can decompose into smaller cells

and vice versa. For instance, a cell with 8-GPUs on one server

can decompose into two 4-GPU cells or eight 1-GPU cells.

Scheduler State: In the extension, our scheduler records

the numbers and types of cells that are currently allocated

to each queue for dedicated and opportunistic jobs.

Dedicated Resource Allocation: SIA allocates cells for

4
Since quanta are 5 minutes, 1 hour, and 12 hours, we ask to which range

the duration belongs to: (0, 5], (5, 60], (60, 720], (720,∞) minutes.



jobs using HiveD’s buddy cell allocation algorithm, which

limits resource fragmentation and mimics buddy memory

allocation [69]. To maximize the number of unused large

cells, we allocate cells of the same type as close as possible

(in buddy cells) and away from the cells allocated to oppor-

tunistic jobs.

Resource Reservation: Reserving a cell for a queue is iden-
tical to allocating a new dedicated cell except that the cell is

only marked off for some future time and is not bound to a

specific job. If a reservation cannot be satisfied with the cur-

rent resources, we stop allocating resources to opportunistic

jobs until the reservation can be met.

Opportunistic Job Allocation: We also use the buddy cell

algorithm to allocate opportunistic jobs close to each other.

Unlike HiveD, SIA does not allocate opportunistic jobs in

buddy cells of dedicated jobs to avoid future fragmentation.

Partial support for Pre-emption: SIA considers preemp-

tion overhead and prediction confidence when sharing re-

sources. We vary the conservativeness of SIA in terms of

the fraction of resources that are left unallocated based on

the estimated effect of prediction errors and resources that

can be recovered using preemption. For instance, jobs with

a low preemption-overhead will receive donated resources

even if they have low confidence predictions. In contrast,

jobs that cannot be preempted (or have a large overhead) are

treated more conservatively. Even when a sizable fraction of

the running jobs are preemptible and preemption costs are

small, SIA improves upon existing schedulers like HiveD [78]

by finishing shorter jobs earlier.

6 Evaluation
We evaluate SIA by deploying a prototype in a cluster with

hundreds of VMs and by replaying production traces from

CloudML and Helios [19, 32] in simulations. We ask:

• By sharing idle resources, does SIA offer salient per-

formance improvements without slowing down jobs?

• Does SIA consistently outperform state-of-the-art sched-

ulers? And why?

• An ablation study to tease apart the gains from the

various parts of SIA and comparisons with alternatives.

• To showcase the extensibility of our framework, does

SIA help when honoring locality constraints?

6.1 Methodology

Production traces: Our simulations and prototype replay

production traces from CloudML. We use several weeks of

job traces. We train predictors using data from one three-

week period and evaluate traces from other periods. Both

experiments and simulations use the same predictors.

Prototype experiments use a cluster of over a hundred

VMs equipped with GPUs at a public cloud. Our prototype,

written in Python, implements the scheduler from §5 with

predictors from §5.4. Each run is a collection of tasks, and

job arrivals, widths, and durations are based on trace replay.

Experiment setup: In each experiment, we pick a certain

number of queues whose resources can be shared, indepen-

dently at random from the traces. To normalize, we pick for

each queue an average load number uniformly at random be-

tween 0.6 and 1.1 and scale the resource quota of the queue

accordingly. Since jobs are long-lived, we use a warm-up

period in each experiment (e.g., the first two days for a two-

week trace replay) for the load to reach steady-state and only

evaluate the various schedulers on jobs that arrive after that

warm-up period. Each experiment replays a multi-week-long

trace; to finish each prototype experiment within a few days,

we speed up all task durations by 10×. We report results from

many tens of experiments and simulations.

We acknowledge some key challenges with replaying

traces. Recall from §5.4 that jobs might have causal depen-

dence, e.g., the closed-loop behavior in job arrival wherein

finishing jobs causes new jobs to spawn. When replaying

traces, we do not know and cannot mimic such behavior and

so, in our experiments, we replay traces faithfully. That is,

new jobs will arrive as they did even though jobs may finish

earlier. Many prior works use the same methodology [29, 42]

and a better alternative is not immediately clear. Note that

this leads to a potentially conservative evaluation. A related

issue is that our predictors use job end-times to predict the

arrival of new jobs. However, per above, during trace replay,

new jobs arrive as they would in the original trace. Thus

to preserve the implicit dependence, we use as predictor

features the “original” job end times.

Helios: We also evaluate SIA on production traces from

Helios. On these traces, we use a similar methodology as

above except: (1) we consider sharing between all 15 pools in

the trace using their actual load levels and pool sizes and (2)

while Helios [32] does have rich telemetry, their traces [19]

lack features that can predict job duration and so we only

use SIA’s arrival predictors. We show that SIA offers sizable

improvements without slowdowns on their traces as well.

Baselines:We evaluate SIA against all the schemes listed in

§4.1 and shown in Figure 6. Production schedulers [37, 67]

are covered by this set. Additionally, we compare against the

following adaptations of recent works on ML cluster sched-

uling: (1) [67] uses the shortest job first (SJF) per queue but
SJF is typically no better than the shortest service first (SSF)
which considers both the lengths and widths of pending jobs;

(2) HiveD* [78] and (3) Themis* [42]. The * suffix indicates

schemes that are identical to the corresponding publications

except for the constraint to run jobs that start without inter-

ruptions until completion. We offer accurate job durations

to Themis* as their logic to handle errors is rather complex.
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Figure 12: Distribution of the per-job speedup in prototype exper-
iments when using different schedulers relative to a no-sharing
FCFS baseline.

Policy

Mean Speedup (X)

Q: 0 Q: 1 Q: 2 Q: 3 All

No Sharing 1.0 1.0 1.0 1.0 1.0

MaxMin Fair 1.75 1.16 9.88 2.33 7.61

SIA 1.6 1.0 52.46 1.0 30.26

Table 13: For a particular prototype experiment, the (geometric)
mean of per-job speedup in each queue with different schedulers.

Metrics:We compare each scheduler relative to a baseline

that uses FCFS on: (i) JCT improvements or the speed-up per

job, i.e.,
JCTbasel ine
JCTscheduler

; a value of 2, for example, indicates a

job takes half the time; we show the distribution of speed-up

across jobs as well as aggregate statistics. and ii) Additional

slowdown experienced by jobs with the new scheduler.

6.2 Speed-ups vs. slowdowns

Figure 12 shows a CDF of the per-job speedup for SIA and

comparable schedulers from prototype experiments with

VMs on a public cloud. Recall from §6.1 that a speed-up value

below 1 indicates jobs that complete later than they would in

the baseline. Notice that MaxMin slows down roughly 2% of

the jobs with some jobs being delayed by up to 100× (x value

is nearly 10
−2
); the benefit is that the average job speeds

up from sharing resources by roughly 10×. In contrast, SIA
offers more substantial speed-ups both for the average job

and at higher percentiles as well as much shorter and fewer

slowdowns. SIA’s slowdowns are likely due to imprecise

predictions. The total additional slowdown for MaxMin is

250× the total slowdown of SIA.
To understand these results better, Table 13 shows the

speedups accrued by each queue in a particular experiment

with four queues. The median job widths and durations in

each queue were 1, 8, 1, 4 and 86, 1340, 2, 1280 minutes, re-

spectively; their average load was 0.48, 0.63, 0.67, 0.65 and
the pre-allocated capacity was 3, 16, 2, 8 VMs. The geometric

means of speed-up in Table 13 indicate that the typical be-

havior of SIA is to complete shorter and narrower jobs earlier

using idle resources.
5
This validates design choices made in

our predictors and scheduler that aimed to identify queue

5
The first and third queues, which have shorter and narrower jobs, receive

a greater speed-up from SIA.

idle times and fill them with jobs that are very likely to finish

within the idle time so as to avoid slowdown. By explicitly

reducing slowdowns, SIA ensures that individual queues al-

ways have the incentive to share–they will never see worse

performance than when running in isolation, and their short-

er/ narrower jobs are likely to speed up. While our anticipa-

tory framework can deliver more equitable gains and speed

up longer jobs, the requisite predictions cannot be achieved

with high accuracy today in production at CloudML.
We use simulations to examine more cases and evalu-

ate more schedulers. Figure 14 shows the distributions for

100 different simulations when sharing resources between

four queues; recall from §6.1 that we vary the load of each

queue (at random) and also vary the job arrivals, width, and

duration distributions by picking random pools from the

production trace. Per-queue SSF speeds up jobs by preferen-

tially scheduling shorter and narrower jobs earlier. HiveD*
and Themis* speed up jobs by sharing resources with differ-

ent variations of instantaneous fairness. However, all these

schemes slow down jobs. SIA offers equivalent or better

speed-up while dramatically reducing the extent of slow-

downs. In particular, SIA reduces the worst-case slowdown

and the total impact of slowdowns by 100× to 1000× relative

toMaxMin, which offers the most speedup.

Figure 15 further generalizes the experiment space by also

varying the numbers of queues that can share and shows

higher percentiles of speed-ups.While sharing betweenmore

queues results in greater speed-ups in general, notice that

the speed-ups from SIA start to statistically dominate the

speed-ups from other schemes when more queues share.

Finally, as we saw in earlier results, SIA consistently reduces

slowdowns, by upto multiple orders of magnitude.

6.3 Ablation study and alternative designs

Figure 16a compares SIA with two other variants: (a) which

replacesWillJobsArrive from §5.4withU {0, 1}6 and (b) which
also replaces JobDuration from §5.4 with picking uniformly-

at-random one of the four quantized time quanta that we use

for durations; these are the second and third boxes in each

group in Figure 16a. We see that SIA performs much better

using the predictors from §5.4 compared to using the straw-

man predictors; in fact, when both predictions are replaced

with random counterparts, SIA’s slowdown is statistically

similar to that of the MaxMin scheduler.

Figure 16a also compares SIAwith optimal variants - SIAVC
uses virtual clocks with perfect fine grained predictions (the

first box from the right in each group in the figure), and SIA
with perfect coarse-grained predictions (second from right).

Notice that perfect predictions completely eliminate slow-

downs and slightly increase the speed-ups for SIA; The gap

6
Pick 0 (no jobs arrive) or 1 (some jobs arrive) with 0.5 probability each.
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Figure 15: Varying numbers of queues and showing higher percentiles; each box stack is such that the widest box spans the 25
th to 75

th

percentiles, the next wider box spans the 12.5th to 87.5th percentiles and so on. SIA offers similar speed-ups while reducing slowdowns.
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Figure 16: Ablation study and gap from optimal

between SIAVC and SIA is higher with fewer queues but re-

duces with increasing # of queues. The oracle MILP from §4.1

is intractable for these traces; We compare its performance

against SIAVC on tens of smaller traces in Figure 16b. Notice

that the distributions of speedups are similar while execution

is orders of magnitude faster. This suggests that SIAVC might

be a reasonable approximation for the best possible gains

from anticipation on larger traces as well. To sum, the pre-

dictors from §5.4 appear necessary, and for the production

traces at CloudML, SIA appears to achieve a sizable fraction

of the best possible gains from anticipation.
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Figure 17: Evaluating SIA with additional locality constraints.

6.4 Extending SIA to jobs with locality constraints

Here, we assume that each server has eight GPUs and that

jobs can request either 1, 2, 4, 8 GPUs and require all of the

GPUs to be colocated on the same server. We extend SIA
to this case as noted in §5.5. Figure 17 shows the speed-

up vs. slowdowns for SIA and HiveD* [78] which explicitly

supports locality constraints. Note that SIA is able to achieve

sizable speed-up, especially when more queues share, while

significantly reducing slowdowns. However, the additional

constraints reduce the gains from anticipation (note: SIAwith

perfect predictions has lower speed-up than in Figure 15).

6.5 Evaluating SIA on Helios

Recall from §2 that Helios is a private ML training cluster

with different job characteristics and perhaps more expert ad-

ministrators. Table 18 shows the speed-ups and slowdowns

relative to FCFS (which does not share) from sharing re-

sources across all 15 pools of Helios; here SIA runs with

predicted job arrivals. The table also shows the results for

when the two pools that contribute the largest amount of

free resources do not share. Figure 19 shows results for the

case when pool sizes (i.e., #GPUs) are scaled by the factor

shown on the X axes. Our takeaways are as follows. First, the

pools in Helios are over-provisioned, over 80% of the jobs see

no queuing and so sharing resources across pools only leads

to moderate average speed-ups and slowdowns. Note the tail

though, that is, some jobs still speed up more with SIA and

slow down substantially with MaxMin. Next, if the pools
had fewer resources (e.g., x ≤ 0.95 in Figure 19 which is 5%

smaller pools) or there were fewer spare resources (e.g., when

the spare resources from two of the 15 pools are not shared

with the other pools), SIA significantly improves average

JCT without slowing down jobs.

6.6 Additional Predictor Evaluation

We use XGBoost [9] to train models for CloudML and Helios
datasets separately. For CloudML, we train with 3 weeks of

Policy

Speedup (×) % jobs Slowdown (mins)

Mean p95 p5 slowed Total Max

MaxMin 3.94 357.6 1.0 1.76 5027 163

SIA 3.71 390.7 1.0 0.0 0 0

MaxMin ♣ 2.65 298.6 0.15 5.96 358871 643

SIA ♣ 3.25 282.0 1.0 0.0 0.0 0

Table 18: Comparing SIA with baselines on Helios [32] traces. Rows
with ♣ show results after removing two pools.
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Figure 19: Speedup and slowdown at different cluster sizes.

Prediction

Precision Recall F-score

Window

5 mins .34 .87 .49

60 mins .62 .79 .69

720 mins .84 .89 .86

Table 20: Accuracy ofWillJobsArrive on the Helios [32] dataset.

trace data and validate against the remaining (2 weeks). For

Helios we use 5 months of traces to train and the remaining

(1 month) for validation; For both datasets, we train the same

time quanta - 5 minutes, 1 hour, and 12 hours.

Table 20 shows the predictor quality for Helios. Observe

that prediction accuracy improves for longer time quota,

perhaps because the Helios traces are less bursty and more

well-managed, making long-term behavior more predictable.

The higher recall in contrast to CloudML (Table 11 §5.4.1)

explains why SIA can completely avoid slowdowns. Note

that the lower precision for 5-minute horizons is acceptable

since few jobs in Helios complete within 5 minutes.



Prediction

Feature Set

all x ≤ 5 5 < x ≤ 60 60 < x ≤ 720 x > 720

Window P R F P R F P R F P R F P R F

5 mins

periodic only .66 .66 .66 .86 .87 .87 .38 .39 .39 .18 .17 .17 .10 .07 .08

+ recent arrivals .68 .81 .74 .88 .95 .91 .47 .65 .54 .35 .50 .41 .25 .37 .29

+ recent completions .66 .83 .74 .88 .95 .92 .46 .69 .55 .35 .56 .43 .26 .42 .32

+ future completions .66 .85 .74 .89 .96 .92 .45 .74 .56 .35 .62 .45 .26 .45 .33

60 mins

periodic only .57 .72 .64 .79 .87 .83 .53 .70 .60 .44 .60 .51 .35 .48 .40

+ recent arrivals .59 .72 .65 .81 .87 .84 .55 .70 .62 .44 .60 .51 .36 .47 .41

+ recent completions .59 .72 .65 .82 .87 .84 .55 .70 .62 .44 .59 .51 .37 .48 .41

+ future completions .62 .72 .67 .84 .87 .85 .58 .70 .63 .48 .61 .54 .41 .48 .44

720 mins

periodic only .61 .57 .59 .66 .58 .62 .57 .54 .55 .61 .59 .60 .59 .57 .58

+ recent arrivals .64 .64 .64 .69 .64 .66 .61 .62 .61 .64 .66 .65 .59 .61 .60

+ recent completions .63 .65 .64 .71 .63 .67 .62 .62 .62 .62 .69 .65 .57 .64 .60

+ future completions .66 .64 .65 .74 .62 .68 .64 .60 .62 .64 .69 .66 .59 .62 .60

Table 21: Key accuracy metrics with different input feature sets and for different prediction windows on the CloudML dataset. The first 3
columns for each row present the metrics over the entire dataset, and the subsequent column groups present the accuracy metrics for sub-
groups of the dataset corresponding to pools with different mean job durations.

We also analyze CloudML predictors in more detail; Ta-

ble 21 presents an ablation with different feature sets from Ta-

ble 10 and breaks down the accuracy by groups of pools

which have similar mean job duration; observe that closed-

loop features, recent & future completions significantly im-

prove the accuracy especially for the smaller time horizon i.e.,

5 minutes. Further, notice that prediction quality varies sig-

nificantly across pools; the aggregate accuracy is primarily

determined by pools with shorter jobs, since those are a large

fraction of the jobs. For Helios, we also observe pools with

consistently poor prediction accuracy, despite much longer

training data (5 months vs. 3 weeks compared to CloudML).

7 Related Work
Our work makes better use of allocated but unused resources

in ML training clusters. When cloud providers support per-

fectly elastic allocations and users trust the provider and

avoid pre-allocating resources, this problem will disappear;

however, allocating but not fully using resources has been a

persistent theme in much more mature scenarios including

cloudVMs[5], data-warehouses [63] and cloud databases [52].

We already discussed prior measurements, GPU sharing

and preemption, and several related schedulers in §2; A no-

table departure from instantaneous fair allocation are coflow

schedulers; when work consists of groups of flows [10] or

tasks [27] and the individual completion times do not mat-

ter but only the latest completion from each group matters,

prior works move resources from groups that are anyways
bottlenecked elsewhere to groups that are not bottlenecked.

Notably, however, coflow schedulers are unaware of future

arrivals and do not protect future arrivals from slowing down

as SIA does (see Figure 1). A few key differences further hin-

der coflow schedulers from applying to the current problem:

the considered flows and tasks are in general more numerous

and short-lived (and so mistakes can be recovered from more

easily); furthermore, the tasks and flows need not execute

simultaneously whereas an ML training job typically begins

only when all of its containers are ready.

More broadly, works on disk scheduling [35], data ana-

lytics clusters [27, 28, 75], request scheduling [31, 50] and

resource autoscaling [17, 32] also use future predictions. SIA
stands apart in a few ways. First, ML training jobs are gang-

scheduled, they need all the GPUs before a job starts and hold

onto those GPUs until the job ends. However, in prior works,

jobs may consist of many individual tasks or requests and

can thus receive resources at a fine granularity and resources

can be reallocated dynamically. Second, novel job patterns

appear in public training clusters (e.g., not periodic or re-

curring and with closed-loop arrivals) and predictions are

also, generally, of worse quality. SIA offers coarse-granular

problem-specific predictors and a scheduler that works well

with the error profiles of those predictors.

8 Conclusion
We consider the problem of scheduling large ML training

jobs with skewed sizes and durations when support for pre-

emption is only available for a subset of jobs. We aim to

speed up jobs by using idle resources in other pools without

adversely slowing down the donor jobs. Our scheduler uses

future information to offer significantly better scheduling

outcomes, as demonstrated on production workloads from

two systems. We show that very coarse-grained predictions

can be used alongside a carefully designed scheduling algo-

rithm to obtain benefits despite challenging model errors.
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