
Automatically Repairing Network Control Planes
Using an Abstract Representation

Aaron Gember-Jacobson
Colgate University

agemberjacobson@colgate.edu

Aditya Akella
University of Wisconsin-Madison

akella@cs.wisc.edu

Ratul Mahajan
Intentionet

ratul@ratul.org

Hongqiang Harry Liu
Microsoft Research

harliu@microsoft.com

ABSTRACT

The forwarding behavior of computer networks is governed

by the configuration of distributed routing protocols and ac-

cess filters—collectively known as the network control plane.

Unfortunately, control plane configurations are often buggy,

causing networks to violate important policies: e.g., specific

traffic classes (defined in terms of source and destination

endpoints) should always be able to reach their destination,

or always traverse a waypoint. Manually repairing these con-

figurations is daunting because of their inter-twined nature

across routers, traffic classes, and policies.

Inspired by recent work in automatic program repair, we

introduce CPR, a system that automatically computes correct,

minimal repairs for network control planes. CPR casts config-

uration repair as a MaxSMT problem whose constraints are

based on a digraph-based representation of a control plane’s

semantics. Crucially, this representation must capture the

dependencies between traffic classes arising from the cross-

traffic-class nature of control plane constructs. The MaxSMT

formulation must account for these dependencies whilst also

accounting for all policies and preferring repairs that min-

imize the size (e.g., number of lines) of the configuration

changes. Using configurations from 96 data center networks,

we show that CPR produces repairs in less than a minute for

98% of the networks, and these repairs requiring changing

the same or fewer lines of configuration than hand-written

repairs in 79% of cases.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOSP ’17, Shanghai, China

© 2017 ACM. 978-1-4503-5085-3/17/10. . . $15.00

DOI: 10.1145/3132747.3132753

CCS CONCEPTS

•Networks→ Network management;

1 INTRODUCTION

Computer networks often rely on distributed routing proto-

cols to determine how data is forwarded through the network.

Each router in the network runs one or more routing protocols

to exchange information with its neighbors and compute the

best (e.g., least cost) paths to various destinations. These

routing protocol instances, along with access filters and inter-

protocol communication mechanisms, collectively form a

network’s control plane.

The control plane must be carefully configured by network

operators to satisfy various policies: e.g., specific classes

of traffic (i.e, that between particular source and destina-

tion hosts) should always reach its destination, or always

be blocked. Policies must hold even when links or routers

fail. This task is difficult due to the low-level nature of the

abstraction exposed by router configuration languages, the

diversity of policies a network must satisfy (e.g., blocking

some traffic classes while allowing others), and the desire

for policy compliance under arbitrary link or router failures.

Consequently, router configurations are highly prone to bugs

that lead to outages [50, 34].

Over the last decade the research community has devel-

oped many tools to verify a network’s policy compliance.

Some tools [26, 27, 28, 35, 43] analyze a snapshot of the

network’s forwarding state to check whether the network con-

forms to all policies in its current state. Other tools take the

network’s router configurations as input [7, 16, 17, 18, 20]

and analyze the control plane’s behavior for policy compli-

ance under various failure scenarios. However, both classes

of tools stop at finding policy violations, and do not help

operators repair the buggy configurations.

Researchers have only recently begun to develop tools that

automatically repair broken data [25] and control planes [47],

1

but they focus on software-defined networks (SDNs). Cur-

rently, no tools are capable of repairing distributed control

planes, which continue to be used in the majority of networks.

Repairing non-compliant distributed control plane configu-

rations can be extremely challenging. One source of difficulty

is the intertwined nature of configurations, across routers,

policies, and traffic classes. A repair may involve changes to

multiple routers (e.g., modifying the costs of multiple links to

ensure that traffic favors or disfavors certain paths); a repair

that fixes one policy violation may trigger another violation

for the same traffic class (e.g., blocking traffic from traversing

a link will also reduce its degree of fault tolerance); and a

repair that leads to policy compliance for one traffic class

may violate policies for another traffic class (e.g., removing

a routing protocol adjacency to prevent a traffic class from

using a link will prevent other traffic classes from using the

link too). Another source of difficulty is that not all valid re-

pairs are equally desirable. Depending on the context, a more

desirable repair is one that minimizes the number of routers

or the number of total lines that need to be updated. Today,

operators must manually reason about all such dependencies

and factors when determining the repair strategy.

The same challenges arise when a network operator wants

to change the policies a network satisfies or incrementally

grow or shrink the network. For example, to add new routers

or end-hosts to the network, an operator must manually deter-

mine how to “repair” the network’s configurations to ensure

the new hosts are reachable.

We develop CPR (for Control Plane Repair), the first tool

to automatically repair distributed control plane configura-

tions. It takes as input a network’s existing configurations and

desired security and availability policies (i.e., a specification)

and outputs configuration patches. After applying the patches,

the network is guaranteed to compute policy-compliant paths

for all traffic classes under arbitrary failures.

As a starting point, CPR uses ARC, an Abstract Repre-

sentation for Control planes [20], which compactly captures

the result of interactions amongst routers using a collection

of digraphs, with one digraph per traffic class. However, be-

cause it was developed with a focus on verification—where

the central question is to check if the network satisfies a given

policy for a given traffic class—ARC and its underlying algo-

rithms do not capture interactions between traffic classes, nor

do they provide a way to convert ARC back into (minimal)

routing configurations.

CPR uses several techniques to address these limitations

and achieve its goal of correct, minimal repairs. First, we

extend ARC to Hierarchical ARC (HARC) which captures

dependencies between traffic classes. Unlike ARC, HARC

has multiple types of digraphs and, instead of being indepen-

dent, digraphs are related based on configuration constructs

that impact multiple traffic classes. Second, to capture de-

pendencies between policies, we encode policy compliance

using SMT (satisfiability modulo theories) constraints. These

constraints encode the semantics of the graphs that form a

network’s HARC, and the solution yields which edges must

be added or removed from the graphs to satisfy all policies

for all traffic classes. Third, to compute minimal repairs, we

add soft constraints to our SMT encoding, thus turning it

into a MaxSMT problem. These constraints lead the solver

to prefer minimal repairs among all valid repairs. Finally,

we develop methods to scale our MaxSMT formulation to

large networks and convert the resulting (policy-compliant)

HARCs to router configurations.

We have implemented CPR in Java and made our code

publicly available [1]. Our experiments using configuration

snapshots from 96 data center networks, each with a median

of 8 routers and 1K policies, show that CPR computes repairs

in less than a minute for 98% of the networks, and these

repairs require the same or fewer configuration changes than

hand-written repairs in 79% of the cases. Consequently,

CPR significantly advances the state of the art in network

management.

2 BACKGROUND AND CHALLENGES

In this section, we provide an overview of the control planes

in typical data center and local area networks. We then dis-

cuss the challenges in automatically repairing control planes

to conform to a set of policies.

2.1 Network Control Planes

A network’s control plane computes the paths taken by traf-

fic to reach its destination. Every router in a network runs

distributed control logic that performs these computations

and produces a set of forwarding rules that the router uses

to forward traffic along the appropriate path. The control

logic includes implementations of many different protocols

(e.g., RIP [36], OSPF [38], BGP [41]), each of which uses

different algorithms to exchange route advertisements with

neighboring routers and compute paths.

A configuration file written by a network operator or au-

tomatic generator [8, 44] in a vendor-specific configuration

language (e.g., Cisco IOS [2]) instructs the router which

protocol(s) it should use, what destinations it should adver-

tise to its neighbor(s), how it should select between multiple

possible paths (e.g., link costs), etc. Figure 1 shows an ex-

ample configuration. The configuration is broken into blocks

of statements, i.e., stanzas, that are related to a particular

protocol, physical interface, etc.

Every instance of a routing protocol configured on a router

(e.g., lines 11–15 in Figure 1) is called a routing process. A

routing process only exchanges route advertisements with

1 hostname C

2 interface Ethernet0/1

3 description Link-to-A

4 ip address 10.0.2.3/24

5 interface Ethernet0/2

6 description Link-to-B

7 ip address 10.0.3.3/24

8 interface Ethernet0/3

9 description Subnet-T

10 ip address 10.20.0.0/16

11 router ospf 10

12 redistribute connected

13 passive interface Ethernet0/1

14 passive interface Ethernet0/3

15 network 10.0.0.0/16

Figure 1: Example router configuration

processes of the same type running on neighboring routers

it is authorized to speak with (according to the configura-

tion). A pair of routing processes on neighboring devices

form a routing adjacency. A router may also internally share

computed paths between its processes, even if they are run-

ning different protocols, if the configuration enables route

redistribution between them.

Routers are also equipped with mechanisms to filter (i.e.,

block) specific traffic. An access control list (ACL) is com-

posed of a set of permit and deny statements that explicitly

permit or deny certain classes of traffic (i.e., traffic between

particular sources and destinations). This filtering is applied

when traffic enters or exits a specific physical interface on

the router. Filtering can also happen during the path compu-

tation phase: a route filter can prevent a routing process from

advertising a path or destination to another routing process.1

2.2 Challenges in Automated Repair

Repairing control plane configurations to satisfy a set of

reachability-related policies introduces three challenges; two

of these pertain to preventing undesirable side-effects and the

third pertains to optimality or, equivalently, minimality, of

the repair. We illustrate these challenges using the example

control plane shown in Figure 2a.

#1: Multiple policies. Assume the control plane must satisfy

four different policies:
EP1: Under all possible failures, traffic from S toU is always

blocked;

EP2: Under all possible failures, traffic from S to T always

traverses a firewall;

EP3: S can reachT as long as there is at most one link failure;

1In some contexts, e.g., within an OSPF area, route filters only prevent a

route from being used on the router containing the route filter, rather than

filtering advertisements to other routers.

CBA

T

S U FW

U

OSPFOSPFOSPF

R

1 1

(a) Physical network and original control plane: Blue circles

are routers, red squares are subnets, and green rectangles are

firewalls. Orange rectangles are OSPF processes and red no-

entry symbols are ACLs blocking traffic destined for U . Solid

blue lines are physical links and dashed orange lines are routing

adjacencies. Router C’s configuration is shown in Figure 1.

CBA

T

S U FW

U

OSPFOSPFOSPF

R

1 1

1

(b) Add routing adjacency between A and D

3

CBA

T

S U FW

U

OSPFOSPF

R

1 1

U

OSPF

FW

(c) Increase cost of A−C and add ACL blocking U

CBA

T

S U FW

U

OSPFOSPF

R

1 1
OSPFStaticT

FW

(d) Add static route to A with lower preference than OSPF

Figure 2: An example control plane and repair attempts

EP4: In the absence of failures, traffic from R to T uses the

path A→ B → C.

Currently, the control plane satisfies three of the four poli-

cies: EP1 because the only path for S to reach U is A → B,

which includes an ACL blocking traffic destined for U ; EP2

because the only path for S to reach T is A→ B → C, which

includes a firewall; and EP4 because the only path for R to

reach T is A→ B → C. The control plane violates EP3, be-

cause failure of the A−B or B−C links renders T unreachable.

According to Menger’s Theorem [4], the maximum num-

ber of edge-disjoint paths between two vertices (e.g., S andT)

equals the number of edges whose removal separates those

vertices. Thus, to satisfy EP3, the network must contain at

least two edge-disjoint paths between S and T . A simple

repair is to create a routing adjacency between the OSPF

processes on routers A and C (Figure 2b). In particular, we

remove line 13 from routerC’s configuration (Figure 1). This

will allow the OSPF process on router A to use the path

A→ C or the path A→ B → C to reach T , thereby ensuring

S can still reach T even if a link fails.

In the absence of failures, OSPF will prefer the newly

available shorter path A → C. Because this path does not

contain a firewall, our repair now causes a violation of EP2.

To satisfy both EP2 and EP3, we must add a firewall on the

A−C link.2 This illustrates our first challenge: repairing a

control plane to simultaneously satisfy multiple policies.

#2: Cross-traffic-class effects. By default, OSPF (and BGP)

routing adjacencies apply to all traffic classes—i.e., all pairs

of source and destination subnets. Consequently, adding the

routing adjacency between A and C impacts not only the

traffic from S to T , but also traffic from R to T and from

S to U . The newly available path to T (A → C) will be

used for traffic originating from both S and R; this violates

EP4. Furthermore, If the A−B link fails, the OSPF process

on router A can now compute an alternative path to reach

U : A → C → B. This path does not contain any ACLs

blocking traffic destined for U , so EP1 is violated. Thus,

the second challenge we must address is: accounting for

cross-traffic-class effects.

#3: Complexity of configuration changes. We can avoid vi-

olating EP4 by changing router A’s configuration to increase

the cost of the link to C, and we can avoid violating EP1 by

adding an ACL on router B’s second interface that blocks

traffic destined for U (Figure 2c). We have now modified

the configurations of all three routers, with one line removed

from C and one line added to each of A and B, as well as

added a firewall. This raises the question: is there a simpler

repair?

We initially increased the number of edge-disjoint paths

between S and T by creating an OSPF routing adjacency

between router’s A and C (Figure 2b). However, we can

achieve the same effect by configuring a static route on A that

directs traffic for T to router C (Figure 2d); this eliminates

the configuration change on C in favor of a configuration

change on A. Because the static route only applies to traffic

destined for T , traffic destined for U can only traverse the

originally available path A→ B; this eliminates the need to

add an ACL on B. Finally, to ensure the static route does not

take precedence over a path computed by OSPF and violate

EP4, we increase the administrative distance (i.e., cost) of

the static route so the path computed by OSPF is preferred.

In total, this alternative repair only requires adding two lines

of configuration to router A, plus a firewall on the A−C link.

This illustrates the third challenge we must address: ensuring

that the repair is minimal. Minimality may be measured

along several different dimensions, e.g., number of routers

changed, number of lines changed, etc.

2We assume the network uses virtual network functions and tunnels [49] to

allow waypoints to be added along arbitrary links.

3 CONTROL PLANE REPAIR (CPR)

The goal of CPR is to automatically repair a set of router

configurations such that a network satisfies a collection of

reachability-related policies under arbitrary link failures. CPR

takes as input existing router configurations and a set of

operator-defined policies and produces configuration patches

to correct errors and account for policy changes. Crucially,

CPR avoids cross-policy and cross-traffic class effects and

computes minimal repairs.

Instead of directly manipulating configuration syntax, as is

frequently done in program synthesis and repair [29, 32, 46],

CPR uses an abstract representation of the control plane’s se-

mantics. We do this because router configuration languages

are low-level [11] and the configuration of an individual

router has limited bearing on the end-to-end treatment of the

traffic. These factors make the space of possible changes in-

tractable. We could constrain the search space by considering

only changes to the configurations of routers and protocols

included in counter-examples produced by control plane veri-

fiers [16, 18, 20]; or we could limit repairs to removing and

replicating existing lines of configuration [32, 46]. However,

the search space is still large, and worse, viable repairs may

not exist in these constrained spaces.

Several encodings of control plane semantics have been

developed recently [7, 8, 16, 18, 20]. We extend our previ-

ously developed abstract representation for control planes

(ARC) [20], which abstracts away the low-level details of

individual routing protocols and messages, and concisely cap-

tures protocols’ eventual impact on the network’s forwarding

behavior under arbitrary failures.

With our semantic-based approach, repairs in CPR boil

down to: (1) converting the input configurations to their

semantic encoding; (2) repairing the encoding to satisfy all

operator-defined policies; and (3) translating the repaired

encoding into router configurations. The next three sections

describe how we accomplish each task.

4 MODELING CONTROL PLANE

SEMANTICS

Because ARC [20] was designed to verify network prop-

erties of individual traffic classes, it abstracts away details

about how the network handles related traffic classes—e.g.,

those with a common destination. This makes it difficult

to use ARC to compute repairs without cross-traffic-class

interference and to ensure the repairs can be realized using

the destination-based primitives available in routers.

In this section, we first provide an overview of ARC and

discuss in more detail its limitations with respect to control

plane repair. Then we describe a new hierarchical abstract

AO

BO

CO

AI

BI

CI

SRCS

DSTT

FW

1 1 1

1 1 1

0 0 0

0

0

(a) ETG for S❀T traffic class

AO

BO

CO

AI

BI

CI

SRCS DSTU

FW

1 1

1 1 1

0 0 0

0 0

(b) ETG for S❀U traffic class

Figure 3: ETGs for the example control plane in Fig-

ure 2a: Orange circles are process vertices (I=incoming,

O=outgoing); red ovals are SRC and DST vertices; green

rectangles are firewalls. Orange (light) lines are inter-

device edges; red (dark) lines are intra-device edges.

representation for control planes (HARC) that tracks im-

portant information about the network’s handling of related

traffic classes and is amenable to automatic repair.

4.1 Abstract Representation for Control

Planes (ARC)

Our previously developed abstract representation for control

planes (ARC) [20] models a network’s forwarding behavior

under arbitrary failures using a collection of directed graphs

called extended topology graphs (ETG). There is one ETG

per traffic class which models the behavior of the network’s

routing protocols, and the interactions among them, for the

traffic class. Vertices correspond to routing processes; there

is one incoming (I) and one outgoing (O) vertex per process.

Directed edges represent the possible flow of data traffic en-

abled by the exchange of route advertisements between the

connected processes. For example, Figure 3a shows the ETG

for the S❀T traffic class for the control plane in Figure 2a:

there are two vertices for the OSPF process on each router

(e.g., AI and AO) and edges representing the routing adjacen-

cies (e.g., AO → BI) and intra-device communication (e.g.,

AI → AO).

The algorithm for constructing an ETG from a network’s

control plane configurations is summarized in Algorithm 1.

By construction ETGs are pathset-equivalent: i.e., an ETG

contains a particular path between the source and destination

endpoints iff that path is used in the real network under some

combination of failures (including no failures) [20]. For some

networks, ETGs can also model the exact path used by the

real network under specific failures—a property known as

path-equivalence [20]. To achieve this, edge weights are set

such that, after removing all edges corresponding to failed

links, the shortest path through the ETG is the exact path

taken in the real network. For example, the inter-device edge

weights in Figure 3a match the OSPF link costs in Figure 2a.

Such modeling is only possible for networks that use routing

protocols, route redistribution, and ACLs in restricted ways.

Algorithm 1: Process for constructing an ETG for traffic

class tc from control plane configurations

1 foreach RoutingProcess proc do

2 Add vertices procI and procO
3 Add edge procI → procO // Intra-dev

4 if proc blocks routes to tc.dst then

5 continue

6 foreach RoutingProcess proc′ on proc.device do

7 if proc′ redistributes routes from proc

8 ∧ proc′ does not block routes to tc.dst then

9 Add edge proc ′I → procO // Intra-dev

10 foreach Interface intf used by proc do

11 if ∃ phy link intf→ intf′

12 ∧ ∃ RoutingProcess proc′ uses intf′

13 ∧ proc’ does not block routes to tc.dst then

14 Add edge procO → proc ′I // Inter-dev

15 if intf.acl blocks tc ∨ intf′.acl blocks tc then

16 Remove edge procO → proc ′I
17 foreach Device dev do

18 if ∃ phy link tc.src→ dev then

19 foreach RoutingProcess proc on dev do

20 Add edge SRC → procO // Source

21 if ∃ phy link dev→ tc.dst then

22 foreach RoutingProcess proc on dev do

23 Add edge procI → DST // Destination

Policy class ETG characteristic

PC1: Traffic from SRC to DST

is always blocked

SRC and DST are in separate

components

PC2: Traffic from SRC to DST

always traverses a waypoint

After removing edges with

waypoints, SRC and DST are

in separate components

PC3: SRC can always reach DST

when there are < k link failures

Max-flow from SRC to DST in

a unit-weight ETG is ≥ k

PC4: Traffic from SRC to DST

uses path P in the absence of

failures

Shortest path from SRC to

DST is P

Table 1: Class of policy and the characteristics an ETG

must possess to ensure compliance with it

Using ARC to verify a control plane is policy-compliant

(under arbitrary failures) boils down to checking simple char-

acteristics of the constituent ETGs. Table 1 lists a few com-

mon classes of reachability-related policies along with the

characteristics an ETG must possess to ensure the policy

holds for the corresponding traffic class.3 For example, sup-

pose we want to check whether the control plane depicted

in Figure 2a satisfies EP3 (S can reach T as long as there

is at most one link failure). As discussed in §2.2, we can

verify this policy by computing the max-flow of a unit-weight

3Other characteristics can be used to verify other classes of policies [21].

AO

BO

CO

AI

BI

CI

SRCS

DSTT

FW

1 1 1

1 1 1

0 0 0

0

0

4

(a) Repaired ETG for S❀T

AO

BO

CO

AI

BI

CI

SRCR

DSTT

FW

1 1 1

1 1 1

0 0 0

0

0

4

(b) Implicit impact of change

for S❀T to ETG for R❀T

Figure 4: Repaired ETGs for the example control plane

in Figure 2a

version of the ETG for S❀T . We observe the max-flow of

the ETG is one (dashed path in Figure 3a), so the policy is

violated.

Computing a repair with ARC entails adding, removing,

and adjusting the weights of edges in ETGs to obtain the

desired (quantity of) paths between the SRC and DST vertices

in each ETG.4 For example, we can add the edge AO → CI to

the ETG for S❀T (dashed line in Figure 4a) to satisfy EP3.

4.2 Limitations of ARC

Using a separate ETG for each traffic class works well for

verification, because individual policies can be verified in

isolation. However, for network repair we must consider the

fact that distributed routing protocols compute paths on a

per-destination (not per-traffic-class) basis. Consequently, a

single configuration may impact multiple traffic classes. For

example, we showed in §2.2 that adding a static route to T

on router A causes all traffic destined for T to be sent to the

specified next hop (C), irrespective of the traffic’s source (S

or R). This configuration change effectively adds the edge

AO → CI to the ETGs for both S❀T and R❀T (dashed lines

in Figure 4), even though we only intended to add the edge

to the ETG for S❀T (Figure 4a) to fix the violation of EP3.

Although ARC includes (or excludes) the same edge in

multiple ETGs when a control plane construct impacts mul-

tiple traffic classes (Algorithm 1), ARC does not explicitly

encode the fact that multiple ETGs contain the same edge due

to a single control plane construct. For example, the ETGs

for both S❀T and S❀U (Figure 3a and 3b, respectively) for

the control plane in Figure 2a include the edges BO → CI and

CO → BI, because the OSPF routing adjacency established in

C’s configuration (lines 11–15 in Figure 1) and B’s configura-

tion (not shown) applies to all traffic classes. However, the

ETGs are completely disjoint, with no indication that they

contain a common edge derived from a single construct (the

routing adjacency).

Thus, when repairing ETGs of an ARC, a problematic

situation may arise: a common edge derived from a single

4An ETG may also be repaired by adding and removing vertices, but, for

simplicity of exposition, we restrict the problem to modifying edges.

control plane construct that applies to multiple traffic classes

can be removed from one ETG without removing the edge

from all other ETGs that contain it. Similarly, an edge can be

added to one ETG without adding it to others. This results in

an ARC whose modeled behavior cannot be implemented in

practice.

4.3 Hierarchical ARC (HARC)

Based on the observations above, we extend ARC to track

common edges across ETGs due to specific control plane

constructs. We refer to this abstraction as hierarchical ARC

(HARC). HARC maintains the core building block of ARC—

an ETG—but creates multiple types of ETGs to track com-

mon edges resulting from control plane constructs impacting

traffic classes at different granularities.

Since control plane constructs apply to a specific traffic

class (e.g., an ACL), a specific destination (e.g., a static

route or route filter), or all traffic classes (e.g., an OSPF or

BGP routing adjacency), we construct three different types

of ETGs: traffic class ETGs (tcETGs), destination ETGs

(dETGs), and an all-traffic-classes ETG (aETG). tcETGs are

synonymous with the ETGs included in the original ARC,

and model the network’s forwarding behavior under arbitrary

failures for a specific traffic class. dETGs model the net-

work’s forwarding behavior for a specific destination subnet

(and all possible source subnets); dETGs take into account

static routes and route filters, which apply to specific des-

tinations, but dETGs ignore ACLs, which apply to specific

source-destination pairs. Finally, the aETG models the for-

warding behavior resulting from OSPF and BGP routing

adjacencies.

Due to the control plane constructs modeled in each type

of ETG, there exists a “hierarchy” among the ETGs. Edges

that exist in tcETGs must exist in dETGs, because traditional

control planes employ destination-based routing—i.e., no

control plane construct can enable reachability for only a

single traffic class.5 Similarly, edges that exist in dETGs

must either exist in the aETG (because routing adjacencies

apply to all destinations) or be associated with static routes.

This hierarchy enables us to constrain the space of potential

HARC repairs to those that can be realized using available

control plane constructs (§5). Additionally, the hierarchy

implicitly encodes which type of control plane construct

causes each edge to be present (or absent) in an ETG, which

is required to translate HARC modifications to configuration

changes (§6). For example, if an edge is present in a dETG

but not the aETG, we know the edge must be associated with

a static route, because the dETG accounts for static routes but

the aETG does not. Similarly, if an edge is absent in a tcETG

5Programmable (e.g., OpenFlow) switches and some traditional routers

support source-based routing, but such features are beyond our scope.

but not the corresponding dETG, we know the edge must be

excluded due to an ACL, because the tcETG accounts for

ACLs but the dETG does not.

5 MINIMALLY REPAIRING HARC

Given a network’s HARC, computing a repair entails adding,

removing, and adjusting the weights of edges in ETGs6 to

obtain the desired (quantity of) paths between the SRC and

DST vertices in each tcETG.

One way to modify ETGs is to using polynomial-time

graph algorithms similar to those used in ARC [20]. For

example, to repair a tcETG to satisfy PC1, we can compute

the tcETG’s min-cut and remove all edges in the min-cut.

Similarly, for PC2, we can temporarily remove all waypoint

vertices, compute the min-cut, and either add waypoints on or

remove all edges in the min-cut. For PC3, we can construct

a tcETG containing all possible edges, compute the max-

flow on a unit-weight version of this tcETG, and, for k paths

in the max-flow, add the edges in the paths to the original

tcETG (and dETG). Lastly, for PC4, we can solve the inverse

shortest paths problem [10].

Unfortunately, applying graph algorithms to the general

repair problem is non-trivial when we consider the challenges

from §2.2. For example, we can show that finding a minimal

repair that ensures PC4 holds for multiple tcETGs is NP-

Hard (omitted for brevity). Thus, we look for a more general

approach to compute suitable repairs.

Inspired by recent work in program repair [37, 14, 40, 23]

we cast ETG repair as a constraint solving problem and use

a Satisfiability Modulo Theory (SMT) solver to efficiently

search for a solution. In this section, we start with a basic en-

coding of ETG repairs using SMT to prevent cross-policy and

cross-traffic-class effects. We extend it to achieve minimality

in §5.2.

5.1 Repair as Constraint Solving

At the heart of our SMT formulation is a set of boolean vari-

ables representing the edges that may exist in each ETG. The

variable edдev1−v2

tc represents the edge from v1 to v2 in the

tcETG for traffic class tc; similarly the variables edдev1−v2

dst

and edдev1−v2

all
represent the edges from v1 to v2 in the dETG

for destination dst and the aETG, respectively. Constraints

on the paths present in each tcETG are derived from the set of

provided policies and defined in terms of the edge variables.

A satisfying solution is an assignment of values to the edge

variables such that all tcETGs possess the requisite character-

istics, and the tcETGs, dETGs, and aETG represent a valid

HARC.

6We can only add edges for which there is a corresponding physical link or

intra-router communication channel.

// Constraints for PC1

1 ¬pathSRC−DST
tc

2 ∀edдe
v1−v2

tc : edдe
v1−v2

tc ⇒ path
v1−v2

tc

3 ∀edдe
v1−v2

tc ,path
v2−v3

tc : edдe
v1−v2

tc ∧ path
v2−v3

tc ⇒ path
v1−v3

tc

// Constraints for PC2

4 ¬nwpathSRC−DST
tc

5 ∀edдe
v1−v2

tc : edдe
v1−v2

tc ∧ ¬wedдev1−v2 ⇒ nwpath
v1−v2

tc

6 ∀edдe
v1−v2

tc ,nwpath
v2−v3

tc :

edдe
v1−v2

tc ∧ ¬wedдev1−v2 ∧ nwpath
v2−v3

tc ⇒ nwpath
v1−v3

tc

// Constraints for PC3, repeat for 1 ≤ k ≤ K

7 ∀edдek
v1−v2

tc : edдek
v1−v2

tc ⇒ edдe
v1−v2

tc

8 ∃edдek
SRC−v1

tc : edдek
SRC−v1

tc

9 ∃edдek
v1−DST

tc : edдek
v1−DST

tc

10 ∀edдek
v2−v3

tc : v2 , SRC ∧ edдek
v2−v3

tc ⇒

∃edдek
v1−v2

tc : edдek
v1−v2

tc

11 ∀edдek
v1−v2

tc : v2 , DST ∧ edдek
v1−v2

tc ⇒

∃edдek
v2−v3

tc : edдek
v2−v3

tc ∧ ∄edдekv2−v4

tc : edдek
v2−v4

tc

12 ∀ inter-device edдek
v1−v2

tc : edдek
v1−v2

tc ⇒

¬(edдe1
v1−v2

tc ∨ ... skip edдek
v1−v2

tc ... ∨ edдeK
v1−v2

tc)

// Constraints for PC4

13 ∀costv1−v2 : costv1−v2 > 0

14 scostSRC
tc = 0

15 predSRC
tc = SRC

16 ∀edдe
v1−v2

tc : edдe
v1−v2

tc ∧ (∄edдev3−v2

tc :

edдe
v3−v2

tc ∧ scost
v3

tc + cost
v3−v2 < scost

v1

tc + cost
v1−v2) ⇒

scost
v2

tc = scost
v1

tc + cost
v1−v2 ∧pred

v2

tc = v1

17 ∀edдe
v1−v2

tc ∈ P : edдe
v1−v2

tc ∧ pred
v2

tc = v1

// Constraints for HARC

18 ∀edдe
v1−v2

tc : edдe
v1−v2

tc ⇒ edдe
v1−v2

tc .dst

19 ∀edдe
v1−v2

dst
(excluding static routes): edдe

v1−v2

dst
⇒ edдe

v1−v2

all

Figure 5: SMT constraints for finding repairs

Policy constraints. Figure 5 shows the constraints we use

for each of the four classes of policies listed in Table 1. In

the simplest case, PC1, we do not want any path to exist

between SRC and DST (constraint 1). The boolean variable

pathv1−v2

tc represents a path from v1 to v2 in the tcETG for tc.

Constraints 2 and 3 inductively define when a path exists.

For PC2, we do not want any paths from SRC to DST

that do not traverse a waypoint (constraint 4). The boolean

variable nwpathv1−v2

tc represents a path from v1 to v2 that

does not traverse a waypoint. An inter-device edge contains

a waypoint if the corresponding physical link has a way-

point on-path, and an intra-device edge contains a waypoint

if traffic is shunted through a waypoint connected to the

router as the traffic passes through the router. The boolean

variable wedдev1−v2 denotes for all ETGs whether a partic-

ular edge contains a waypoint. For example, wedдeCO−BI

is true for the control plane shown in Figure 2a, because all

ETGs in the HARC (two of which are shown in Figure 3)

contain a waypoint on the edge CO → BI . Similar to our

constraints for PC1, constraints 5 and 6 inductively define

when a path without a waypoint exists. If a network operator

is unable or unwilling to add waypoints to the network, then

we must include additional constraints that ensure all edges

without waypoints in the original setup remain in that state

(i.e., ¬wedдev1−v2).

For PC3, we require a minimum number (K) of link-

disjoint paths, such that up to K − 1 physical link failures can

be tolerated. Consequently, constraints 7–12 are designed

to enumerate link-disjoint paths in the ETG. We create K

boolean variables for each edge that could exist in the tcETG

for tc: edдe1v1−v2

tc ...edдeKv1−v2

tc . An edge must exist in the

tcETG if it is part of a link-disjoint path (constraint 7). Each

link-disjoint path must start at SRC and end at DST (con-

straints 8 and 9), and each ETG edge in the middle of the

path must have an ETG edge that precedes it and exactly one

ETG edge that follows it (constraints 10 and 11). Finally, con-

straint 12 states that an ETG edge (specifically an inter-device

ETG edge) that exists in one link-disjoint path cannot exist

in any other link-disjoint path. Note that a link-disjoint path

(i.e., an edge-disjoint path in the physical network topology)

does not directly correspond to an edge-disjoint path in the

tcETG, because a single router (i.e., vertex) in the physical

topology is represented by multiple vertices in the ETG. For

example, the tcETG in Figure 4a contains two link-disjoint

paths from S to T (A → C and A → B → C), but the corre-

sponding paths in the ETG are not edge-disjoint (they share

edges SRCS → AO and CI → DSTC).

For PC4, we require a path-equivalent ETG (§4.1) and

an assignment of edge weights such that the shortest path

from SRC to DST is P . Consequently, constraints 13–17 are

modeled on Dijkstra’s shortest path algorithm. The integer

variable costv1−v2 represents the cost of the edge v1 → v2
across all ETGs in the HARC. Edge costs must be the same

across all ETGs, because routing protocols such as OSPF

do not allow costs to be customized on a per-traffic-class or

per-destination basis. Constraint 13 forces the cost of edges

to be positive. The integer variable scostv1

tc represents the

cost of the shortest path from SRC to v1 in the tcETG for tc,

and the variable predv1

tc stores the vertex that immediately

precedes v1 in the shortest path. In other words, the pred

variables encode the shortest path tree from SRC to all other

vertices. Constraints 14 and 15 define the base case for the

shortest paths: the cost from SRC to itself is 0, and the vertex

preceding SRC on the shortest path to SRC is itself.

The assignment of edge weights is governed by constraint

16. This constraint inductively defines the shortest path from

SRC to each vertex (v2). The first part of the constraint en-

sures an edge tov2 (edдev1−v2

tc) exists in the tcETG and checks

that there is no other edge to v2 (edдev3−v2

tc) that results in

a shorter path from SRC to v2. If both of those conditions

hold, then we know the cost of the shortest path from SRC

to v2 (scostv2

tc) is the cost of the shortest path from SRC to v1
(scostv1

tc) plus the cost of the edge from v1 to v2 (costv1−v2),

and v1 immediately precedes v2 on the shortest path from

SRC to v2 (i.e., predv2

tc = v1). The SMT solver will automati-

cally iterate over combinations of edges and edge weights to

find values that satisfy this constraint. Finally, constraint 17

states that each edge in the desired path P must exist in the

tcETG, and the edges in P must be in the shortest path from

SRC to DST in the order they appear in P .

Other reachability policies can be accommodated using

similar constraints. For example, isolation between two traf-

fic classes (tc1 and tc2) can be encoded using the constraint

∀edдev1−v2

tc1 : edдev1−v2

tc1 ⇒ ¬edдev1−v2

tc2 , and vice versa.

HARC constraints. In addition to the policy constraints,

we need a few constraints that ensure the resulting HARC

is well-formed (§4.3). Constraint 18 enforces the requisite

hierarchy between the tcETGs and their dETGs, while con-

straint 19 enforces the hierarchy between the dETGs and

aETG. Without these constraints, the SMT solver may pro-

duce repairs that cannot be implemented in the actual control

plane: e.g., a solution that includes the edge AO → CI in the

tcETG for S❀T (dashed line in Figure 4a) but excludes the

edge from the dETG for T (not shown) is invalid, because

traditional routing protocols do not allow routing adjacencies

to be enabled for only a single traffic class.

5.2 Minimizing ETG modifications

While all satisfying solutions to our SMT formulation (Fig-

ure 5) represent a HARC that is policy-compliant, the solution

computed by the solver may not result in minimal changes.

To help compute minimal repairs, we transform our SMT

problem into a MaxSMT problem. A MaxSMT problem

consists of a set of hard constraints that must be satisfied and

a set of soft constraints that should be maximally satisfied.

In CPR, the hard constraints come from our original SMT

formulation; they ensure the solution is correct. The soft con-

straints are derived from the original HARC produced from

the input configurations; they ensure the resulting HARC

is as similar as possible to the original. In this section, we

present the intuition and definition of a set of soft constraints

that seek to minimize the number of lines of configuration

changed. Similar sets of constraints can be constructed for

other objectives such as minimal number of devices changed;

we omit details for brevity.

Relating HARC modifications to configuration changes.

When constructing dETGs, we account for all control plane

constructs considered in the construction of the aETG (e.g.,

OSPF adjacencies) plus some additional constructs (e.g.,

static routes and route filters). Similarly, when construct-

ing tcETGs, we account for all control plane constructs con-

sidered in the construction of the corresponding dETG plus

some additional constructs (e.g., ACLs). If there are no addi-

tional constructs that apply to a specific destination or traffic

class, then the dETG (or tcETG) will have the same structure

as the aETG (or dETG). If the dETG (or tcETG) and aETG

(or dETG) contain different sets of edges, then for each edge

that exists in one but not the other, there must be a control

plane construct that causes the deviation.

Consequently, if we repair a dETG by adding or remov-

ing an edge without adding or removing the edge from the

aETG, then there must be a control plane construct we add

to the configuration (e.g., a static route or route filter) that

implements the modeled deviation. The same applies when

we add and remove edges to a tcETG without doing the same

in the corresponding dETG—although an edge in a tcETG

must exist in the dETG for the HARC to be valid (§4.3).

This implies that each deviation between a dETG and the

aETG, or a tcETG and its corresponding dETG, requires a

single configuration change. For example, if i edges present

in a dETG are removed from a corresponding tcETG, then

we need to add i (applications of) ACLs for the traffic class

associated with the tcETG. Similarly, if we add an edge to a

dETG without adding the edge to i of the tcETGs, then we

need to: (1) change the configurations to reflect the addition

of the edge in the dETG—e.g., remove a route filter—and (2)

make i configuration changes—e.g., add i deny statements to

an ACL—to prevent the i traffic classes from using the newly

available path.

In summary, the number of new ways in which a child ETG

deviates from its parent ETG as a result of repairs, plus the

number of new ways in which a child ETG now aligns with

its parent ETG, equals the number of configuration changes

required to implement the behavior modeled by the repaired

HARC. Since the aETG does not have a parent, any change

to the aETG is considered a new deviation or alignment.

Soft constraints. Since each new deviation or alignment be-

tween child and parent ETGs requires a configuration change,

and our goal is to minimize the number of lines of config-

uration changed, our soft constraints seek to minimize the

number of new deviations and alignments between child and

parent ETGs. Alternatively, we can cast this problem as maxi-

mizing the number of edges for which child and parent ETGs

continue to align or deviate as they do in the original HARC

constructed from the input configurations.

Each edge in the child ETG that continues to align with or

deviate from the parent provides one unit of utility, because

it avoids one configuration change. Thus, if we create a

soft constraint for every edge in a child ETG that requires

the edge to either align with or deviate from its parent, the

number of soft constraints will equal the total utility of the

Edge in original Soft constraint for the edge at each level

aETG dETG tcETG tcETG dETG aETG

X X X edдetc ↔ edдedst edдedst ↔ edдeall edдeall
X X ¬edдetc edдedst ↔ edдeall edдeall
X X Invalid HARC

X edдetc ↔ edдedst ¬edдedst edдeall
X X edдetc ↔ edдedst edдedst ¬edдeall
X ¬edдetc edдedst ¬edдeall

X Invalid HARC

edдetc ↔ edдedst edдedst ↔ edдeall ¬edдeall

Table 2: Soft constraints for finding minimal repairs

solution. Table 2 lists the precise soft constraints we use for

each possible edge in each tcETG for all combinations of

ETGs the edge currently exists in.

5.3 Scalability

While our MaxSMT formulation can identify a set of correct,

minimal HARC modifications, solving the problem for even

moderately sized networks is time consuming. For example,

computing a repair for a network with 45 routers and 120 PC3

policies (one per traffic class) requires 40 seconds (Figure 8b);

doubling the number of policies (and traffic classes) more

than quadruples the solving time. This raises an important

question: can we find correct HARC modifications faster if

we tolerate a repair that is close to, but not exactly, minimal?

To answer this question, we leverage our observation above

that doubling the number of traffic classes more than quadru-

ples the solving time. While we cannot ignore some of a

network’s traffic classes, we can formulate multiple MaxSMT

problems, each for a different subset of the network’s traffic

classes. At one extreme, we can formulate a single MaxSMT

problem that covers all traffic classes. On the other, we can

formulate a separate MaxSMT problem for each destina-

tion and solve them in parallel: e.g., one problem for R❀U ,

S❀U , and T❀U in Figure 2a, and a separate problem for

R❀T , S❀T , and U❀T . In the absence of PC4 policies, the

solutions will not conflict, because routing can be customized

on a per-destination basis using route filters and static routes.

PC4 policies pose a challenge, because link costs cannot be

customized on a per-destination basis. However, conflicts can

be avoided by dividing traffic classes such that only one of the

problems involves PC4 policies and associated edge weight

computations. We cannot formulate MaxSMT problems at

finer granularity (e.g., per traffic-class), because we risk pro-

ducing a HARC that violates the hierarchy requirements—see

the end of §5.1 for an example.

In §8, we show that for real network configurations solving

a separate MaxSMT problem for each destination results in an

order of magnitude reduction in overall solving time without

any decrease in the minimality of repairs.

ETG Edge Configuration change

tcETG inter-device remove tc from ACL

tcETG intra-device invalid modification

dETG inter-device remove dst from route filter (if edge exists in

repaired aETG) OR add static route for dst

dETG intra-device remove dst from route filter

aETG inter-device enable routing

aETG intra-device enable route redistribution

Table 3: Translations for edge additions; the inverse

changes apply to edge removals

6 TRANSLATING HARC REPAIRS TO

CONFIGURATION CHANGES

The final step in CPR is to translate modifications made to

the HARC into actual configuration changes. We can deter-

mine how the HARC was modified by comparing the original

HARC generated from the broken configurations to the re-

paired HARC represented by the solution to our MaxSMT

problem. As discussed in §5.2, every edge we add or remove

from an ETG requires a corresponding configuration change.

Determining the type of control plane construct to add,

remove, or modify is simplified by the fact that each type of

ETG in the HARC considers a slightly broader set of control

plane constructs than its parent (§4.3). Consequently, if an

edge is added or removed from an ETG but not changed in

the parent ETG, then we need to modify one of the control

plane constructs that are considered in the construction of

the child ETG but not the parent ETG. For example, if we

remove an inter-device edge from a tcETG but not from its

corresponding dETG, then we need to change an ACL. How-

ever, if we remove an inter-device edge from a tcETG and

its associated dETG, then we need to change a static route or

route filter. Table 3 lists the type of configuration change that

needs to be made for each type of ETG and edge.

After determining the type of change that needs to be

made, we locate the precise stanza to change based on: (1)

the traffic class (tc) or destination (dst) associated with the

modified ETG, and (2) the process(es) and (for inter-device

edges) interfaces associated with the modified edge. We

then traverse the substanzas to locate the appropriate line

to modify, remove, or insert at. For example, to remove

tc from an ACL, we locate the ACL that is applied to the

edge’s source interface, and we check if the ACL contains

a deny statement for tc. If we locate a deny statement that

applies only to tc, then we remove it; otherwise, we add a

permit statement for tc at the beginning of the ACL. Sim-

ilarly, to enable routing between two processes, we locate

the router stanzas for the processes on each device, and we

add a network or neighbor stanza, for OSPF and BGP

processes respectively, that includes the interfaces associated

with the edge.

Network

P
o
lic

ie
s
 (

1
0
0
0
s
)

0
2
K

4
K

6
K

8
K

PC1

PC3

Figure 6: Policy mix in real data center networks

7 IMPLEMENTATION

Our implementation of CPR is written in Java (≈10K LOC).

We use Batfish [18] to parse router configurations written in

vendor-specific languages (e.g., Cisco IOS) and modify the

ARC implementation [20] to generate HARCs based on the

parsed configurations. We use the Z3 theorem prover’s [3]

Java API to encode and solve our MaxSMT formulation.

We have made our implementation of CPR open source [1],

so that network operators and researchers can leverage it to

repair their network and expand its capabilities.

8 EVALUATION

We evaluate CPR along three dimensions: time to compute

repairs, minimality of repairs, and CPR-generated repairs

versus hand-written repairs.

We use configuration snapshots from 96 real data center

networks as well as synthetic configurations for vanilla fat-

tree topologies [5]. The real data center configurations come

from the same dataset we used in prior works [20, 22]; we

filter the dataset to only include networks that have at least

one policy change.7 The resulting set of 96 networks have

between 2 and 24 routers8 (median is 8) and up to 82K traffic

classes (median is ≈1K). The dataset does not include a

list of desired policies, so we infer the policies a network

satisfies in a particular snapshot using ARC’s verification

algorithms [20]. We only consider policies of type PC1 and

PC3, because we do not know the location of waypoints

and cannot infer which paths an operator prefers. Figure 6

shows the mix of policies for each network; the networks

are stored by the total number of policies. The majority of

the networks have a policy for every traffic class; no traffic

class has multiple policies, because a traffic class cannot

both be always blocked (PC1) and always reachable (PC3).

7Many networks in the original dataset have only non-routing-related

changes (e.g. password changes or updates to Simple Network Management

Protocol (SNMP) settings).
8The networks also contain dozens of switches. We exclude them because

they operate at a lower layer of the network stack that ARC does not capture.

To compute repairs, we feed the inferred policies and the

configurations from the preceding snapshot into CPR.

We also generate configurations for fat-tree topologies of

varying port counts [5]. All routers run OSPF. We include

ACLs on all core switches to block or permit certain traffic

classes, such that hosts in different pods are always blocked

(PC1) or always reachable (PC3), respectively. We also

include waypoints on half of the core–aggregation links, and

block traffic on the remainder, such that hosts in different

pods always traverse a waypoint (PC2). Finally, we assign

lower costs to the links between the first core switch and

the connected aggregation switches to induce primary paths

(PC4). We break the configurations by inverting the ACLs

and assigning lower costs to the links of a different core

switch. We have publicly released the code for generating

the configurations [1].

All experiments are conducted on servers with 10-core

Intel E5 2.4GHz CPUs and 128GB of RAM. We set a time

limit of 8 hours on all experiments.

8.1 Time to Compute HARC Repairs

We first evaluate the time required to compute HARC repairs.

Real data centers. We compute HARC repairs for each of

the 96 real data center networks using both a single MaxSMT

problem that encompasses all traffic classes (maxsmt-all-

tcs) and multiple MaxSMT problems that each encompass

one destination (maxsmt-per-dst). Figure 7 shows the time

required to repair each network at each problem granularity;

we order the networks by the number of policies. We observe

that maxsmt-all-tcs takes more than an hour in 58% of the

networks, and for 30% of the networks does not even finish

in the time limit we set (8 hours). In contrast, computing

repairs separately for each group of traffic classes with the

same destination (maxsmt-per-dst), reduces the computation

time by one to two orders of magnitude. Using this approach,

repairs for 86% of the networks were computed in less than a

minute and 99% completed in less than an hour.

Several factors contribute to this substantial decrease. First,

each MaxSMT problem has fewer boolean variables and con-

straints, because it encompasses fewer traffic classes and

policies. A simpler problem is faster to solve. Second, we

can ignore destinations for which there are no policy viola-

tions, thereby reducing the number of problems we need to

solve. Finally, using multiple MaxSMT problems provides an

opportunity for parallelism: running 10 MaxSMT problems

in parallel, we can compute repairs for 98% of the networks

in less than a minute and all complete in less than an hour.

Thus, our approach for improving scalability (§5.3) offers

substantial performance improvements.

The differences in computation time across networks are

due to several factors. The time required to compute repairs

●●

●●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●●●
●

●
●

●
●

●

●

●

●

● ●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

0 20 40 60 80

Network

T
im

e
 (

s
)

0
.1

1
1
0

1
0

2
1
0

3
1
0

4
1
0

5

● maxsmt−all−tcs

maxsmt−per−dst

Figure 7: Time required to compute repairs for real data

center networks

using maxsmt-all-tcs is most strongly correlated with the

number of policies that need to be satisfied (Pearson cor-

relation coefficient of 0.49), because additional constraints

must be added for each policy (§5.1). There is also a weak

correlation (0.2) with network size. With maxsmt-per-dst, the

time to compute repairs is most strongly correlated with the

number of policies that are violated in the original configura-

tions (correlation coefficient of 0.34), because we only need

to formulate and solve a MaxSMT problem for destinations

for which there is at least one violated policy.

Synthetic fat-tree configurations. To better understand

which factors affect CPR’s performance, we conduct three

different experiments using our synthetic fat-tree configura-

tions.

In the first experiment, we vary the classes of policies the

network must satisfy, while keeping the network size (a 4-port

fat-tree with 20 routers) and number of policies (12) constant.

Figure 8a shows the time required to compute repairs for

each type of policy using maxsmt-all-tcs and maxsmt-per-dst;

we exclude maxsmt-per-dst results for PC4, because we can-

not formulate multiple MaxSMT problems that involve this

policy class (§5.3). We observe that always reachable (PC3)

policies are the fastest to repair while primary path (PC4)

policies are the slowest. Primary path policies are substan-

tially more complex to repair, because the possible values of

the cost variables (costv1−v2) are virtually limitless, whereas

the constraints for the other policies only involve boolean

variables. We also again observe that using maxsmt-per-dst

results in an order-of-magnitude improvement in repair times

compared to maxsmt-all-tcs.

Next, we vary the number of policies the network must

satisfy, while keeping the type of policies and network size

(a 6-port fat-tree with 45 routers) constant. Figure 8b shows

the time required to compute repairs for three of the policy

classes using maxsmt-per-dst; we exclude PC4 for the reason

noted above. We see an exponential increase in repair times

as the number of policies increases. This stems from the fact

that each new policy adds additional boolean variables to

PC1 PC2 PC3 PC4

Policy class

T
im

e
(s

)

0
.1

1
1

0
1

0
2

1
0

3
1

0
4

1
0

5
1

0
6

maxsmt−all−tcs

maxsmt−per−dst

(a) Policy class

●

●

●

●

●

0 500 1000 1500

Number of policies
T

im
e
 (

s
)

1
1

0
1

0
2

1
0

3
1

0
4

1
0

5

● PC1

PC2

PC3

(b) Number of policies

●

●

●

●

●

●

Number of routers

T
im

e
 (

m
s
)

1
1

0
1

0
2

1
0

3
1

0
4

1
0

5

0 50 100 150 200 250

● PC1

PC2

PC3

(c) Network size

Figure 8: Impact of different factors on the time required

to compute repairs

the problem (e.g., pathv1−v2

tc for PC1, nwpathv1−v2

tc for PC2,

and edдekv1−v2

tc for PC3). Each new variable doubles the

space of possible solutions (although the number of solutions

tried by the solver increases by much less due to the way it

navigates the solution space). For PC1 and PC2 the increase

tapers off as as we approach the maximum number of policies

the network can support, which is dictated by the maximum

number of hosts the fat-tree can support. This stems from

the fact that the number of allowed paths dwindles as more

traffic classes must be blocked or routed through a waypoint,

thereby giving the solver fewer viable options to explore.

Finally, we vary the size of the network, while keeping

the type and number of policies (30) constant. Figure 8c

shows the time required to compute repairs for three of the

policy classes using maxsmt-per-dst; we again exclude PC4

for the reason noted above. For PC1 and PC2, we again see

an exponential increase in repair times as the network size

increases, because each new routing process and physical link

adds additional edge possibilities (edдev1−v2

tc). For PC3, the

increase is more drastic, because K additional edge variables

are added to the problem for each new physical link.

8.2 Minimality of Repairs

Next, we evaluate the minimality of repairs computed by

CPR under the two different granularities of MaxSMT for-

mulations. From Figure 9, we observe that computing repairs

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

maxsmt−per−dst (# lines)

m
a
x
s
m

t−
a
ll−

tc
s
 (

#
 l
in

e
s
)

1
1

0
1

0
2

1
0

3

1 10 10
2

10
3

Figure 9: Number of lines of configuration changed us-

ing multiple versus a single MaxSMT problem

Z Y

W

D

S2

S1

OSPF

S1

X

OSPF

OSPF

OSPF

Figure 10: Example network that satisfies “S1 → D is

always blocked” and violates “S2 → D is always blocked”

using maxsmt-per-dst always results in the same number

of lines of configuration changed compared to computing

repairs over all traffic classes (maxsmt-all-tcs). Thus, in prac-

tice, solving multiple smaller MaxSMT problems to boost

performance (§5.3) does not come at a cost of reduced mini-

mality.

8.3 Comparison with Hand-written Repairs

Finally, we compare repairs produced by CPR with repairs

hand-written by network operators. We extract the latter by

“diff’ing” successive configuration snapshots. Some changes

made by operators have no bearing on routing or forwarding—

e.g., updates to router login credentials or Simple Network

Management Protocol (SNMP) settings; we ignore all non-

routing and non-forwarding related differences between snap-

shots. We compare the CPR-produced and hand-written re-

pairs along three dimensions: number of traffic classes im-

pacted, number of lines of configuration changed, and time

required. For brevity, we only present results for maxsmt-per-

dst; the results for maxsmt-all-tcs are similar.

Traffic classes impacted. Figure 11a shows the fraction of

traffic classes (TCs) impacted by CPR-produced versus hand-

written repairs; each point corresponds to a single pair of

successive configuration snapshots. In 60% of the cases, less

than 5% of a network’s traffic classes are impacted by repairs.

However, hand-written repairs impact more traffic classes

than CPR-produced repairs in 53% of the total cases (and

the same number of traffic classes in the remaining 47% of

●●●
●
●

●

●

●●●
●●

●

●●●●
●

●

● ● ●●

●

● ●●●●●● ●

●

● ●●●● ●●●●
●

●

●●

●

●

●

●

●

●●
●

●

●●●●●●

●

●
●●
●

●●

●

●

●
●●●●●

●

● ● ●

●

●

●

●

●

●

●

●

●● ●●

0 10 20 30 40 50

0
1
0

2
0

3
0

4
0

5
0

hand−written (% of TCs)

m
a
x
s
m

t−
p
e
r−

d
s
t
(%

 o
f
T

C
s
)

(a) Fraction of traffic classes

impacted

●

●●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

hand−written (# lines)

m
a
x
s
m

t−
p
e
r−

d
s
t
(#

 l
in

e
s
)

1
1

0
1

0
2

1
0

3
1 10 10

2
10

3

(b) Lines of configuration

changed

Figure 11: CPR-produced versus hand-written repairs

cases), despite both types of repairs realizing the same set

of policies. This stems from CPR’s minimality goals: CPR

avoids changing an ETG even if a change to the ETG would

have no bearing on policy compliance for the corresponding

traffic class. Consequently, CPR minimizes changes more

than necessary. For example, consider the unrepaired network

in Figure 10 that satisfies the policy “S1 → D is always

blocked” but violates the policy “S2 → D is always blocked.”

An operator may choose to disable the routing adjacency

between Y and Z , which impacts both traffic classes, whereas

CPR may choose to add an ACL on Z to block all incoming

traffic from S2, which only impacts the S2 → D traffic class.

Both repairs require changing the same number of lines of

configuration, and both result in a policy-compliant network,

but the operator’s repair impacts twice as many traffic classes

as the CPR’s repair. This implies CPR could be more lax in

its minimality objectives, potentially allowing CPR to find

repairs faster.

Number of lines changed. Figure 11b shows the number

of lines of configuration changed in CPR-produced versus

hand-written repairs. We observe that CPR-produced repairs

require changing the same or fewer number of lines of con-

figuration in 79% of the cases. This trend partially stems

from our previous observation that CPR-produced repairs

impact fewer traffic classes than hand-written repairs. More

importantly, it indicates that CPR is able to identify simpler

repairs than human operators.

The cases where CPR-produced repairs require changing

more lines than hand-written repairs are the result of unopti-

mized ACL rules. CPR currently translates each HARC modi-

fication in isolation, without considering whether translations

could be merged—e.g., a single ACL rule could encompass

changes for multiple traffic classes. Improving CPR’s trans-

lation process, e.g., using firewall rule optimization algo-

rithms [19], is part of our planned future work.

Time to develop a repair. It is difficult to quantify how long

it takes a human to repair a network, because detecting viola-

tions, localizing the problem, and designing a fix are often

intermingled, and operators’ actions to complete these steps

are rarely logged [22]. Additionally, a substantial fraction

of the repair time is often spent on change management pro-

cesses, which involve peer reviewing repairs before they are

deployed. Consequently, we use the number of traffic classes

impacted and the number of lines of configuration changed in

a hand-written repair as proxy for the time taken for a human

to repair the network, because we expect larger repairs take

longer to write.

Interestingly, there is no correlation between the time taken

by CPR to compute a repair and the number of traffic classes

impacted or number of lines of configuration changed in a

hand-written repair: both have a Pearson correlation coef-

ficient of -0.02. Thus, CPR may be faster than humans at

computing some repairs and slower for others. A detailed

study of when CPR beats humans at computing repairs is an

interesting topic we plan to explore in future work.

9 DISCUSSION

In this section, we discuss a few of CPR’s qualitative limita-

tions and directions for future work.

Minimality versus simplicity of repairs. CPR’s objective

is to find repairs that minimize the number of changes made

to the network. This objective is driven by the fact that more

complex networks are more difficult to manage [9]. However,

a minimal repair may not always be the least complex way

to repair the network. For example, enabling route redistri-

bution requires only a single line of configuration, but route

redistribution is notorious for making networks significantly

more difficult for an operator to manage [31]. In the future,

we plan to explore how we can produce repairs that are both

minimal and easy for network operators to understand.

Protocols and features modeled by HARC. ARC, and by

extension HARC, only models the basic features of the most

common routing protocols (RIP, OSPF, and eBGP), along

with access control lists, route filters, static routes, and acyclic

route redistribution [20]. ARC does not model more ad-

vanced protocol features (e.g., OSPF areas and BGP local

preference), other common routing protocols (e.g., iBGP, IS-

IS, EIGRP, and LDP), or layer-2 protocols (e.g., spanning

tree). Consequently, CPR is restricted to repairing networks

that use the common protocols and features supported by

ARC. However, any improvements made to ARC will di-

rectly benefit CPR and allow it repair a larger range of net-

works. Moreover, as long as the semantics of ARC remain

unchanged, no changes are required to CPR to take advantage

of future improvements in ARC.

10 RELATED WORK

CPR’s vision is similar to that of Wu et al. [47] and Hojjat

et al. [25]. However, they focus on repairing control applica-

tions and forwarding rules, respectively, for software-defined

networks (SDNs), rather than configurations for distributed

control planes. Repairing distributed control planes is more

challenging, because repairs are constrained by the route

computation and selection algorithms supported by standard

protocols (e.g., OSPF computes least-cost paths using Di-

jsktra’s algorithm). Furthermore, Wu et al. base repairs on

observed traffic [47], and Hojjat et al. base repairs on the

network’s current failure state [25], so new problems may

arise if new traffic patterns emerge or the set of available links

changes. In contrast, CPR bases repairs on a specification

(i.e., policies) and considers all possible failure scenarios, so

the control plane is guaranteed to operate correctly9 until the

policies change (which may necessitate further repairs).

Several prior works [37, 14, 40, 23] have used constraint

solving to generate program repairs. DirectFix [37] is the

most similar to CPR, insofar as it represents a program as a

circuit and uses MaxSMT to identify a minimal set of circuit

connections that must be added or removed to satisfy the

target semantics. However, DirectFix’s notion of minimality

is based on syntactic similarity—which has also been em-

phasized in other work [12, 45, 42, 30]—whereas CPR is

concerned with the size of the change (in terms of number of

devices and lines of configuration). Nonetheless, we plan to

explore syntactic similarity of configuration changes in the

future, as it can make the repaired configurations easier for

network operators to understand.

In addition to constraint solving, program repair has been

conducted using abstract interpretation [33, 42], games [24],

mutation [13], and genetic algorithms [6, 32]. Several of

these approaches offer better scalability than constraint solv-

ing, and may allow for even faster computation of repairs.

In the future, we plan to explore the application of such

techniques to control plane repairs.

Synthesizing a network control plane directly from poli-

cies [48, 8, 39, 15] can avoid bugs in the first place. However,

this requires a wholesale replacement of the network’s cur-

rent control plane, which requires significant overhead and

network downtime.

11 CONCLUSION

Manually repairing distributed network control planes to con-

form to a diverse set of policies, under all failures, is a daunt-

ing task. Not only do network operators need to reason about

correctness across routers, traffic classes, and policies, they

also need to consider the complexity of the repair. Fortu-

nately, we have shown that it is possible to automatically

9Assuming the specification is complete.

generate correct, minimal control plane repairs using a care-

fully constructed encoding of the control plane’s semantics

and MaxSMT-based constraint solving. In particular, we in-

troduced a new hierarchical abstract representation for control

planes (HARC) that is well suited for network repair, and we

presented a MaxSMT formulation that encodes the requisite

characteristics a network’s HARC must and should satisfy to

obtain a repair that satisfies all policies through changes to

a minimal number of lines of configuration. Detailed eval-

uation of our system using real configurations from 96 data

center networks showed CPR produces repairs for 98% of

the networks in less than a minute, and these repairs required

the same or fewer configuration changes than hand-written

repairs in 79% of the networks.

12 ACKNOWLEDGEMENTS

We thank Saw Lin for his assistance with evaluation. Thanks

also to the anonymous reviewers and our shepherd Brad Karp

for their insightful feedback. This work is supported by

National Science Foundation grant CCF-1637427.

REFERENCES
[1] https://bitbucket.org/uw-madison-networking-research/arc.

[2] Cisco IOS configuration fundamentals command reference.

http://www.cisco.com/c/en/us/td/docs/ios/fundamentals/command/

reference/cf book.pdf.

[3] The z3 theorem prover. https://github.com/Z3Prover/z3.

[4] R. Aharoni and E. Berger. Menger’s theorem for infinite graphs. Inven-

tiones mathematicae, 2008.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data

center network architecture. In SIGCOMM, 2008.

[6] A. Arcuri. On the automation of fixing software bugs. In International

Conference on Software Engineering (ICSE), 2008.

[7] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach

to network configuration verification. In SIGCOMM, 2017.

[8] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. Don’t

mind the gap: Bridging network-wide objectives and device-level

configurations. In SIGCOMM, 2016.

[9] T. Benson, A. Akella, and D. Maltz. Unraveling the complexity of

network management. In Symposium on Networked Systems Design

and Implementation (NSDI), 2009.

[10] D. Burton and P. L. Toint. On an instance of the inverse shortest paths

problem. Math. Program., 53:45–61, 1992.

[11] D. Caldwell, S. Lee, and Y. Mandelbaum. Adaptive parsing of router

configuration languages. In IEEE Internet Network Management Work-

shop (INM), 2008.

[12] L. D’Antoni, R. Samanta, and R. Singh. Qlose: Program repair with

quantiative objectives. In International Conference on Computer Aided

Verification (CAV), 2016.

[13] V. Debroy and W. E. Wong. Using mutation to automatically suggest

fixes for faulty programs. In International Conference on Software

Testing, Verification and Validation (ICST), 2010.

[14] F. Demarco, J. Xuan, D. L. Berre, and M. Monperrus. Automatic

repair of buggy if conditions and missing preconditions with SMT. In

International Workshop on Constraints in Software Testing, Verification,

and Analysis (CSTVA), 2014.

https://bitbucket.org/uw-madison-networking-research/arc
http://www.cisco.com/c/en/us/td/docs/ios/fundamentals/command/reference/cf_book.pdf
http://www.cisco.com/c/en/us/td/docs/ios/fundamentals/command/reference/cf_book.pdf
https://github.com/Z3Prover/z3

[15] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev. Network-wide

configuration synthesis. Technical Report 1611.02537, arXiv, 2016.

[16] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. D. Millstein, V. Sekar,

and G. Varghese. Efficient network reachability analysis using a suc-

cinct control plane representation. In Symposium on Operating Systems

Design and Implementation (OSDI), 2016.

[17] N. Feamster and H. Balakrishnan. Detecting BGP configuration faults

with static analysis. In Symposium on Networked Systems Design and

Implementation (NSDI), 2005.

[18] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,

R. Mahajan, and T. Millstein. A general approach to network config-

uration analysis. In Symposium on Networked Systems Design and

Implementation (NSDI), 2015.

[19] E. W. Fulp. Optimization of network firewall policies using directed

acyclic graphs. In IEEE Internet Mgmt Conf, 2005.

[20] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast

control plane analysis using an abstract representation. In SIGCOMM,

2016.

[21] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan.

Fast control plane analysis using an abstract representation. Technical

Report TR1838, University of Wisconsin-Madison, 2016.

[22] A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and R. Mahajan. Man-

agement plane analytics. In Internet Measurement Conference (IMC),

2015.

[23] D. Gopinath, M. Z. Malik, and S. Khurshid. Specification-based pro-

gram repair using SAT. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS),

2011.

[24] A. Griesmayer, R. Bloem, and B. Cook. Repair of boolean programs

with an application to C. In International Conference on Computer

Aided Verification (CAV), 2006.

[25] H. Hojjat, P. Rümmer, J. McClurg, P. Cerný, and N. Foster. Optimizing

horn solvers for network repair. In Formal Methods in Computer-Aided

Design (FMCAD), 2016.

[26] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and

S. Whyte. Real time network policy checking using header space anal-

ysis. In Symposium on Networked Systems Design and Implementation

(NSDI), 2013.

[27] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:

Static checking for networks. In Symposium on Networked Systems

Design and Implementation (NSDI), 2012.

[28] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veri-

Flow: Verifying network-wide invariants in real time. In Symposium

on Networked Systems Design and Implementation (NSDI), 2013.

[29] E. Kneuss, M. Koukoutos, and V. Kuncak. Deductive program repair.

In Computer Aided Verification (CAV), 2015.

[30] R. Könighofer and R. Bloem. Automated error localization and correc-

tion for imperative programs. In International Conference on Formal

Methods in Computer-Aided Design (FMCAD), 2011.

[31] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang. Shedding light on the

glue logic of the internet routing architecture. In SIGCOMM, 2008.

[32] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic

study of automated program repair: Fixing 55 out of 105 bugs for $8

each. In International Conference on Software Engineering (ICSE),

2012.

[33] F. Logozzo and T. Ball. Modular and verified automatic program re-

pair. In ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), 2012.

[34] R. Mahajan, D. Wetherall, and T. E. Anderson. Understanding BGP

misconfiguration. In SIGCOMM, 2002.

[35] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.

King. Debugging the data plane with Anteater. In SIGCOMM, 2011.

[36] G. S. Malkin. Rip version 2. STD 56, RFC Editor, November 1998.

http://www.rfc-editor.org/rfc/rfc2453.txt.

[37] S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking for

simple program repairs. In International Conference on Software Engi-

neering (ICSE), 2015.

[38] J. Moy. Ospf version 2. STD 54, RFC Editor, April 1998. http://www.

rfc-editor.org/rfc/rfc2328.txt.

[39] S. Narain, G. Levin, S. Malik, and V. Kaul. Declarative infrastruc-

ture configuration synthesis and debugging. Journal of Network and

Systems Management, 16(3):235–258, Sept. 2008.

[40] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix:

program repair via semantic analysis. In International Conference on

Software Engineering (ICSE), 2013.

[41] Y. Rekhter, T. Li, and S. Hares. A border gateway protocol 4 (bgp-4).

RFC 4271, RFC Editor, January 2006. http://www.rfc-editor.org/rfc/

rfc4271.txt.

[42] R. Samanta, J. V. Deshmukh, and E. A. Emerson. Automatic generation

of local repairs for boolean programs. In Formal Methods in Computer-

Aided Design (FMCAD), 2008.

[43] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. Symnet: Scal-

able symbolic execution for modern networks. In SIGCOMM, 2016.

[44] Y.-W. E. Sung, X. Tie, S. H. Wong, and H. Zeng. Robotron: Top-down

network management at facebook scale. In SIGCOMM, 2016.

[45] C. von Essen and B. Jobstmann. Program repair without regret. In

International Conference on Computer Aided Verification (CAV), 2013.

[46] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically

finding patches using genetic programming. In International Confer-

ence on Software Engineering (ICSE), 2009.

[47] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo. Automated bug

removal for software-defined networks. In Symposium on Networked

Systems Design and Implementation (NSDI), 2017.

[48] Y. Yuan, R. Alur, and B. T. Loo. NetEgg: Programming network poli-

cies by examples. In Workshop on Hot Topics in Networks (HotNets),

2014.

[49] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford.

Dynamic service chaining with dysco. In SIGCOMM, 2017.

[50] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. A survey

on network troubleshooting. Technical Report TR12-HPNG-061012,

Stanford University, June 2012.

http://www.rfc-editor.org/rfc/rfc2453.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc4271.txt
http://www.rfc-editor.org/rfc/rfc4271.txt

	Introduction
	Background and Challenges
	Network Control Planes
	Challenges in Automated Repair

	Control Plane Repair (CPR)
	Modeling Control Plane Semantics
	Abstract Representation for Control Planes (ARC)
	Limitations of ARC
	Hierarchical ARC (HARC)

	Minimally Repairing HARC
	Repair as Constraint Solving
	Minimizing ETG modifications
	Scalability

	Translating HARC Repairs to Configuration Changes
	Implementation
	Evaluation
	Time to Compute HARC Repairs
	Minimality of Repairs
	Comparison with Hand-written Repairs

	Discussion
	Related Work
	Conclusion
	Acknowledgements

