
1

Scalable Self-Organizing Overlays
Sushant Jain, Ratul Mahajan, David Wetherall, and Gaetano Borriello�

sushjain,ratul,djw,gaetano � @cs.washington.edu

Technical Report UW-CSE 02-06-04
Computer Science and Engineering

University of Washington

Abstract—
Recent developments including peer-to-peer networks

and application-level multicast have generated interest in
overlays, and by extension in algorithms for automatically
maintaining overlay structures. In this paper, we present a
self-organizing protocol for forming and managing overlays
that scales to at least tens of thousands of nodes. Previous
algorithms target small scale overlays and do not scale well
in terms of protocol overhead with the number of nodes.
Our key contribution is to show how to apply the concept
of hierarchy to overlay management to achieve scalability,
without degrading the quality of the resulting overlay. We
provide simulation results that show our hierarchical over-
lays incur a low delay penalty, make effective use of network
bandwidth, and handle failures gracefully. We also demon-
strate that there are significant advantages in using a self-
organizing overlay as compared to the ad hoc techniques
currently being used in peer-to-peer networking.

I. INTRODUCTION

Overlays are used as a mechanism to deploy new dis-
tributed applications and protocols on top of the Inter-
net. Examples include the MBone [1], the ABone [2], the
6Bone [3] and Gnutella [4]. An overlay is formed by a
subset of nodes drawn from an underlying network. Par-
ticipating nodes communicate through tunnels, which are
virtual links between two nodes that may not be directly
connected in the underlying network. These tunnels de-
fine the topology of the overlay. A self-organizing over-
lay protocol maintains an efficient and connected topology
when the underlying network fails, performance changes,
or nodes join and leave the network.

Most currently deployed overlays are statically config-
ured. This is a straightforward technique, but possesses
several disadvantages compared to automatic configura-
tion using a self-organizing overlay protocol. Static con-
figuration has a high management overhead that quickly
becomes unwieldy when the overlay grows beyond a small
number of nodes. Gnutella, in contrast, has grown to over
a thousand nodes [5], because it is not statically config-
ured. Static configuration can fail to provide connectivity
in a dynamic environment where nodes are free to join and

leave the overlay at will, as is again the case in peer-to-peer
networks like Gnutella. Finally, static configuration misses
the opportunity to improve overlay performance by mea-
suring and adapting to changing network conditions. For
these reasons, self-organizing overlay protocols are likely
to displace static configuration methods in the near future.

Prior work like Narada [6], Gossamer [7], Overcast [8]
has presented self-organizing protocols that are suitable
for overlays with up to a few hundred nodes. Yet the suc-
cess of applications such as Gnutella demonstrates a clear
need for much larger overlays. The primary contribution
of our work is a new self-organizing protocol that scales
to at least tens of thousands of nodes without sacrificing
the quality of the overlay. We achieve this scalability by
exploiting the concept of hierarchy. Our overlay is orga-
nized in a two-level hierarchy and we present mechanisms
to create and manage this hierarchy dynamically. As a sec-
ondary contribution we also present enhancements to the
Narada algorithm [6], which is used by our protocol.

We demonstrate that using hierarchy has minimal effect
on performance. At the same time hierarchy achieves scal-
ability by drastically reducing the bandwidth requirements
for overlay maintenance. We also show that hierarchy
helps in mitigating the effect of a dynamic environment;
most changes are not seen beyond a small set of nodes.
It is particularly well-suited to heterogenous environment
like the Internet when the upper level nodes in hierarchy
are chosen carefully.

We believe that using a two level hierarchy we can
scale to tens of thousands of nodes, an order of magnitude
more than existing schemes. Given the size (of around a
thousand) of many overlay networks like the MBone, the
6Bone, and Gnutella, scaling to tens of thousands of nodes
is a reasonable first step towards more scalable overlay
protocols. The ideas presented here can be extended to
multiple levels of hierarchy to achieve further scalability.

Our overlay management protocol is broadly targeted
at application level multicast, test-beds for new protocols,
active network infrastructure, resource discovery, content
distribution, and so forth, rather than a particular applica-

2

tion. That is, our intent is to provide an efficient and robust
overlay management protocol that can be used by variety
of applications. We believe that for many applications the
advantages of using the generic overlay protocol will out-
weigh the cost of designing one for each application in
the same manner that shortest-path routing has proved to
be a suitable base for many different applications. Fur-
thermore, the ideas presented in this paper - hierarchy and
its evaluation - can be extended to design self-organizing
overlay protocols tuned towards a particular application.

The rest of the paper is organized as follows. In the next
section, we describe classes of applications that use over-
lays and survey the existing work in those classes. Sec-
tion II discusses how to evaluate various overlay topolo-
gies. Section IV describes our new protocol. In Sec-
tion V, we evaluate our protocol using simulation. Sec-
tion VI shows the performance of our overlays in the con-
text of broadcast-based resource discovery application like
Gnutella. We conclude in Section VII.

II. OVERLAY APPLICATIONS AND RELATED WORK

Overlays have been used/proposed for a variety of ap-
plications. This section provides a brief overview of both
the applications and the existing overlay construction pro-
posals, and talks about how they compare to the protocol
proposed in this paper.

Application-level multicast is made possible through the
use of overlays. The proposed solutions can be divided
into two classes based upon their approach. Using what
is called the tree-first approach, Yoid [9] and Overcast [8]
form the multicast tree directly. In a mesh-first approach
nodes are connected in a mesh (not a fully-connected one),
and the multicast tree is formed by running a multicast
routing protocol like DVMRP [10] on top of the mesh. Ex-
amples of this approach are Narada [6], and Gossamer [7].
A single-level mesh does not scale beyond a few hundred
nodes [6]. We use a two-level hierarchy to buy scalability,
with a mesh-first approach at both levels.

Another class of applications use overlays for wide area
broadcast-based resource discovery. Gnutella [4] is one
such large, completely decentralized overlay. It is primar-
ily used to broadcast a search query from one member to
all the other members of the overlay. Tunnels are selected
randomly in Gnutella so the overlay formed is inefficient.
In Section VI, we will compare overlays formed by our
protocol with such overlays. The Intentional Naming Sys-
tem (INS) [11] proposes a resource discovery solution us-
ing an overlay in which a spanning tree is configured based
upon latency. A tree topology, for general purpose over-
lays, can be fragile and inefficient. It also imposes high
overhead at nodes higher up in the tree, and hence is not

appropriate for a large scale dynamic overlays.
Overlays are also used in content distribution networks.

Research in such overlays focuses on the problem of dis-
tribution and location of content inside the overlay. Sev-
eral distributed indexing approaches (CAN [12], Chord
[13], Pastry [14], Tapestry [15]) have been proposed to ad-
dress the problem of locating content in a large distributed
system. These systems locate content by routing queries
across a geometric structure. This is realized as an over-
lay and the challenge is to efficiently map this overlay on
top of the Internet. These schemes are application (locat-
ing a resource given its hash key) specific, and do not at-
tempt to make efficient overlays usable for a large class
of applications, a goal of our work. For instance, in a
resource discovery application in which resources are not
well-specified (like Gnutella), one has to resort to broad-
casting the query, an operation supported by our overlays.

Incremental deployment of new protocols was one of
the first uses of overlays. Examples include the MBone
[1], the ABone [2], and the 6Bone [3]. All of these over-
lays are configured statically.

III. OVERLAY PERFORMANCE METRICS

We use multicast as a representative driving application
to quantify the efficiency of an overlay. Several recent
proposals have discussed overlay management in the con-
text of application-level multicast [6], [8], [7]; the propos-
als typically construct multicast distribution trees rooted
at the source of a multicast transmission. Regardless of
the specific details of each particular proposal, two met-
rics that can be used to evaluate performance are relative
delay penalty (RDP) and stress.

RDP is a measure of the additional packet delay intro-
duced by overlay on the delivery of a single packet be-
tween a source and destination. More specifically, RDP
is the ratio of the latency experienced when sending data
using the overlay to the latency experienced when sending
data directly using the underlying network.

Stress is a measure of the excess bandwidth consump-
tion induced by the overlay during a multicast transmis-
sion. The stress of a physical link is defined as the number
of overlay tunnels that send traffic over that link. Note that
stress is both a function of the topology and the multicast
tree used: flooding-style broadcasts cause more stress on a
physical link than multicasts. For efficient multicast trees,
a multicast packet flows over each virtual overlay tunnel at
most once.

Ideally, an overlay should have both low RDP and low
stress. Unfortunately, these requirements can conflicting.
To see this, consider Figure 1(a), which shows an exam-
ple physical network with four hosts interested in forming

3

A
B

D
C

r1 r2
10

2
11

1

(a)

A

B D

C

13

12

32 13

12

(b1)

A
B

D
C

r1 r2

(b2)

Fully Connected

A

A

B D

C

12
32

B
D

C

r1 r2

(d1)

(d2)

Good Overlay

Physical Topology

A
B

D
C

r1 r2

(c2)

Bad Overlay

A

B D

C

12

13

12

(c1)

Fig. 1. Example illustrating different overlay topologies. (a) shows a physical network with 4 hosts interested in participating in
overlay. Three different overlays topologies are shown. Below them is shown how A would broadcast data to B,C,D using the
overlay.

an overlay. Figure 1(b1) shows a fully connected overlay
topology; in this case the RDP between all pairs is 1, since
they send to each other directly. However, the stress on
links close to end hosts is high: Figure 1(b2) shows the
paths taken by packets if A wants to communicate with all
B, C, and D simultaneously. A must send three packets
over its physical access link, one per overlay tunnel, lead-
ing to a stress of 3 on that physical link.

As another example, consider an overlay topology that
selects overlay links randomly, resulting perhaps in the
overlay shown in Figure 1(c1). In this case, all overlay
tunnels go over the physical link R1-R2, leading to high
stress. Additionally, the RDP between most pairs of nodes
is very high (37/13 for (A,C), 24/2 for (A,B) and 25/2 for
(C,D)).

A common approach to counter high link stresses, while
keeping RDP’s low is to place a bound on the outdegree of
the nodes and select the best possible tunnels within that
degree bound. The optimal graph in this case is a degree-
bounded K-spanner [16], in which RDP between any two
nodes is less than K. The problem is NP complete, however
heuristics can be used to obtain reasonably good overlays
[6], [7]. Our protocol also uses this approach and extend
the ideas presented in Narada [6]. A good quality overlay
with low RDP’s and low stresses is shown in Figure 1 (d1).

IV. THE PROTOCOL

In our approach, the overlay topology is a two-level hi-
erarchy. The topology is partitioned into clusters. A clus-
ter is a set of nodes. Every cluster has a unique representa-
tive node called the head. The rest of the nodes are called
child nodes. Any data entering or leaving the cluster goes
through the head node. Figure 2 illustrates the two-level
hierarchy.

Fig. 2. The Two-level hierarchy: clouds represent clusters with
the solid nodes as head nodes. The solid lines between the
heads is the top level topology.

The use of a two-level hierarchy divides the overlay con-
struction task into two independent sub-problems: cluster-
ing and mesh management. Clustering deals with forming
the clusters. Mesh management determines how the nodes
at the same level are connected to each other. It comes
into play at both levels of hierarchy; it determines how
the nodes in the same cluster are connected to each other,
and how the head nodes connect to each other (also called
the top-level topology). In a flat overlay, mesh manage-
ment is the only protocol required, and thus, is a complete
self-organizing overlay protocol in itself like Narada [6]
and Gossamer [7]. Thus hierarchy serves two purposes:
it increases scalability since measurement probes are run
across smaller groups (discussed in Section IV-C.3) and it
decreases management overhead by localizing the effects
of member failures within smaller groups. However, a hi-
erarchy potentially loses some opportunity for efficiency,
since child nodes in different clusters do not have the abil-

4

ity to form overlay links to each other.
A node wishing to join the overlay obtains the address

of node(s) in the overlay through the DNS or some other
bootstrapping mechanism. It then randomly picks a clus-
ter to join and becomes a part of the overlay immediately.
Over time, the position of the node is improved by the pro-
tocol. In the following sections, we describe in detail how
mesh management and clustering work, followed by a dis-
cussion of other aspects like scalability and behavior under
dynamic conditions.

In our design we have chosen to optimize latency, the
overhead of transmitting data using the overlay. Band-
width is another obvious metric of interest. The decision
to use latency was guided by the following observations.
1) Measurement of bandwidth is less reliable; for instance,
two overlays nodes see the same available bandwidth over
a physical link when they measure, but each of them would
actually get half of it if they send simultaneously. 2) It
is hard to evaluate the resulting bandwidth properties be-
cause they are very application specific (unicast v.s. mul-
ticast, for instance). As mentioned in Section II, to protect
against overloading physical links in absence of bandwidth
based optimization we place a bound on the outdegree of
an overlay node.

A. Mesh Management

The mesh management protocol selects the tunnels that
connect the nodes at the same level. When choosing these
tunnels, there is a tension between overlay performance
and efficient utilization of underlying network. Perfor-
mance is determined by the latency overhead of routing
data using the overlay; a fully-connected mesh is most ef-
ficient in this regard, but leads to an inefficient use of un-
derlying network because several tunnels would go over
the same physical link.

Instead of designing a mesh management protocol from
scratch, we extend Narada [6]. In Narada, the participating
members periodically perform a set of operations, which
improves the overlay over time and keeps it connected.
We now describe these operations and point out our exten-
sions. We evaluate the effect of our extensions to Narada
in Section V-B.1.

A.1 Mesh Management Operations
� Add: Nodes add tunnels to other nodes when the utility
of the tunnel exceeds a threshold. The utility of a tunnel,
computed as shown in Figure 3, is dependent on the extent
to which it improves the node’s latency to other nodes in
the overlay. Tunnels are not added by a node that has a
high degree until it deletes some of its tunnels. This oper-
ation is unchanged from Narada.

���������	��
���������
���������	��
����
for each member � at the same level���

= current latency between � and � along mesh� �
= new latency between � and � if the link �����

is added
if (
� ��� �!�

)�"�#�#�$���#
&%'�)(*��� � �,+-��� �
return �"�#�#�$���#

Fig. 3. Utility of Link .0/�13254

� Delete: An existing tunnel is deleted when it is no longer
useful, which can happen with changing node membership
and network conditions. The principal idea behind this op-
eration is that an existing tunnel that would not be added
by the add operation, if it was removed, should be deleted.
To test whether an existing tunnel can be deleted, the node
first determines if there is an alternate path available to
the remote node. This is done by examining the existence
of a path to a neighbor of the remote node that does not
go through the remote node itself. In the absence of such
a path, the tunnel is not deleted, as it might partition the
overlay. If such a path exists, the utility of this tunnel is
evaluated by assuming that the tunnel does not exist, and
then evaluating the utility of the tunnel just like in the add
link operation above. The tunnel is deleted if its utility is
lower than a threshold.
The delete operation described above is different from that
in Narada. Narada estimates the deletion utility of a tunnel
as the number of nodes the tunnel is used to reach and uses
a lower threshold as a way to prevent partitions. These
heuristics make the link deletion harder in Narada. The
symmetry between delete and add operations in our modi-
fied version of the delete operation leads to more effective
deletion, making it easier to remove less useful tunnels.� Swap: With just the above two operations, new links
with good utility may not be added because one of the
involved nodes already has its maximum number of tun-
nels, each of which is above the deletion threshold. The
swap operation exchanges a tunnel with lower utility for
one with higher utility. Swapping helps nodes to pick the
best tunnels, independent of the order in which they join
the overlay or the order in which they try adding tunnels to
other overlay nodes. Swapping is not present in Narada.� Partition detection and repair: This operation maintains
the connectivity of the overlay in the face of failures. Par-
titions are detected using refresh messages. In a connected
network members send and receive refresh messages. If
the overlay is partitioned, then members will not be able to
hear refresh messages from some node, indicating a parti-

5

tion. Once detected, the partition can be repaired by trying
to add links to such nodes. Details for this operation can
be found in [6].

B. Clustering

The objective of clustering is to maintain appropriate
clusters, both in proximity of nodes inside a cluster, and
the cluster size. We use latency as the basis to form clusters
by grouping together nodes that are close to the head of
the cluster. Having a close head would induce minimal
communication overhead on the child nodes. Moreover, if
the children are close to the head, the children themselves
are expected to be close to each other, which leads to low
overhead of maintaining the cluster overlay topology.

The appropriate size of clusters is dependent on the size
of the overlay and the application. For example, for small
overlays (say 100 nodes) no clustering might be required.
However for an overlay with 10,000 nodes the protocol
would not scale without clustering. We specify the desir-
able cluster size as expected cluster size �

��� ��� � , a func-
tion of the overlay size � . Having a function of � is differ-
ent from having a fixed parameter because it enables the
protocol to adjust the amount of clustering as the overlay
size grows or shrinks. We now describe the various clus-
tering operations.

B.1 Clustering Operations

There are three clustering operations. The first one, mi-
grate, helps a node to move to the cluster closest to it.
The remaining two, split and diffuse, keep the cluster sizes
within the desired range.

Migrate: This operation moves a child node from one
cluster to another. Migrate tries to place a node in the
cluster whose head is closest to that node. When a child
joins the cluster, it receives information about other cluster
heads from its current cluster head. (Each cluster head pe-
riodically broadcasts the list of other heads to its children
using the bottom level overlay). The child then period-
ically probes a small number of carefully selected heads
to determine its latency to them. Once the child detects a
head node which is significantly closer to it than its current
head, it leaves its current cluster and joins the new clus-
ter. To avoid multiple migrations immediately after a node
joins the overlay (as the initial joining cluster is picked ran-
domly), a new node does not migrate until it has measured
its latency to a significant fraction of other head nodes.

Migrate requires child nodes to probe all head nodes,
which can overload head nodes in a large overlay. Heuris-
tics can be used to reduce these probes. For example, in
practice a child does not need to probe a head node that is

more than ���	� from the child’s head, where � is the la-
tency between the child and its head 1. In our experiments,
this heuristic reduces the number of probes sent by up to
50%. Another possibility is to use landmark ordering [12]
to choose appropriate cluster. In landmark ordering, every
node (both child and head) measures its latency to a prede-
fined set of landmark nodes and orders them. A child joins
the head whose ordering most closely matches its own.

When a child node migrates to a new cluster, all the pre-
vious mesh management tunnels are deleted for that child.
After joining the new cluster, the new head node randomly
assigns it a neighbor to bootstrap the lower level mesh
management.

Split: A cluster that is more than twice as large as
�
��� ��� � in size is broken into two. The decision to split

a cluster is taken by its head node. After a split, the old
cluster head remains as the head of one of the new clus-
ters, but a new head must be selected for the second new
cluster. The new cluster head is chosen to minimize the av-
erage latency to all other child nodes in its cluster; this de-
cision requires knowledge of the latency between all pairs
of child nodes.

Fortunately, every child node knows its latency to all
other child nodes as a side-effect of the mesh manage-
ment protocol. Whenever a decision to split occurs, the
old cluster head broadcasts its latency to its child nodes.
On receiving this information, each child node computes
the number of other child nodes that are closer to than the
old cluster head, and each child reports this number back
to the old cluster head. After receiving enough reports,
the old cluster head selects the new cluster head. The new
head creates a tunnel to the old head, and from there on
mesh-management enables it to get an appropriate set of
tunnels to other cluster heads. The child nodes closer to
the new head are informed of the split and they migrate to
the new cluster.

Head selection in our implementation is based upon la-
tency, however one can imagine incorporating other crite-
ria, such as stability or access link bandwidth.

Diffuse: Over time, clusters may diminish in size be-
cause of node migrations and node deaths. Clusters that
are more than a factor of two smaller than �

��� ��� � are
disbanded altogether, i.e., are diffused. All of the nodes in
a cluster undergoing diffusion are migrated to neighboring
clusters. To avoid the possibility of partitioning the top-
level topology when the head node of the diffusing cluster
migrates, links from its new head are made to all of its pre-
vious neighbors. Unnecessary links are eventually deleted

This is assuming absence of Detour[17] affect

6

by mesh management.

C. Discussion

C.1 Behavior under Dynamic Environment

Hierarchy has significant advantages when it comes to
operating in dynamic environments. Joining the overlay
is a very simple operation, and does not effect nodes be-
yond the cluster the new node joins in. Similarly, death of
a child node is of interest only within the cluster. Thus,
the transient behavior of a child node has a very local-
ized effect. Since most nodes are child nodes, the resulting
overlay structure is highly robust towards dynamic nature
of the participating nodes. On the other hand, in a flat
overlay every change in membership is propagated to ev-
ery other member and hence causes a lot more disruption.
We present simulation results about this in Section V-C.2.

C.2 Exploiting Heterogeneity

Resilience of hierarchical overlays towards dynamic en-
vironment can be multiplied manifold by exploiting het-
erogeneity present among overlay nodes [5]. As discussed
above, the membership of child nodes have very limited ef-
fect on the overlay. It is the head nodes that matter; chos-
ing them carefully significantly increases the stability of
the overlay as a whole.

When nodes inside a cluster are homogeneous, choice of
the head node is not that important. When nodes are het-
erogenous, the important factors include the access band-
width (modem or broadband) of the node, as well as the
stability of the node. Nodes that tend to remain in the
overlay for longer periods should be preferred. Well-
connected head nodes can take the extra load imposed
on them due to hierarchy (managing their cluster); sta-
ble heads minimizes the effect of dynamic membership on
the overlay (Section IV-C.1); and the potentially poorly-
connected or unstable participants are shielded from the
bulk of overlay management tasks as they tend to remain as
child nodes (see Section V-C.1 for details on bandwidth re-
quirement of control traffic of the two categories of nodes).

C.3 Scalability

By itself the mesh management protocol does not scale
beyond a few hundreds of nodes [6]. Mesh management
requires every member of the overlay to probe and main-
tain state for all the members of the overlay. This is inher-
ently unscalable because: 1) traffic generated for protocol
maintenance grows significantly with overlay size (Sec-
tion V-C.1); 2) time taken to adapt to changes increases
rapidly with the overlay size (Section V-C.2). Hierarchi-
cal overlays avoid both penalties as a result of information

hiding achieved due to clustering.

V. EVALUATION

In this section we evaluate our protocol using simula-
tion. The primary goal of the is to compare hierarchical
overlays with flat ones along the dimensions of interest.
The question we try to answer in this comparative evalua-
tion are:
1. Latency Overhead: There is a latency overhead in us-
ing the overlay instead of the underlying network. How
does this overhead change when moving from a flat over-
lay to a hierarchical overlay? (Sections V-B.2 & V-B.3)
2. Protocol Overhead: What is control traffic overhead
of maintaing a hierarchical overlay compared to a flat over-
lay? To what extent does hierarchy help in this regard?
(Section V-C.1)
3. Dyanamic Environment: Which type of overlays are
more suited towards dynamic environment like unstable
participation of nodes? (Section V-C.2)
4. Load Balancing: In a hierarchy, there is greater re-
sponsibility on head nodes. How is the overall responsi-
bility divided among head nodes? (Section V-C.3)

Apart from the above, we also provide results on the
following:
1. Improved Mesh Management: How much improve-
ment do our extensions to Narada provide? (Section V-
B.1)
2. Recovery from failures: How is the connectivity of
the overlay affected due to node failures and how quickly
does the overlay recover? (Section V-D)
3. Resource Discovery: In the context of a specific appli-
cation of broadcast-based resource discovery, how much
better do our overlays perform compared to ad hoc tech-
niques like Gnutella? (Section VI)

A. Simulation Setup

We have written a custom event driven simulator to sim-
ulate our protocol. We have not simulated dynamic net-
work conditions like queueing delay, packet losses, con-
gestion or varying latencies. The first few nodes are made
head nodes, and the rest of the nodes bootstrap from the
list of these head nodes. Head nodes exchange routing
messages every 30 seconds. The frequency of the mesh
management operations is 10 seconds. Child node probes
other heads once every 10 seconds. In mesh management
outdegree of a node is bounded by 8. Simulations are run
until there are no topological changes for about 15 minutes
of simulated time.

We use the Georgia Tech Internetwork Topology Mod-
els[18] (GT-ITM) to generate the network topologies used

7

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4

C
um

ul
at

iv
e

fra
ct

io
n

of
 p

ai
rs

 o
f n

od
es

RDP (Relative Delay Penalty)

Narada with enhancements

Narada

.95

Fig. 4. Effect of extensions to Narada on RDP

in our simulations.2 We use the “transit-stub” model to ob-
tain graphs that more closely resemble the Internet hierar-
chy than a pure random graph. Unless otherwise specified,
a topology of 12,800 nodes is used for the simulations (we
have obtained similar results for other underlying topolo-
gies). It consists of 4 transit domains, each with an average
of 8 stub networks. Each stub network has 4 stub domains
each with around 100 nodes. Latencies to links in the phys-
ical topology are assigned by GT-ITM. Nodes that become
part of the overlay are chosen randomly from those in the
stub domain.

B. Latency

We quantify the latency overhead of using the overlay
using Relative Delay Penalty (RDP). Recall from Section
II that RDP is the ratio of the overlay latency to the physi-
cal latency between two nodes. To summarize the simula-
tion results for an overlay we will also use the 95% (per-
centile) RDP, which is the penalty seen by the 95% of the
pairs of nodes. In Section V-B.2, we show that extremely
high RDPs are mostly associated with pairs of nodes hav-
ing small physical latency, hence the 95% RDP helps to
remove these tail-effects. Another advantage of using the
95% RDP is that it is fairly insensitive to simulation pa-
rameters compared to the maximum RDP.

B.1 Improvement over Narada

In order to see the effect of extensions we made to
Narada, we simulated a flat overlay (no hierarchy) with
200 nodes, without and with our extensions (symmetric
deletion and swapping). An underlying topology of 3600

�

We have recently begun to re-run our simulations using ”power-law”
topology generators such as Brite and Inet. While we have not com-
pleted this task, our preliminary results show similar results.

1

10

100

1000

0 1 2 3 4 5 6-10 11-15 15-20 20-30 31-35

N
um

be
r o

f P
hy

si
ca

l L
in

ks

Physical Link Stress

Narada
Narada with enhancements

Fig. 5. Effect of extensions to Narada on stress of a physical
link

nodes was used. Figure 4 shows that our extensions lead
to significantly lower latency overhead. With original
Narada, the 95% RDP was 4.1; with extended Narada it
was reduced to 2.9. The maximum RDP in the former is
more than 7, while it is about 4 in the latter. Note that with
clustering, the benefits of improvement at the top level are
magnified because child nodes route through their respec-
tive head nodes.

Figure 5 shows that the improvements over Narada, do
not come at the cost of excess load on underlying physical
links. The graph compares the histograms of link stress,
which is the number of overlay tunnels that go over a phys-
ical link in the underlying topology. Physical links with
high stress are more likely to be overloaded when the over-
lay is being used. These results are from a single simula-
tion run, but the qualitative comparison between the two
histograms is typical. There is slight overall improvement
with our extensions in the link stress, and in general we
observe lower worst case stress (20 compared to 27 in this
case).

B.2 Overlay Size

To observe the effect of overlay size on RDP, we in-
creased the overlay size from 300 to 10,000. The expected
cluster size is chosen so that the number of head nodes stay
roughly the same across different overlay sizes, 300 in this
case (the simulation with 300 nodes is a flat overlay).

Figure 6 shows the cumulative distribution of RDP of
overlays of various sizes. There is very little degradation
in RDP as the overlay size increases. Averaged over many
simulations, the 95% RDP for 300 nodes was 2.9, and for
10,000 nodes was 3.05. This is very encouraging since it
suggests that with clustering one can scale to large over-
lays without suffering on RDP. The primary reason behind

8

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4

C
um

ul
at

iv
e

fra
ct

io
n

of
 p

ai
rs

 o
f n

od
es

RDP (Relative Delay Penalty)

.95

300 nodes
1600 nodes
6400 nodes

10000 nodes

Fig. 6. Cumulative distribution of RDP shown for various over-
lay sizes.

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600

R
D

P
 (R

el
at

iv
e

D
el

ay
 P

en
al

ty
)

Physical latency (ms)

Fig. 7. RDP vs Physical Latency, Overlay size 10,000, ECS =
30

this good performance is that children are very close to
their heads, which reduces the overhead for the child in
routing through the head.

For flat overlays, [6] observed that higher RDPs are as-
sociated with pairs of nodes having small physical latency
between them. Figure 7 shows the same behavior for our
hierarchical overlays.

B.3 Cluster Size

In this section, we study the impact of cluster size on
latency. We varied the expected cluster size for an overlay
with 400 nodes. Figure 8 shows that cumulative distri-
bution of RDPs for flat and hierarchical overlays are very
similar. To investigate the effect of cluster size on larger
overlays, we repeated the same experiment for a 3200-
node overlay. Figure 9 shows 95% RDP as we increase
the expected cluster size and again we see very little vari-

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4

C
um

ul
at

iv
e

fra
ct

io
n

of
 p

ai
rs

 o
f n

od
es

RDP (Relative Delay Penalty)

.95

ECS = 0 (flat)
ECS = 5

ECS = 10

Fig. 8. Cumulative distribution of RDP shown for various ex-
pected cluster sizes in a 400 node overlay

1
1.5

2
2.5

3
3.5

4

0 20 40 60 80 100
95

%
 R

D
P

 (
R

el
at

iv
e

D
el

ay
 P

en
al

ty
)

Expected Cluster Size

Average

0
0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035

0 20 40 60 80 100

B
ad

 P
at

hs
 F

ra
ct

io
n

Expected Cluster Size

Average

Fig. 9. Effect of (ECS) Expected Cluster Size in a 3200 nodes
overlay. The top graph shows the variation of 95% RDP. The
bottom graph shows variation of the fraction of bad paths
(RDP � 5).

ation.3

The results above are counter intuitive: one would ex-
pect the performance to degrade as bigger clusters are
formed because the overhead of going through the head
increases. On deeper investigation, we found that degrada-
tion in performance can be seen by looking at the number
of paths that suffer high RDP. To quantify this we define
Bad Paths Fraction as the ratio of number of paths with
RDP � 5 to total number of paths. The lower graph in
Figure 9 shows that the Bad Paths Fraction increases with
increasing cluster size, but the fraction is too small to be

�
Ideally, we would like to compare the results with flat overlays of

the same size, but we could not simulate flat overlays beyond a few
hundred nodes due to CPU limitations.

9

reflected in the 95% RDP. However, almost all of the “bad
paths” are associated with nodes that are physically very
close, as shown in Figure 7.

C. Other Effects of Hierarchy

Now we investigate the effect of hierarchy along the
following three dimensions, control overhead, time to re-
spond to dynamic conditions, and load balancing in rout-
ing.

C.1 Protocol Overhead

A fundamental benefit of hierarchy is that protocol over-
head (bandwidth requirements for overlay maintenance) is
reduced, because the mesh management protocol is run
among a smaller group of nodes. We discuss bandwidth
requirements for both head and child nodes in a hierarchi-
cal overlay. The protocol overhead can be broken down
into the two components: mesh management and cluster-
ing.
1. Mesh management overhead: Nodes in the mesh have
to periodically exchange routing tables with their neigh-
bors (number of neighbors is bounded by a small constant),
and other nodes (to evaluate add/delete link operation).
The exact number of exchanges is a constant depending
on the frequency at which these operations are done. If the
mesh management is operating among � nodes, the size
of each exchange is � � � � since the routing table contains
information about all the nodes. Therefore, bandwidth re-
quirement for any node in the mesh is ��� � , for some con-
stant � � .
In a hierarchical overlay, mesh management protocol is
running both at the top level, and with in each cluster. In
an overlay with � nodes and expected cluster size � , num-
ber of head nodes are �

+ � . Overhead due to the top-level
mesh management on every head node is � � ��� + � � . Over-
head due to the mesh management with in one cluster (of
size �) on every child node is � � � . Since head is also oper-
ating in the mesh management protocol with in the cluster,
overhead on a head node is ��� ��� + � % � � .
2. Clustering overhead: Clustering requires a child to
probe its parent and other head nodes in the overlay to
evaluate migration. Recall that in the protocol child probe
a small constant number of head nodes per unit time. This
way every child generates constant number of messages
periodically. Since each message is constant size, it causes
an overhead of ��� on child nodes, for some constant ��� (���
is much smaller than � �). Additionally, each head node has
to respond to these probes. Assuming uniform distribution
of child pings on head nodes, every head node has to re-
spond to about � pings, which causes an overhead of � � �
on them.

Therefore, the total overhead on head nodes is � � ��� + � %
� ��% � � � , which is � � � + � % � � � % � � � � . For � much larger
than � (like � �)(� �-�-� � � � �), the bandwidth overhead
reduces roughly by a factor of � . Total overhead on child
nodes is � � � % � � , which is much less than overhead on
head nodes.

Based on the above analysis and the parameters in our
simulations, the bandwidth requirement for every node in
a flat overlay of 10,000 nodes is about 400 Kbps. On the
other hand, for a hierarchical overlay of 10,000 nodes with
cluster size 20 and 500 head nodes, overhead is much less.
For head nodes its only about 20Kbps and for child nodes
its less than 1Kbps. (The numbers for hierarchical overlays
have been confirmed using simulation.) Note that most of
the nodes in the overlay are child nodes, hence the gain is
substantial.

C.2 Responding to Changes

Hierarchy is better suited to frequent changes because
of information hiding, as a result of which the effect of a
change is limited to only a few nodes. To demonstrate this,
we injected events in an overlay of size 200 and observed
how much time it took for the overlay to stabilize to a new
topology and how many messages it generated in the pro-
cess. The events induced were 20 nodes leaving, 20 nodes
joining, 40 nodes leaving and 40 nodes joining. Enough
time was given for the overlay to stabilize between con-
secutive events. We compare responses of three overlays
of size 200 - flat, cluster size of 20, and cluster size of
40 - in Figure 10. The flat overlay responded with much
more changes for a much longer period as compared to the
hierarchical overlays, and the overlay with bigger cluster
size is better than the one with smaller cluster size. For
instance, when 20 nodes are brought down, the hierarchi-
cal overlays took less than 10 minutes to settle down to the
new topology, while the flat overlay took about 40 min-
utes. Because hierarchical overlays stabilize much faster,
they are more suited towards large applications with dy-
namic conditions.

C.3 Load Balancing

By definition, in a hierarchy all nodes are not equal. In
our overlays, management overhead is not shared equally
by all nodes. Head nodes have more responsibilities. Sec-
tion V-C.1 showed how the control bandwidth requirement
for the two node types is different. Another dimension of
responsibility is routing.

To characterize how evenly the responsibility of unicast
routing is distributed among the head nodes, we define
node stress as the ratio of number of unicast paths that go
through this node to the total number of paths (all node-

10

0

200

400

600

800

1000

1200

1400

1600

1800

100 150 200 250 300 350 400

C
um

ul
at

iv
e

nu
m

be
r o

f c
ha

ng
es

Simulation time in minutes

20 nodes down

20 nodes up

40 nodes down

40 nodes up

ECS = 1 (flat)
ECS = 10
ECS = 40

Fig. 10. Changes in the overlay topology (migrate + add link +
delete link) vs Simulation time for different cluster sizes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12

Fr
ac

tio
n

of
 n

od
es

Node Stress

400 head nodes
200 head nodes
100 head nodes
50 head nodes

Fig. 11. Node Stress on head nodes for different overlays.

pairs). Child nodes only forward traffic for child nodes in
the same cluster, and hence node stress on them would be
very low (close to (+ � , for all paths involving the node
itself, because most paths cross cluster boundaries).

Figure 11 plots the node stress on head nodes for differ-
ent clustering levels in an overlay size of 400. There are
two things to be noted in the graph. First, the load distri-
bution among the head nodes themselves is fairly uniform
(a quickly rising vertical line in the plot). Second, and
more important, stress goes up as the levels of clustering
is increased. So the routing load on an individual head
node goes up as the number of head nodes is decreased.
This provides a case against very big cluster sizes, unless
the head nodes have enough resources to deal with the in-
creased routing load presented. As described in Section
IV-C.2, in a heterogeneous environment this can be allevi-
ated by picking the right head nodes.

D. Recovery From Failures

The protocol has built-in mechanisms to detect and re-
cover from failures. We quantify the recovery performance
in this section. Death of a child node is a simple case to
handle. Its effect is localized to the cluster it is in; it does
not effect rest of the nodes in the overlay. Failure of head
nodes is more critical, as it not only orphans the children,
but can also partition the top-level topology. Hence, we
restrict our attention to failure of head nodes only. When
a head node dies, its children migrate to another head as
soon as they detect the head’s death. At the same time,
any partitions at the top-level are detected and repaired.

The simulation in Figure 12 has 1600 nodes in the over-
lay, with expected cluster size of 5. A fraction of the head
nodes are chosen randomly, and killed. The figure shows
the disconnectivity in the overlay with time. Disconnec-
tivity is defined as the ratio of pair of nodes that cannot
reach each other to total pairs. Although the disconnectiv-
ity level increases as more head nodes fail, the time taken
to recover to a connected topology remains about the same,
3 minutes, which corresponds to the time out constants
used in simulation for detecting and repairing partitions.

An overlay robust to failures should have both fast de-
tection and fast adaptation to changes. Figure 12 also plots
the number of changes (in 10-second bins) that occur in the
overlay topology as a result of induced failure. A change
is occurrence of child migration, addition of a new link or
deletion of an existing link. This reflects how much time it
takes for the protocol to reach a new stable state. From the
graph, it is clear that there is a flurry of activity in the first
5 minutes after detection, and then rate of changes comes
down significantly. The later events mainly lead to incre-
mental improvements.

From this it is clear that the protocol is able to maintain
connectivity even at high failure rates of head nodes. In
practice head nodes would be chosen based on their sta-
ble participation which would reduce their failure rate and
therefore reduces the transient disconnectivity in the over-
lay.

VI. RESOURCE DISCOVERY IN THE WIDE AREA

In this section we evaluate the performance of our
protocol in context of broadcast based applications like
Gnutella[4]. We would like to compare the overlay formed
by our protocol with the existing Gnutella overlay. We
implemented a Gnutella-like protocol to generate Gnutella
overlays. It creates an overlay topology by randomly con-
necting nodes taking into account a degree distribution
found in Gnutella overlays [19]. While this protocol might
not yield overlay topologies identical to Gnutella (because

11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

185 190 195 200 205 210 215
0

4

8

12

16

20

24

28

D
is

co
nn

ec
tiv

ity

N
um

be
r o

f e
ve

nt
s

pe
r 1

0
se

co
nd

Simulation time in minutes

1%

5%

10%

20%

Disconnectivity
Number of events per 10 second

Fig. 12. Disconnectivity and Total number of changes in the
overlay topology vs Simulation time. % value denotes % of
head nodes failing.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

C
um

ul
at

iv
e

fra
ct

io
n

of
 n

od
es

Query Delay Penalty (QDP)

Our protocol
Gnutella like protocol

Fig. 13. Comparison of our overlay with a Gnutella-like overlay

of the presence of several degrees of freedom involving hu-
mans in the way the Gnutella network works), we believe
it provides a reasonable comparison point.

We use two metrics for evaluation: the first measures the
latency overhand, and the second overhead on the network.

A. Query Delay Penalty

Query Delay Penalty (QDP) for a node is defined as the
ratio of broadcast latency using the overlay to broadcast
latency using the physical network. Broadcast latency is
the time taken for a query originating from that node to
reach all other nodes of overlay, which is the same as the
maximum latency from this node to any other node in the
overlay. QDP is a measure of latency overhead incurred
by a broadcast-based application when using the overlay,
just like RDP measures the latency overhead for unicast
applications.

Figure 13 compares the QDP for two overlays of 1600
nodes, one formed by our protocol and other using the
Gnutella-like protocol. With our protocol QDP observed
by all nodes was less than 2. On the other hand, for the
Gnutella-like overlays more than 90% of the nodes had
QDP more than 4, and the worst case QDP was more than
8.

B. Resource Usage

In broadcast, a message traverses each overlay link once
or twice. Assuming cost of traversing a tunnel is propor-
tional to its latency, an overlay with fewer low latency links
is more efficient for broadcast purposes than the one with
many large latency links. We define resource usage as sum
of latencies of all links in the overlay. Note that good RDP
does not imply low resource usage. For example an over-
lay in which every node is connected to every other node
has RDP 1, but has very high resource usage.

The resource usage of Gnutella-like overlay was more
than 10 times that of our overlay. Hence, we are able to
achieve better performance using fewer resources.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a protocol to form self-
organizing overlays that scales to at least tens of thousands
of nodes. The protocol builds a two-level hierarchy using
two techniques: clustering and mesh-management. Clus-
tering builds the hierarchy dynamically and mesh manage-
ment forms the overlay at each level of hierarchy. Our key
conclusions are:
� Hierarchy has minimal effect on performance metric
such as Relative Delay Penalty (RDP).� At the same time, hierarchy reduces the bandwidth re-
quirements of control traffic. Roughly, the gain is a factor
of � for head nodes, and a factor of �

+ � for child nodes,
where � is the overlay size, and � is the cluster size.� Hierarchical overlays absorb changes better than flat
overlays. They stabilize more quietly and with fewer
changes, and so are well-suited to dynamic environments.
The stability of hierarchical overlays can be further in-
creased by exploiting the heterogeneity among overlay
nodes.� For broadcast-based applications, our hierarchical over-
lays yield major performance benefits (more than a factor
of 4 in our simulations) while cutting down on the resource
consumption (by a factor of 10) compared to ad hoc tech-
niques like Gnutella.� Our extensions to Narada lead to significant improve-
ments in RDPs. In our simulations, the 95th percentile
RDP was reduced by 25%.

12

It is important that a self-organizing overlay protocol
dynamically adapt to the workload presented to it, to pre-
clude performance bottlenecks (hotspots). While some
of the means to alleviate hotspots would be application-
specific, there are some measures that can be taken inde-
pendent of the application being run on top of the overlay.
For instance, if some node in the overlay is overwhelmed
by traffic it forwards between two neighbors, it could re-
quest its neighbors bypass it and to send data directly. Or,
if some node observes an unacceptable level of congestion
over a tunnel, it could either find an alternate tunnel to des-
tination or divide the traffic that goes over that tunnel. As
part of future work, we intend to investigate application-
independent techniques to address the problem of hotspots
in overlays.

Large-scale overlays consisting of end-hosts in the In-
ternet have to be able to operate under highly dynamic
environment. We intend to measure the performance of
our overlay protocol under such conditions. This requires
modeling the life time distributions of the overlay nodes
and other dynamic conditions like physical link failures.
On a related note, we also plan to investigate how hierar-
chy can be used to exploit heterogeneity among the overlay
participants.

The protocol presented in the paper, creates a two level
hierarchy. Creating multiple levels of hierarchy to achieve
further scalability is another interesting future direction.

ACKNOWLEDGEMENTS

We are grateful to Andy Collins and Andrew Whitaker
for extensive discussions during the design phase of the
project. Scott Shenker and Srinivasan Seshan provided
very useful feedback. We are also thankful to Stefan
Saroiu and Neil Spring for reviewing a draft version of this
paper.

REFERENCES

[1] H. Eriksson, “MBone: The Multicast Backbone,” in Communi-
cations of the ACM, August 1994, vol. 37, pp. 54–60.

[2] “ABone Web Pages,” http://www.isi.edu/abone/.
[3] “6Bone Web Pages,” http://www.6bone.net/.
[4] “Gnutella Web Pages,” http://www.gnutella.com.
[5] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble, “A

Measurement Study of Peer-to-Peer File Sharing Systems,” Tech.
Rep. 01-06-02, UW-CSE, June 2001.

[6] Yang-hua Chu, Sanjay Rao, and Hui Zhang, “A Case for End
System Multicast,” in ACM SIGMETRICS, June 2000.

[7] Yatin Chawathe, S. McCanne, and Eric Brewer, “An Architecture
for Internet Content Distribution as an Infrastructure Service,”
February 2000.

[8] John Jannoti, David K. Gifford, Kirk L. Johnson, M. Frans
Kaashoek, and James W. O’Toole, “Overcast: Reliable Multi-
casting with an Overlay Network,” in OSDI, 2000.

[9] Paul Francis, “Yoid: Your Own Internet Distribution,”
http://www.aciri.org/yoid/.

[10] D. Waitzman, C. Partridge, and S. Deering, “Distance Vector
Multicasting Routing Protocol,” RFC 1075, IETF, 1988.

[11] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and
Jeremy Lilley, “The Design and Implementation of an Intentional
Naming System,” in SOSP, December 1999.

[12] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker, “A Scalable Content Addressable Network,”
in ACM SIGCOMM, September 2001.

[13] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and
Hari Balakrishnan, “Chord: A peer-to-peer lookup service for
internet applications,” in ACM SIGCOMM, September 2001.

[14] Anthony Rowstron and Peter Druschel, “Pastry: Scalable, Dis-
tributed Object Location and Routing for Large-Scale Peer-to-
Peer Systems,” in IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), November 2001.

[15] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph,
“Tapestry: An Infrastructure for Fault-tolerant Wide-area Loca-
tion and Routing,” Tech. Rep. UCB/CSD-01-1141, UCB, April
2001.

[16] Kortsarz and Peleg, “Generating low-degree 2-spanners,” in
SODA: ACM-SIAM Symposium on Discrete Algorithms (A Con-
ference on Theoretical and Experimental Analysis of Discrete Al-
gorithms), 1994.

[17] Stefan Savage, Tom Anderson, Amit Aggarwal, David Becker,
Neal Cardwell, Andy Collins, Eric Hoffman, John Snell, Amin
Vahdat, Geoff Voelker, and John Zahorjan, “Detour: a Case for
Informed Internet Routing and Transport,” in IEEE Micro, Jan-
uary 1999, vol. 19, pp. 50–59.

[18] “GT-ITM:Modeling Topology of Large Internetworks,”
http://www.cc.gatech.edu/projects/gtitm/.

[19] DSS2 Clip System, “Gnutella: To the Bandwidth Barrier and
Beyond,” ”http://dss.clip2.com/gnutella.html”.

