
Gestalt: Unifying fault localization for networked systems

Radhika Niranjan Mysore Ratul Mahajan Amin Vahdat George Varghese
UC San Diego Microsoft Research UC San Diego and Google Microsoft Research

Abstract— Researchers have proposed many algorithms
for localizing faults in networked systems, but it is unclear
which algorithm is best suited for a given network; the per-
formance of these algorithms differs markedly for differ-
ent networks. We develop a framework that can explain
these differences by anatomizing the algorithms into their
basic choices and analyzing these choices with respect to six
defining characteristics of real networks. Our analysis also
reveals that no existing algorithm simultaneously provides
good localization accuracy and low computational overhead.
Based on our insights, we develop a new algorithm called
Gestalt. To perform well across a range of networks, Gestalt
combines the good choices of existing algorithms and with a
new method to explore the space of possible faults in a way
that is both low overhead and robust to noise. We apply it
to three real, diverse networks: an email network, a peer-to-
peer messaging system, and an ISP network. In each case,
Gestalt has either significantly higher localization accuracy
or an order of magnitude faster running time. For example,
when applied to Lync [2], Gestalt localizes faults with the
same accuracy as Sherlock [6], while reducing fault local-
ization time from days to 23s on a single system.

1. INTRODUCTION

Gestalt is a general description for concepts that
make unity and variety in design. — Jim Saw

Consider a large system of routers and servers inter-
connected by network paths. Such a system could be for
integrated audio, video, and text messaging (e.g., Microsoft
Lync [2]), for email (e.g., Microsoft Exchange), or even
for simple packet delivery (e.g., Abilene). When transac-
tions such as connection requests fail, network operators
find it helpful to have a fault-localization tool that iden-
tifies components likely to have failed. An effective tool
allows operators to quickly replace faulty components or
implement work-arounds, this increasing the availability of
mission-critical networks.

As an example, we conducted a survey of call failures in
the Lync messaging system deployed inside a large corpo-
ration. We found that the median time for diagnosis, which
was largely manual, was around 8 hours because the opera-
tors had to carefully identify the failed components from a
large number of possibilities. This time-consuming process
is frustrating for operators and leads to significant produc-
tivity loss for other employees. A good fault localization
tool that can identify a short list of potential suspects in a
short amount of time would greatly reduce diagnosis time.

(a) Lync (real failures) (b) Exchange (simulated fail-
ures)

Figure 1: Applying different algorithms to two systems.
Legend shows median time to completion.

Later in this paper, we will show how our fault localization
tool, Gestalt, accomplishes this task. With a median running
time of under 30 seconds, Gestalt reduces by 60x the number
of components that an operator must consider for diagnosis
(based on real failure history).

Of course, we are not the first to realize the importance of
fault localization; many researchers have developed a range
of algorithms (e.g., [3, 6, 8, 11, 13, 14, 16–18]). We contend,
however, that existing work has two significant drawbacks:
lack of understanding and inadequate performance.

First, we have consistently heard from operators (e.g., at
both Google and Microsoft) that the effectiveness of existing
fault localization algorithms depends on the network, and
that this dependence is mysterious. There are no studies that
connect network characteristics to the choice of algorithm;
thus, determining an appropriate fault localization approach
for a given network is difficult.

Figure 1 illustrates this difficulty by running three prior
algorithms on two different networks. We picked these algo-
rithms because they use disparate techniques. In the graphs,
the y-axis is the diagnostic rank, which is the percentage of
network components deemed more likely culprits than the
components that actually failed; thus, lower values are bet-
ter. The failures are sorted by diagnostic rank. We will pro-
vide more experimental details in §9,

The left graph shows the results for the Lync deployment
mentioned above. We see that the algorithms perform differ-
ently. Sherlock [6] does best, and SCORE [17] does worst.
The right graph shows the results for simulated failures in
an Exchange deployment [9]. We see that the algorithms ex-
hibit different relative performance. SCORE matches Sher-
lock, and Pinpoint does worst. Further, the appropriate ap-
proach for the two networks differs—Sherlock for Lync, and
SCORE for Exchange as it combines high localization accu-
racy and fast running time.

1

Second, existing algorithms either have poor localization
accuracy in the presence of impairments such as noise or
have large computational costs for large networks. This
tradeoff can be seen in Figure 1. While SCORE runs in a
few microseconds, it localizes faults poorly for Lync. On
the other hand, while Sherlock [6] has good performance for
both networks, it can take a long while to run. In large net-
works, this time can be days. Running time matters because
recovery cannot begin till the algorithm completes. Our
results consistently reveal a tradeoff between localization
accuracy and run time in prior work.

Rather than develop yet another localization algorithm
with its own poorly understood tradeoffs, we first develop
a framework to understand the design space and answer the
basic question: When is a given fault localization approach
better and why? We observe that existing fault localization
algorithms can be anatomized into three parts that corre-
spond to how they model the system, how they compute
the likelihood of a component failure, and how they ex-
plore the state space of potential failures. Delineating the
choices made by an algorithm for each part paves the way
for systematically analyzing the algorithm’s behavior.

Our anatomization also explains phenomena found empir-
ically (but not fully explained) in existing work. For exam-
ple, [18] discovers that noise leads the SCORE [17] infer-
ence algorithm to produce many false positives; the authors
suggest mitigation through an additional step of candidate
selection using adhoc thresholds. By contrast, we show that
the design choices that SCORE makes are inherently sensi-
tive to noise, and changing these would lead to more robust
fault localization than the suggested heuristics. As a second
example, the Pinpoint algorithm is shown by the authors [8]
to have poor accuracy for even two simultaneous failures.
We later show that this problem is fundamentally caused by
how Pinpoint explores the state space of failures.

We use our understanding to devise a new fault localiza-
tion algorithm, called Gestalt. Gestalt combines the best
features of existing algorithms to work well in all networks
and conditions. While Gestalt benefits from reusing exist-
ing components, it also introduces a new method for ex-
ploring the space of potential failures that may be of inde-
pendent interest. Our new method navigates a continuum
between the extremes of greedy failure hypothesis explo-
ration (e.g., SCORE) and combinatorial exploration (e.g.,
Sherlock). The result is a fault localization algorithm that
has both good localization accuracy and low computational
cost.

The contributions and a rough outline of this paper are:
1. Anatomization: We show how existing fault localiza-

tion algorithms can be broken down into a common frame-
work with three parts in Sections 3 and 4. Table 3 shows
how nine different algorithms map to this framework.

2. Characterization: Section 5 defines six salient net-
work characteristics that pose a challenge to fault localiza-
tion: noise, uncertainty, covering relationships, simultane-

ous failures, collective failures, and scale. Section 6 de-
scribes our analysis methodology and three disparate real
networks (Lync, Exchange, and Abilene) that we use. This
is used in Section 7 to discover the relationship between net-
work characteristics and fault localization choices. Table 4
summarizes our findings.

3. Design: Our findings lead us to our new algorithm,
Gestalt, described in Section 8. In Section 9, we show that
Gestalt has better diagnostic accuracy or lower computa-
tional overhead than each existing algorithm on all three net-
works we study. For real Lync failure data, Gestalt improves
localization time by an order of magnitude.

2. RELATED WORK
Network diagnosis can be thought of as having two

phases. The first consumes available information (e.g.,
log files, passive or active measurements) to estimate sys-
tem operation and is often used to detect faults. Several
system-specific techniques exist for this phase [5, 9–11,
15, 19–21, 21, 23–25]. Techniques used in this phase dif-
fer based on network topology, granularity of diagnosis,
type of diagnosis(performance,control). Its output, usually
a graph that indicates how components impact transactions,
is often fed to a second phase that localizes faults. Local-
ization identifies which system components are likely to
blame for failing transactions based on this input. Thus the
first phase abstracts away the system specific details for the
more generic fault localization phase. For example, if the
first phase marks slow transactions as failed or troubled and
inputs this into fault localization phase, it becomes possible
to localize performance problems.

Fault localization techniques are extremely valuable be-
cause information on component health may not be easily
available in large networks and manual localization can lead
to several hours of downtime. Even where component health
information is available, it may be incorrect (as in the case
of "gray failures" in which a failed component appears func-
tional to liveness probes) or insufficient towards identifying
culprits for failing transactions [6]. Fault localization has
also been studied widely [3, 6, 8, 11, 13, 14, 16–18, 26, 27].
We focus on this second phase and ask: given information
from the first phase, which fault localization algorithm gives
the best accuracy with the lowest overhead, and why?.

Some diagnostic tools like [21,23,24] leave fault localiza-
tion to a knowledgeable network operator and aim to provide
the operator with a reduced dependency graph for a particu-
lar failure. While this is different from what we call fault
localization in this paper, the automated fault-localization
techniques we discuss can be used in those tools as well to
narrow down the list of suspects.

The only survey of fault localization we know is by Stein-
der and Sethi [28], which considers each approach sepa-
rately. To the best of our knowledge ours is the first work
to analyze the design space for fault localization, and to use
this insight to propose a better fault localization tool Gestalt.

2

3. FAULT LOCALIZATION ANATOMY
We consider the following common fault localization sce-

nario. The network is composed of many components such
as routers and servers. The success of a transaction in the
network depends on the health of the components it exer-
cises. The goal of fault localization is to identify components
that are likely responsible for failing transactions. While we
use the term transaction for simplicity in this paper, it can
be any indicator of network health (e.g., link load) for which
we want to find the culprit component.

More formally, the state of the network is represented by
a vector I with one element I[j] per network component that
represents the health of component j. Let O be a vector of
observation data such that O[k] represents whether transac-
tion k succeeded. For example, O could represent the results
of pings between different sources and destinations. The
broad goal is to infer likely values of I that explain the ob-
servations O. Specifically, the fault localization algorithm
outputs a sequence of possible state vectors I1, I2, .. ordered
in terms of likelihood.

We measure the goodness of an algorithm by its diagnos-
tic rank: given ground truth about the actual components that
failed denoted by Itrue, the diagnostic rank is j if Itrue = Ij
for some j in the output sequence, and n otherwise. For ex-
ample, a network with two routers R and S and one link E
between them will have a 3 element state vector denoting
the states of R, S, and E respectively. Let us say that only
router R has failed so Itrue = (F,U, U) where F denotes
failed and U denotes up. If the output of the fault local-
ization algorithm is (U,F, U), (F,U, U), (U,U, F) then the
diagnostic rank on this instance of running fault localiza-
tion is 2 because one other component failure (router S) has
been considered more likely. Lower diagnostic rank implies
fewer "false leads" that an operator must investigate. A sec-
ond metric for an algorithm is the computation time required
to produce the ranked list given the observation vector O.

We find that practical fault localization algorithms can be
anatomized into three parts: a system model, a scoring func-
tion, and a state-space explorer. First, any fault localization
algorithm needs information such as which components are
exercised by each transaction, and possible failure correla-
tions between component failures (e.g., a group of links in a
load-balancing relationship). Thus, localization algorithms
start with a system model S that predicts the observations
produced when the system is in state I . System models in
past work are often cast in the form of a dependency graph
between transactions and components but there is consider-
able variety in the dependency graphs used.

Second, in theory fault localization can be cast as a
Bayesian inference problem. Given observation O, rank
system states I based on PS(I|O), the probability that I led
to O when passed through the system model S. However,
even approximate Bayesian inference [12, 22] can seldom
handle the complexity of large networks [13]. So practical
algorithms use a heuristic scoring function Score that maps

each component to a metric that represents the likelihood
of that component failing. The underlying assumption is
that for two system states Ii and Ij and respective obser-
vations Oi and Oj predicted by S: PS(Ii|O)≥PS(Ij |O)
when Score(Oi, O) ≥ Score(Oj , O), where O is the actual
observation vector. This scoring function is the second part
of the pattern.

Finally, given the system model and scoring function the
final job of a fault localization algorithm is to list and eval-
uate states that more likely to produce the given observation
vector. But system states can be exponential in the number of
components since any combination of components can fail.
Thus, localization algorithms have a third part that we call
state space exploration in which heuristic algorithms are
used to explore system states, balancing computation time
with accuracy.

We do not claim that this pattern fits all possible fault lo-
calization algorithms. It does not fit algorithms based on be-
lief propagation [26, 27]; such algorithms are computation-
ally expensive and have not been shown to work with real
systems. As shown in Table 3, this pattern does capture al-
gorithms that have been evaluated for real networks, despite
considerable diversity in this set.

4. DESIGN SPACE FOR LOCALIZATION
We map existing algorithms into the three-part pattern by

describing the choices they make for each part. §4.1-4.3 de-
scribes the choices, and §4.4 provides the mapping.

Prior algorithms also use different representations such as
binary [8, 17, 18] or probabilities [14]) for transaction and
component states. We use the 3-value representation from
Sherlock [6] as it can model all prior representations. Specif-
ically, the state of a component or transaction is a 3-tuple,
(pup, ptroubled, pdown), where pup is the probability of be-
ing healthy, pdown that of having failed, and ptroubled that
of experiencing partial failure; pup+ptroubled+pdown=1. The
state of a completely successful or failed transaction or com-
ponent is (1,0,0) or (0,0,1); other tuples represent intermedi-
ate degrees of health. A monitoring engine determines the
state of an transaction in a system specific way; for example,
a transaction that completes but takes a long time may be
assigned ptroubled > 0.

4.1 System Model
A system model encodes how network components im-

pact transactions. It can be viewed as a directed graph where
an edge from A to B says that A impacts B, or B depends
on A. We find three system models used by localization al-
gorithms in the literature:
1. Deterministic Two Level (DTL) is a two-level model
in which the top level corresponds to system components
and the bottom level to transactions. Components connect
to dependent transactions whose success or failure they im-
pact. The model assumes components independently impact

3

(a) Network (b) DTL: C2→S2 (c) PTL: C2→S2 (d) PML: C2→S2 (e) C1→S1

Figure 2: An example network and models for two transactions.

Table 1: Transaction state (pup) predicted by different
models for transaction C2→S2 in Figure 2

dependent transactions. A transaction fails if any of its par-
ent components fails.
2. Probabilistic Two Level (PTL) is similar to DTL ex-
cept that the impact is modeled as probabilistic. Component
failure leads to transaction failure with some probability.
3. Probabilistic Multi Level (PML) can have more than
two levels; intermediate levels help encode more complex
relationships between components and transactions such as
load balancing and failover.

We use the example network in Figure 2(a) to illustrate
the three models. The network has two clients (C1, C2),
two servers (S1, S2), two routers (R1, R2), and several links.
Transactions are requests from a client to a server (Ci→Sj).
Each request uses the shortest path, based on hop count, be-
tween the client and server. Where multiple shortest paths
are present, as for C2→S2, requests are load balanced across
those paths.

Assume that the components of interest for diagnosis are
the two routers and the two servers. Then, Figures 2(b)-
(d) show the models for the transaction C2→S2. Different
models predict different relationships between the failures
of components and that of the transaction. These predic-
tions are shown in Table 1. For ease of exposition, the table
shows the value of pup; pdown = 1− pup and ptroubled = 0
in this example. DTL predicts that the transaction fails when
any of the components upon which it relies fails. Thus, the
transaction is (incorrectly) predicted as always failing even
when only one of the routers fails. PTL provides a better
approximation in that the transaction is not deemed to com-
pletely fail when only one of the router fails. However, it still
does not correctly model the impact of both routers failing
simultaneously. PML is able to correctly encode complex re-
lationships. While this example shows how PML correctly
captures load balancing, it can also model other relationships

such as failover [6]. However, this higher modeling fidelity
does not come for free; as we discuss later, PML models
have higher computational overhead.

In this network, the three models for the other three types
of transactions (C1→S{1,2}, C2→S1) are equivalent. The
model for C1→S1 is shown in Figure 2(e)

4.2 Scoring function
Scoring functions evaluate how well the observation vec-

tor predicted by the system model for a system state matches
the actual observation vector. Let (pup, ptroubled, pdown) be
the state of a transaction in the predicted observation vector,
and let (qup, qtroubled, qdown) be the actual state determined
by the monitoring engine. Then, the computation of vari-
ous scoring functions can be compactly explained using the
following quantities:

Explained failure eF = pdownqdown

Unexplained failure nF = (1 − pdown)qdown

Explained success eS = pupqup + ptroubledqtroubled

Unexplained success nS = (1 − pup)qup +
(1 − ptroubled)qtroubled

eF is the extent to which the prediction explains the actual
failure of the transaction, and nF measures the extent to
which it does not. eS and nS have similar interpretations
for successful transactions. We also define another quantity
TF= Σ(eF+nF), where the summation is over all elements
of observation vectors. Because eF + nF = qdown, TF is
the total number of failures in the actual observation vector.

Different scoring functions aggregate these basic quanti-
ties across observation elements in different ways. We find
three classes of scoring functions:
1. FailureOnly (eF, TF): Such scoring functions only
measure the extent to which a hypothesis explains actual fail-
ures. It thus uses only eF and TF to construct the measure.
2. InBetween (eF, nS, TF): Such scoring functions only
measure the extent to which a hypothesis explains failures
and unexplained successes.
3. FailureSuccess (eF, eS): Such scoring functions mea-
sure both the extent to which a hypothesis explains failures
and how well it explains successes.

Concrete instances of these classes are shown in Table 3.
As expected, the score increases as eF and eS increase, and
decreases when nF and nS increase. Given the large num-
ber of elements, each aggregates across elements in a way
that is practical for high-dimensional spaces [4, 7].

4

Table 2: Score computed by different scoring functions
for three possible failures.

Instead of analyzing every instance, in this paper we use
a representative for each of the three classes. We have ver-
ified that the performance of different functions in a class
is qualitatively similar. Our experiments use as representa-
tives the functions used by SCORE (FailureOnly), Pinpoint
(InBetween), and Sherlock (FailureSuccess).

To understand how different scoring functions can lead to
different diagnoses, consider again the example in Figure 2.
Assume that R1 has failed and the actual state of four trans-
actions is available to us. Two of these are C1→S1, both of
which have failed (since they depend on R1); and the other
two are C2→S2, one of which has failed (because it used
R1, while the other used R2). Table 2 shows how the three
scoring functions evaluate three system states in which ex-
actly one of R1, R2, and S1 has failed. The computation
uses DTL for the system model. The top four rows show the
values of the basic quantities. As an example, ΣeF is 3 in
Column 1 because R1’s failure correctly explains the three
failed transactions; it is 1 in Column 2 because R2’s failure
explains the failure of only one transaction (C2→S2) and not
of the two C1→S1 transactions.

The bottom three rows of the table show the scores of the
three scoring functions for each failure. Even in this simple
example, different scoring functions deem different failures
as more or less likely. FailureOnly and InBetween deem R1
as the most likely failure that explains the observed data,
FailureSuccess deems (incorrectly) that the data can be just
as well be explained by the failure of S1. While it may ap-
pear that FailureSuccess is a poor choice, we show later that
FailureSuccess actually works reasonably well in a variety
of real networks.

4.3 State space exploration
State space exploration determines how the potentially

large space of possible system states (combinations of failed
components) is explored. We find four types of explorers
used in prior localization algorithms.
1. Independent only explores system states with exactly
one component failure.
2. Jointk explores system states with at most k failures. It
is a generalization of Independent (which is Joint1).

3. Greedy set cover (Gsc) is an iterative method. In each
iteration, a single component failure that explains the most
failed transactions is chosen, and all explained observations
are removed. Iterations repeat until all failed transactions are
explained. Thus, it greedily computes the set of component
failures that cover all failed transactions.
4. Hierarchical is also an iterative method. As in Gsc, in
each iteration the component C that best explains the actual
observations is chosen. However, a major difference is that if
there are additional observations that C impacts, then these
are added to the list of unexplained failures even if they were
originally not marked as having failed in the input. Thus
unlike Gsc, the set of unexplained failures need not decrease
monotonically.

4.4 Mapping fault localization algorithms
Table 3 maps the fault localization portion of nine prior

fault localization algorithms to our framework. Readers fa-
miliar with a tool may not immediately see how its computa-
tion maps to the choices shown because the original descrip-
tion uses different terminology. But in each case we have
analytically and empirically verified the correctness of the
mapping: composing the choices shown for the three parts
leads to a matching computation (except for aspects men-
tioned below). Due to space constraints, we omit the results
that verify these mappings. However further evidence comes
from reproducing artifacts of earlier algorithms in our find-
ings in §7.

The last column lists fault localization aspects not cap-
tured in our framework. Many of these relate to pre- or
post-processing data. For example, candidate pre-selection
removes irrelevant components at the start. The table does
not list other suggestions by tool authors such as using priors
that capture baseline component failure probabilities.

While the mechanisms we do not model are useful en-
hancements, they are complementary to the core localization
algorithm. Our goal is to understand the behavior of fun-
damental choices made in the core algorithm. By employ-
ing these choices, tools inherit their implications (§7) even
when they use additional enhancements. Our paper abuses
notation for simplicity; when we refer to a particular tool by
name, we are referring to the computation that results from
combining its three-part choices.

5. NETWORK CHARACTERISTICS
Fault localization would be simple if modern networks

were simple — in which, for instance, the knowledge of de-
pendencies between components and transactions were per-
fect, the logged status of transactions were always accurate,
and multiple failures were rare. But modern networks are
anything but simple, and localization algorithms must han-
dle network characteristics that confound inference. Select-
ing a localization approach requires understanding which
characteristics are dominant for a given network.

The six characteristics we study are:

5

Tool Target system System
Model

Scoring Function State Space
Exploration Aspects not captured

Codebook [16] Satellite comm. network DTL,PTL FailureSuccess (Σ(eF + eS)) Independent Codebook selection
MaxCoverage
[18] ISP backbone DTL FailureOnly (ΣeF

TF
) Gsc

Candidate post-selection,
Hypothesis selection

NetDiagnoser
[11]

Intra-AS, multi-AS
internetwork DTL FailureOnly (ΣeF

TF
) Gsc Candidate pre-selection

NetMedic [14] Small enterprise network PTL FailureOnly (ΣeF) Independent Re-ranking
Pinpoint [8] Internet services DTL InBetween (ΣeF

TF+ΣnS
) Hierarchical

SCORE [17] ISP backbone DTL FailureOnly(ΣeF
TF

) Gsc
Threshold based
hypothesis selection

Sherlock [6] Large enterprise network PML FailureSuccess (
∏

(eF + eS)) Joint3 Statistical significance test
Shrink [13] IP network PTL FailureSuccess (

∏
(eF + eS)) Joint3

WebProfiler [3] Web applications DTL InBetween (ΣeF
ΣnS+ΣeF

) Joint2 Re-ranking

Table 3: Different fault localization algorithms mapped to our framework.

1. Uncertainty Most networks have significant non-
determinism that makes the impact of a component failure
on a transaction uncertain. For example, if a DNS trans-
lation is cached, a Ping need not consult the DNS server:
thus if the entry is cached, the DNS server failure does not
impact the Ping transaction, but otherwise it does. Note
that the localization algorithm is not privy to the state of the
DNS caches. Load balancing is another common source of
non-determinism as is the case for C2→S2 transaction in
Figure 2.

More precisely, if a component potentially (but not al-
ways) impacts a transaction failure, we say that the depen-
dency is uncertain. A network whose system model contains
uncertain edges is said to exhibit uncertainty. The degree of
uncertainty is measured by the number of uncertain depen-
dencies and the uncertainty of each dependency. Probabilis-
tic models like PTL and PML can naturally encode uncer-
tainty while deterministic models cannot.
2. Observation noise So far, we assumed that observa-
tions are measured correctly. However, in practice, pings
could be received correctly but lost during transmission to
the stored log: thus an "up" transaction can be incorrectly
marked as "down". Errors can also occur in reverse. In
Lync, for example, the monitoring system measures prop-
erties of received voice call data to determine that a voice
call is working; however, the voice call may still have been
unacceptable to the humans involved. Both problems have
been encountered in real networks [3, 11, 17, 18]. They can
be viewed as introducing noise in the observation data that
can lead sensitive localization algorithms astray. A network
with 10% noise can be thought of as flipping 10% of the
transaction states before presentation to the localization al-
gorithm.
3. Covering relationships In some systems, when a par-
ticular component is used by an transaction, other compo-
nents are used as well. For example, when a link partici-
pates in an end-to-end path, so do the two routers on either
end. More precisely, component C covers component D if
the set of transactions that C impacts is a superset of the
transactions that D impacts.

Covering relationships confuse fault localization because
any failed transaction explained by the covered component

(link) can also be explained by the covering component
(router). Other observations can be used to differentiate
such failures; when a router fails, there may be path fail-
ures that do not involve the covered link. But some fault
localization methods are better than others at making this
distinction.
4. Simultaneous failures Diagnosing multiple, simultane-
ous failures is a well-known hurdle. Investigating k simul-
taneous failures among n components potentially requires
examining O(nk) combinations of components. For exam-
ple, in Lync, even if we limit localization to components that
are actively involved in current transactions, the number of
components can be around 600; naively considering 3 si-
multaneous failures as in Joint3 can take days to run. The
key characteristic is the maximum number s of simultaneous
failures; the operator must feel that more than s simultane-
ous failures are extremely unlikely in practice.
5. Collective impact So far, we assumed that a single com-
ponent failure affects an transaction in possibly uncertain
fashion. However, many networks exhibit a more complex
dependency between an transaction and a set of components;
the transaction’s success depends on the collective health of
the components in the set. For instance, when two servers
are in a failover arrangement, the transaction succeeds as
long as any server is functional, and fails only when they
both fail. Collective impact is not limited to failover and
load-balancing servers. Routers or links on the primary and
backup paths in an IP network also have collective impact on
message delivery. Multi-level models such as PML use ad-
ditional logical nodes to model collective impact, but other
models such as DTL and PTL may work badly if the network
has a number of components that exhibit collective impact.1

6. Scale The scale of the network impacts the speed of
fault localization. Faster localization means faster recovery
and increased availability. Scale can be captured using the
total number of components in the network and/or the typical
number of observations fed to the localization algorithm. For

1Our notion of collective impact differs from so called “corre-
lated failures” in the literature which refers to components likely to
fail together such as two servers are connected to the same power
source.

6

Figure 3: Lync architecture. Figure 4: Exchange architecture.

Lync, the two numbers are 8000 and 2500.
Note that these six characteristics follow naturally from

asking "what could go wrong with inference?": measure-
ments can be wrongly recorded(noise); dependencies can be
incomplete (uncertainty); dependencies may involve multi-
ple components(collective impact); and so on. We choose
to study them because we (and other researchers) have seen
each characteristic empirically: e.g., noise in Lync, uncer-
tainty in Exchange.

6. ANALYSIS METHODOLOGY
In this section, we study the relative merits of the choices

made by various localization algorithms in the face of the
six network characteristics listed above. We do this by com-
bining first principles reasoning and simulations of three
diverse, real networks. We first describe our simulation
method and the networks we study; the next subsection
presents our findings.

6.1 Simulation harness
In each simulation, we first select which system compo-

nents fail. These components can be processes, servers, net-
work nodes or links based on context; We note that fault
localization is independent of this granularity (§2). We then
generate enough transactions (some of which fail due to the
simulated failures) such that diagnosis is not limited by a
lack of observations, as is true of large, busy networks [18,
21]. Finally, we feed these observations to the fault localiza-
tion algorithm under consideration and obtain its output as a
ranked list of likely failures. The set of failures is constant
during each run.

Unless otherwise specified, the components to fail and
the transaction endpoints are selected randomly. In practice,
failures may not be random; we have verified that results are
qualitatively similar for skewed failure distributions. In §8,
we show that our findings agree with diagnosing real fail-
ures in Lync and oreproduce results reported in prior work
[8, 17] with real data giving us confidence in this simulation
methodology.

As is common, we quantify localization performance us-
ing diagnostic rank and computation time. Diagnostic rank
is the rank of components that have actually failed.2 This

2In information retrieval terms, diagnostic rank includes the impact
of both precision and recall. It will be high if components deemed
more likely are not actual failures (poor precision) or if actual fail-

measure reflects the overhead of identifying and resolving
real failures, assuming that operators investigate component
failures in the order listed by the localization algorithm.

Our simulation harness takes as input any network, any
failure model, and any combination of localization methods
and produces results. We will make this harness public to
aid the development of future localization algorithms.

6.2 Networks considered
To ensure that our findings are general, we study three

real networks that are highly diverse in terms of their size,
services offered, and network characteristics. The first net-
work (Lync) supports interactive, peer-to-peer communica-
tion between users, the second (Exchange) uses a client-
server communication model, and the third (Abilene3) is an
IP-based backbone. Each network has one or more chal-
lenging characteristics. For instance, Lync has significant
noise and simultaneous failures while Exchange has signif-
icant uncertainty. While networks similar to Exchange and
Abilene have been studied before, to our knowledge we are
the first to study diagnosis in a network similar to Lync.
1. Lync Lync is an enterprise communication system. that
supports several communication modes, including instant
messages, voice, video and conferencing. We focus on the
peer-to-peer communication aspects of Lync. The main
components of a Lync network are shown in Figure 3. In-
ternal users are registered with registrars and authenticated
with AD (active directory). Audio calls connect via medi-
ation servers, and out of the enterprise into a PSTN (public
switched telephone network) using gateways. Edge servers
handle external calls. Branch offices are connected by a
WAN and the PSTN to the main sites.

The deployment of Lync that we study spans many of-
fices worldwide of a large enterprise. It has over 8K com-
ponents (processes) and serves 22K users. We have infor-
mation on the network topology and locations of users. For
a two-month period, we also have information on failures
from the network’s trouble ticket database and on transac-
tions (observations) from its monitoring engine.
2. Exchange Exchange is a popular email system. Trans-
actions in this network include sending and receiving email,
and are based on client-server communication. Important

ures are deemed unlikely (poor recall).
3We chose Abilene (currently called Internet 2) despite its small
size because we had more certainty about its topology and insight
into its characteristics such as uncertainty than other ISPs.

7

components of an Exchange network deployment are shown
in Figure 4 and include mail servers, DNS, and AD servers.
We study the Exchange deployment used in [9]. It has 530
users distributed across 5 regions. The network has 118
components. The number of hubs, mailboxes, DNS and AD
servers in a region are proportional to the number of users.
AD servers are in a load balancing cluster; hubs, DNS and
mailbox servers are in a failover configuration.
3. Abilene Abilene is an IP-based backbone that connects
many academic institutions in the USA. The topology [1]
that we use has 12 routers and 15 links, for a total of 27
network components. The workload used for Abilene con-
sists of paths between randomly selected ingress and egress
routers selected.

7. ANALYSIS RESULTS
Table 4 summarizes our analysis of the design space by

qualitatively rating models, scoring functions and explorers
based on how well they handle the six network character-
istics from §5. For each network characteristic (columns),
the Table rates each method as being good, OK, or poor.
An empty (shaded) subcolumn for a characteristic implies
that each row is qualitatively equivalent with respect to that
characteristic. For instance, the choice of state space ex-
plorer has little impact on the ability to handle uncertainty.
We have empirically verified such equivalence, but we omit
these experiments from this paper and focus on parts of the
table where different options behave differently. Each such
finding highlights the relative merits of choices given a net-
work characteristic4, and we use it later to guide the design
of Gestalt.

Our simulations often modify the baseline networks since
we had to isolate individual traits. E.g., to study traits other
than covering relationships, we remove covering nodes.
While we have done an extensive set of experiments on
each of these networks, we demonstrate each finding us-
ing a single network, picking different networks for variety
and omitting results for the others, because the results are
similar.

7.1 Uncertainty
Uncertainty arises when the impact of a component on an

transaction is not certain — such as when a DNS server may
impact a ping, depending on whether the name translation
is cached. Probabilistic models (PTL, PML) naturally han-
dle uncertainty; thus researchers advise against using sim-
pler deterministic models such as DTL [6, 13]. But we find,
perhaps surprisingly, that despite being deterministic, DTL
can handle uncertainty if it uses the right scoring function.
Finding 1 In the presence of uncertainty, DTL suffices if
the scoring function is FailureOnly. Consider a component
such as a DNS server whose impact on a specific transaction
4While a given network may have more than one of these charac-
teristics, we can study each characteristic in isolation because we
control the conditions in simulations.

Figure 5: DTL can han-
dle uncertainty when used
with FailureOnly. [Ex-
change]

Figure 6: FailureOnly per-
forms poorly for covering
relationships. [Abilene]

say a ‘ping’, Ping 1 is uncertain. In DTL, this uncertainty
must be resolved (since the model is binary) in favor of as-
suming impact; for instance, we must assume that Ping 1
depends on the DNS server even if Ping 1 used a locally
cached DNS translation. (If we err in the opposite direction
and assume that Pings do not depend on the DNS server, we
would never be able to implicate the DNS server if the cache
is empty and the DNS server fails.)

If this assumption happens to be true, no harm is done.
But if false (i.e., the transaction does not depend on the com-
ponent), there are two concerns. First, consider the case
when the the real failure was a different component; for ex-
ample, Ping 1 failed because some router R in the path failed
and not because the DNS server D failed. In that case, D
may be considered a more likely cause of the failure of Ping
1 than R; but this can increase the diagnostic rank of R by
at most 1, which is insignificant.

The second, more important, concern is that the ability
to diagnose the failure of the falsely connected component
itself may be significantly diminished. For example, when
the DNS failure D fails, other Pings (say Ping 2 and Ping 3)
may succeed because they use cached entries. This can con-
fuse the fault localization algorithm because it increases the
number of unexplained successes nS attributed to D, and
decreases eS, potentially increasing significantly the diag-
nostic rank of D.

But since FailureOnly functions use only eF and nF in
computing their score, they are not hindered by the false con-
nection. On the other hand, FailureSuccess and InBetween
are negatively impacted because they do use eS and nS.

Figure 5 provides empirical confirmation for this finding
using Exchange which has significant uncertainty because of
the use of DNS servers whose results can be cached. It plots
the diagnostic rank for 1000 trials; in each trial, a single ran-
dom failure is injected. Observe that DTL with FailureOnly
handles uncertainty just as well as PML and PTL. By con-
trast, DTL with FailureSuccess has much worse diagnostic
rank (50 versus 5 in some trials). An implication of Find-
ing 1 is that if the network has only uncertainty, it can be
best handled (with small computation time and comparable
diagnostic rank) using DTL and FailureOnly without using
probabilistic models such as PTL.

8

Observation Covering Simultaneous Collective
Uncertainty Noise relationship failures Impact Scale

DTL Good w/ FailureOnly. Poor GoodPoor w/ other scoring funcs.
PTL Good Poor OK
PML Good Good w/ Jointk . OK

Poor otherwise.
FailureOnly(FO) Good Poor Poor Good

InBetween Good w/ PTL, PML OK Good OKPoor with DTL
FailureSuccess(FS) Good w/ PTL, PML. Good Good OKPoor with DTL
Independent(Ind) Good Poor Poor Good

Jointk(Jt_k) Good Good (s≤k). Good (c≤k). Poor
Poor (s>k) Poor (c>k)

Gsc Poor Good∗ Poor Good
Hierarchical Poor Poor Poor OK

Table 4: Effectiveness of diagnostic methods with respect to factors of interest. ∗ depends on the network.

(a) Scoring functions (b) State space explorers

Figure 7: Sensitivity to observation noise. [Abilene]

7.2 Observation noise and Scoring Functions
Finding 2 FailureSuccess is most robust to observation

noise, followed by InBetween, and then by FailureOnly.
To understand this finding, note that noise turns successful
transactions into apparent failures or vice versa. This per-
turbs scoring function elements such that eF ′=eF±∆eF ,
and so on for nF, eS and nS. Because noise perturbs all basic
elements, it impacts all scoring functions.

But the extent of perturbation differs because each scor-
ing function combines these elements differently (Table 3).
FailureOnly is the most impacted because it uses only fail-
ure elements (eF and nF). These elements can change sig-
nificantly as noise turns successful transactions, which are
more common, into apparent failures. FailureSuccess is the
least impacted as it uses both failure and success informa-
tion (eF+eS), which is perturbed less. InBetween falls be-
tween these extremes. In general, using more evidence and
all available elements reduces sensitivity to noise.

For example, suppose in the ground truth before noise,
there are 5 failed transactions and 100 successful transac-
tions. Due to 5% noise, say 5 of the successful transactions
are turned to failures and 1 of the failures is turned into a suc-
cess. Now there are 5 incorrectly observed failures to add to
4 true failures. A component C that explained a single fail-
ure before noise could easily explain 3 failures (1 real plus
2 noise-induced) failures after noise. This could triple C’s

score if FailureOnly is used, incorrectly boosting C’s diag-
nostic rank. On the other hand, suppose the same compo-
nent explained 20 successes before noise and 21 after noise.
Then measures like FailureSuccess will be less affected be-
cause they equally weight explained failures and successes;
the (typically) larger number number of successes will be
less sensitive to noise than the (typically) smaller number of
failures.

Figure 7(a) confirms this behavior. We inject single node
or link failures in Abilene and introduce 0-50% noise. We
run 100 trials for each noise level and plot the median diag-
nostic rank for each level. This graph uses DTL and Inde-
pendent as the system model and state space explorer; the
relative trends are similar with other combinations.

7.3 Observation Noise and State exploration
Finding 3 Iterative state space explorers, Gsc and Hierar-
chical, are highly sensitive to noise. This sensitivity stems
directly from the iterative nature of these methods. An er-
roneous inference (due to noise) made in an early iteration
can cause future inferences to falter. Independent and Jointk,
which are not iterative, do not have this shortcoming.

Figure 7(b) confirms this behavior. In this experiment,
we introduced two independent failures in Abilene and 0-
50% observation noise. The experiment uses DTL and
FailureSuccess while varying the state space explorer; other
combinations of model and scoring function produce similar
trends. Figure 7(b) plots the median diagnostic rank across
100 trials. We see that Gsc and Hierarchical deteriorate with
even small amounts of noise.

Finding 3 helps explain the extreme sensitivity of SCORE,
which uses FailureOnly and Gsc, to noise, that prior work
[18] empirically observed but did not fully explain. The
earlier paper [18] tried to alleviate the impact of noise by
running multiple instances of fault localization on different
topologies (which has high overhead) while retaining Fail-
ureOnly and Gsc, methods inherently sensitive to noise.

7.4 Covering relationships

9

Recall that a component C covers a component D if the
set of transactions that D impacts is a subset of the set of
transactions that C impacts. In other words, when an trans-
action that D impacts fails, it is impossible to distinguish a
failure of C from that of D by looking only at failures.
Finding 4 For covering relationships, FailureOnly scoring
functions should not be used. Other scoring functions (Fail-
ureSuccess and InBetween) can better disambiguate the fail-
ures of the covering and covered component because they
use successful transactions (eS, nS) as well, and not only
failed ones. For instance, consider a failed link. All failed
transactions due to the link can also be explained by the fail-
ure of the attached routers. However, by using successful
transactions that include the routers but not the failed link,
the scoring function can assign a higher likelihood to link
failure than router failure.

Figure 6 provides empirical evidence for Finding 4 by
showing the results of an experiment using Abilene, which
has many covering relationships. We randomly introduced
a single failure in the network and diagnosed it using dif-
ferent scoring functions (combined with DTL and Indepen-
dent). We see that FailureOnly has the worst performance
with non-zero diagnostic rank in 60% of the trials while the
other two methods have rank 0 most of the time.

We note that FailureOnly has been used by several tools to
diagnose ISP backbones [11, 17, 18], which have many cov-
ering relationships. Finding 4 suggests that the localization
accuracy of these tools can be improved by changing their
scoring function.

7.5 Simultaneous failures
We now discuss simultaneous failures of components that

have independent impact on transactions. The next section
discusses collective impact.
Finding 5 For a small number of simultaneous failures
(s≤k), Jointk is best and Hierarchical is worst. The ef-
fectiveness of Jointk follows because it directly examines
all system states with k or fewer failures. Hierarchical
does poorly because its clustering approach forces it to ex-
plain more failures than needed. Suppose three transactions
O1, O2, O3 have failed and component C explains the first
two failures and no other component explains more fail-
ures. Suppose, however, that C also impacts transaction O4.
Then Hierarchical will add C to the cluster but will also add
transaction O4 as a new failed transaction to be explained
by subsequent iterations. Intuitively, the onus of explain-
ing more failures than those observed can lead Hierarchical
astray in later iterations. Independent is less susceptible
because it evaluates each component independently.

Gsc presents an interesting case study. As long as the
failed components are diverse, it is more effective than Inde-
pendent because it chooses the smallest set of failed compo-
nents that explain the failures. However, Gsc can fail badly
if multiple sets of component failures can explain the failed

(a) 2 simultaneous failures (b) 3-4 simultaneous failures

Figure 8: Ability of state space explorers to handle si-
multaneous failures. [Abilene]

transactions; this can happen, for instance, when the network
has many covering relationships. (The analysis of covering
relationships in §7.4 considered single failures, which Gsc
can handle well.)

For example, consider a network with two routers R1 and
R2 with a link L between them. If both R1 and R2 fail,
Gsc will prefer the more parsimonious explanation that L
failed. Worse, Gsc (unlike Joint2) will never consider the
joint failure of R1 and R2, making the diagnostic rank of
the actual failure extremely high. On the other hand, if two
other routers R3 and R4 fail simultaneously but do not have
a link between them, Gsc will do very well.

Figure 8(a) shows the performance of different state space
explorers when diagnosing two (randomly picked) simulta-
neous failures in Abilene. The graph uses PML and Fail-
ureSuccess; other combinations produce similar trends. We
see that Jointk is highly effective (rank 2 or less), and Hi-
erarchical is poor (rank > 20 in 25% of trials). Gsc has
bimodal behavior with a rank > 25 in a small fraction of
trials. Closer investigation confirms that these trials involve
the simultaneous failures of two components who together
cover a third component.

Finding 5 explains why Pinpoint [8], which uses Hierar-
chical, has poor performance (see Figure 4 in [8]) for even
two simultaneous failures, despite the handling of simulta-
neous failures being an explicit goal of Pinpoint. It sug-
gests that replacing Hierarchical state space exploration in
Pinpoint (with, say, Joint2) while keeping the same system
model and scoring function would improve Pinpoint’s diag-
nosis of simultaneous failures.

More broadly, Table 4 shows that the performance of Hi-
erarchical is similar or worse than Independent and Gsc in
all cases. We thus recommend that future algorithms not
consider this method.
Finding 6 Jointk handles simultaneous failures poorly in
large networks. First, Jointk’s computation scales poorly
with network size because considering every subset of k
components among n components takes O(nk) time. As we
demonstrate later (Figure 12(c)), running Joint3 with k = 3
takes 21 minutes even when run on a small 67 component
network. In practice, our Lync network has 8000 compo-
nents but other considerations allow limiting the number of
components to be considered in a failure to be around 600.

10

(a) 2 collective failures (b) 3 collective failures

Figure 9: Ability of a model, state space explorer combi-
nation to handle collective impact failures. [Abilene]

Scaling to this size would require three orders of magnitudes
more time (which is many days) to run Joint3 in which case
a manager may as well conduct manual localization.

Then, we also find that if the number of simultaneous fail-
ures s is greater than k, Jointk is in fact no better than Inde-
pendent or another scoring function. That is, the high cost of
Jointk is not worthwhile unless one can afford to use a k ≥ s.
Figure 8(b) shows an example experiment over Abilene, in
which k < s. Joint2 is no more effective than Independent.

Thus, while Jointk does better than Independent and
GSC in handling noise and collective impact, it cannot han-
dle simultaneous failures well in large networks.

7.6 Collective impact
We now study simultaneous failures of components that

have a collective impact on transactions by being, for in-
stance, in a load balancing or failover relationship. We
find that in such cases, the choice of system model and
state space explorer should be jointly made. We explore
two cases: when the number s of failed components in a
collection is small (s≤k), and when it is large (s>k).
Finding 7 For diagnosing a small number of simultaneous
failures in a collection (s ≤ k), combining PML and Jointk
is most effective; any other system model or state space ex-
plorer leads to poor diagnosis. This is because, among ex-
isting models, only PML can encode collective impact rela-
tionships. Other models represent approximations that can
be far from reality. However, picking the right model is not
enough. The state explorer must also consider simultaneous
failure of these components. Among existing state space ex-
plorers, only Jointk has this property. Independent does not
consider simultaneous failures, and Gsc and Hierarchical as-
sume that components have independent impact.

Figure 9(a) demonstrates this behavior. We modeled fail-
ures among components with collective impact in Abilene as
follows. Each trial randomly selects a pair of nodes that has
two vertex-disjoint disjoint paths between them. For mes-
sages between these nodes, the two paths can be considered
to be in a failover relationship with collective impact; i.e.,
if nodes or links along one path fails, route recomputation
allows the other path to be automatically used. We then in-
troduced a randomly selected failure along each path. Thus,
all messages sent between the pair of nodes will now fail.

For 1000 such trials, the graph plots the diagnostic ranks of
several combinations of system model and state space ex-
plorer. It uses the FailureSuccess scoring function, but other
functions yield similar results. We omit results for Gsc and
Hierarchical; they had worse performance than Independent.
As we can see, only PML+Joint2 is effective.

This result implies that half-way measures are insuffi-
cient for diagnosing collective impact failures. We must
both model relationships (PML) and explore joint failures
(Jointk). Localization suffers severely if either choice is
wrong. For example, Shrink [13] uses PTL with Jointk even
though it targets IP networks which may have potentially
many failover paths. Finding 7 suggests that Shrink would
do better to replace PTL with PML.

7.6.1 Large number of failures
Finding 8 For s simultaneous failures with collective im-
pact, PML+Jointk, k < s provides no advantage. Finding
7 may seem to imply that Joint2 suffices for failures with
collective impact. However, intuitively Joint2 works well in
Figure 9(a) because there are only two simultaneous failures
with collective impact. How well does Joint2 do when there
are 3 simultaneous failures with collective impact?

Figure 9(b) answers this question. We articially intro-
duced a few additional links in the Abilene topology to al-
low three (one primary plus two backups) disjoint backup
paths for some source-destination pairs. We then failed a
(randomly selected) component along each of the three paths
and diagnosed the failure by combining PML with Indepen-
dent and Joint2. As we can see, PML+Joint2 is as poor at
diagnosing these failures as PML+Independent.

As with independent, simultaneous failures this result im-
plies that with current methods there are no half-way mea-
sures in diagnosing simultaneous failures with collective im-
pact. To be able to diagnose s failures, we must either use
Joints or some other lower overhead method that considers
combinations of k faults.

8. Gestalt
The insights from the analysis above led us to develop

Gestalt. It combines ideas from existing algorithms and also
includes a new state space exploration method.

For the system model, Gestalt uses a hybrid between DTL
and PML that combines the simplicity of DTL (fixed num-
ber of levels, deterministic edges) with the expressiveness of
PML (ability to capture complex component relationships).
Our model has three levels, where the top level corresponds
to system components that can fail independently and the
bottom level to transactions. An intermediate level captures
collective impact of system components. Instead of encod-
ing probabilistic impact on the edges, the intermediate node
encodes the function that captures the nature of the collec-
tive impact. The domain of this function is the combinations
of states of the parent nodes, and the range is the impact
of each combination on the transaction. Figure 10(a) shows

11

1 Hall = {};
2 foreach hitRatio in (1, 0.95, · · · 0) do
3 Hcurr = (); //current hypothesis
4 Ounexp = Oall; //unexplained observations
5 Hall += GenHyp(1, Ounexp, hitRatio, Hcurr);

end
6 return Hall;

GenHyp(i, Ounexp, hitRatio, Hcurr)
1 Hreturn = {Hcurr };
2 Cnew = NewCandidates(hitRatio, Ounexp);
3 foreach c in Cnew do
4 hypnew = (hyp, c);
5 if i == k then
6 Hreturn += hypnew;

end
7 else
8 Oexp = ExpObs(hypnew ,Ounexp);
9 Hreturn += GenHyp(i+1, Ounexp − Oexp,

hitRatio, hypnew);
end

end
10 return Hreturn

NewCandidates(hitRatio, Ounexp)
1 Cnew = {};
2 foreach c in CandidatePool do
3 if HitRatio(c) ≥ hitRatio then
4 Cnew += c;

end
end

5 scoremax = MaxScore(Cnew , Ounexp);
6 scorenoise = Noisethresh × |Ounexp |;
7 foreach c in Cnew do
8 if (Score(c) ≥ scoremax − scorenoise) then
9 Cnew −= c;

end
end

10 return Cnew

Algorithm 1: Pseudocode for Gestalt

how Gestalt models the example in Figure 2a. The interme-
diate node I encodes the collective impact of R1 and R2.
The function represented by I is shown in the figure, which
shows values only for pup (pdown=1–pup).

While for this example, PML too has only three levels,
Figure 10(b) illustrates the difference between PML and
Gestalt. Here, to reach S, C spreads packets across R1
and R2, and R2 spreads across R3 and R4. Figures 10(c)
and 10(d) show PML and Gestalt models for this network.

Another difference between PML and our model is how
we capture single components with uncertain impact on a
transaction (e.g., a DNS server whose responses may be
cached). Gestalt models these with 3 levels too. An inter-
mediate node captures the uncertainty from the component’s
state to its impact on the transaction. It may deem, for
instance, that the transaction will succeed with some proba-
bility even if the component fails.

As scoring function, we use FailureSuccess because of its
robustness to noise and covering relationships (Findings 2
and 4). Further, because we explicitly model uncertainty

(unlike DTL), the combination of our model and Failure-
Sucess will be robust to uncertainty as well (Finding 1).

For state space exploration, we develop a method that has
the localization accuracy of Jointk and the low computa-
tional overhead of Gsc. It is based on the following obser-
vations. Gsc is susceptible to covering relationships because
many failure combinations can explain the observations and
Gsc explores only a subset, ignoring others (Finding 5). Gsc
is susceptible to noise because noise can make it pick a poor
candidate and rule out other possibilities (Finding 3). The
diagnostic accuracy of Jointk for collective impact failures
stems from the fact that it explore combinations of at most k
failures; exploring a smaller number does not help (Finding
7, 8). But because its exploration is fully combinatorial, it
has a high computational overhead.

Our new exploration method is shown in Algorithm 1.
It takes two parameters as input. The first is Noisethresh,
the percentage of observation noise expected in the network,
which can be estimated from historical data. Given ground
truth (post resolution) about a failure and the transaction
logs, the percentage of transactions that cannot be explained
by the ground truth reflects the level of observation noise.
In Lync, we found this to be around 10%. The second pa-
rameter is k, the maximum number of simultaneous failures
expected in the network. It can also be gleaned from histor-
ical failure data.

The candidate failures that we explore are single compo-
nent failures and combinations of up to k components with
collective impact. This candidate pool explicitly accounts
for collective impact failures (making them diagnosable, un-
like in Gsc). It is also much smaller than the pool considered
by Jointk which includes all possible combinations of up to
k failures. The output of the exploration is a ranked list of
hypotheses, where each hypothesis is a set of at most k can-
didates from the pool.

These sets are computed separately for different thresh-
olds of hit ratio [17]. The hit ratio of a candidate is the ratio
of number of failed versus total transactions in which the
component(s) participated. Iterating over candidates in de-
creasing order of hit ratios gives us a systematic way of ex-
ploring failures while focusing on more likely failures first
because actual failures are likely to have larger hit ratios. Hit
ratios are not used in the scoring function.

For a given hit ratio threshold, the hypothesis sets are built
iteratively (i.e., not all possible sets are considered) in k
steps. We start with the empty set. At each step, each set
is forked into a number of child sets, where each child set
has one additional candidate than the parent set.

The child candidates are computed as follows. Let Ounexp

be the set of observations whose status cannot be explained
by the parent set (i.e., the status does not match what would
be predicted by the system model). Initially, when the parent
set is empty, this set equals Oall, the set of all observations.
Then, we first compute the score of each candidate in the en-
tire pool with hit ratio higher than the current threshold. This

12

(a) Gestalt model for Figure 2a (b) Another example
network

(c) PML model
for Figure 10(b)

(d) Gestalt model for Fig-
ure 10(b)

Figure 10: Modeling in Gestalt

computation uses the scoring function (FailureSuccess) and
is done with respect to Ounexp. Candidates more likely to
explain the as yet unexplained observations will have higher
scores.

If there were no observation noise, candidates with the
maximum score can be used as child candidates because they
best explain the remaining unexplained observations. But it
is not robust to noise. Due to noisy observations, the score
of actual failures may go down and the score of some other
candidates may go up. By focusing only on candidates with
the maximum score, we run the risk of excluding actual fail-
ures from the set. In fact, this is a key reason why Gsc is not
robust to noise.

We thus cast a wider net, with the width of the net propor-
tional to expected noise. The quantity by which the score
of the actual culprit can reduce due to observation noise
scorenoise = Noisethresh × |Ounexp| . The selected child
candidates are those with scores higher than scoremax −
scorenoise, where scoremax is the maximum score across
all candidates. This guarantees that we will not miss actual
failures in our iterations. We will, however, pick more can-
didates, but the eventual cost of that is significantly lower.

9. GESTALT EVALUATION
We now evaluate Gestalt and compare it to three exist-

ing algorithms that use very different techniques. We start
with the Lync network and use the algorithms to diagnose
real failures using real transactions available in the system
logs. Based on information from days prior to the failures
we diagnose, we set Noisethresh=10% and k=2 for Gestalt.

Figure 11 shows the results for a number of failures seen
in a two month period (the actual failure count is hidden for
confidentiality). The legend shows the median running time
for the algorithms on a 3 GHz dual-core PC. We see that
SCORE and Pinpoint perform poorly. Gestalt and Sherlock
perform similarly, but the running time of Gestalt is lower by
more than an order of magnitude. This is despite the fact that
we ran Sherlock with Joint2. Using Joint3, which was the
recommendation in the original Sherlock paper [6], would
have taken around 20 hours per failure.

Figure 11: Comparison of diagnostic efficacy of different
algorithms for real failures in a Lync deployment.

Table 5: Statistics for a sample of real failures in Lync.

Table 5 provides more details for ten sample failures in the
logs. We see that the time it took for the operators to man-
ually diagnose these failures (original recovery delay) was
very high. The median time was around 8 hours, though it
took more than a day for two failures. The primary reason
for slow manual diagnosis time is the large number of net-
work components that must be manually inspected. The ta-
ble lists the number of components involved in failing trans-
actions as an estimate of the number of possible compo-
nents that might need to be checked. Of course, using do-
main knowledge and expertise, an operator will only check
a subset of these components; but the estimate underscores

13

the challenge faced by operators today. We see that using
Gestalt, the operator will have to check only 3-13 compo-
nents before identifying the real culprits compared to 196-
655 components for manual diagnosis, significantly reduc-
ing diagnosis time. Note that the run time for Gestalt to
whittle down the list of suspects by 1-2 orders of magnitude
is at most a few minutes.

We next consider failures in the Exchange network. Fig-
ures 12(a) and 12(b) show results for diagnosing one and
two component simulated failures. We again used Joint2 for
Sherlock and k=2 and Noisethresh=0 for Gestalt. As ex-
pected based on our earlier analysis, Score does very well
for single failure scenarios, but suffers in two-failure scenar-
ios due to covering relationships. Sherlock and Gestalt do
well for both cases, but Sherlock takes two orders of magni-
tude more time.

In order to experiment with more simultaneous failures
and Joint3, we reduced the size of the Exchange network
by half (to 67 components). Figures 12(c) and 12(d) show
the results for three failures and for four failures with 1%
observation noise. In the latter case, we run Gestalt with
Noisethresh=1%. We see that Gestalt matches Sherlock’s
diagnostic accuracy for three failures, with running time that
is two orders of magnitude faster. For four failures, Gestalt
has better diagnostic accuracy than Sherlock because it ac-
counts for noise. Its running time is still better by 20x, even
though noise makes it explore more combinations of com-
ponent failures.

Due to space constraints, we omit results for the Abilene,
but we found those results to be qualitatively similar to those
above. Gestalt had better diagnostic efficacy than SCORE
and Pinpoint for all cases. Gestalt matched Sherlock’s accu-
racy for most cases and exceeded it in the presence of noise
and more than three simultaneous failures. Its running time
was 1-2 orders of magnitude lower than Sherlock.

10. CONCLUSIONS AND FUTURE WORK
We presented a framework that helps understand the de-

sign space of practical fault localization algorithms. Using
this framework, we analyzed the effectiveness of different
algorithms at handling six characteristics of large, complex
networks that pose a challenge to fault localization. We
also found that no existing algorithm simultaneously pro-
vides high diagnostic accuracy and low computational cost
for a range of networks.

Based on the insights from our analysis, we designed
Gestalt, a new fault localization algorithm that borrows ideas
from existing algorithms but also includes a new state space
exploration method. This method represents a continuum
between greedy, low-accuracy exploration and combina-
torial, high-overhead exploration. For three very different
networks (messaging, email, ISP), Gestalt has higher diag-
nostic accuracy or lower overhead than existing algorithms.

We believe even better performance can be obtained by
exploiting more refined fault models; for example, there

should be locality among simultaneous failures in a global
network. But beyond the specific algorithm, we hope our
paper takes a modest step towards understanding the gestalt
of fault localization.

11. REFERENCES
[1] Abilene Topology. http://totem.run.montefiore.ulg.

ac.be/files/examples/abilene/abilene.xml, 2005.
[2] Microsoft Lync. http://en.wikipedia.org/wiki/Microsoft_Lync, 2012.
[3] AGARWAL, S., LIOGKAS, N., MOHAN, P., AND PADMANABHAN,

V. N. Webprofiler: Cooperative diagnosis of web failures. In
COMSNET (2010).

[4] AGGARWAL, C. C. Re-designing distance functions and
distance-based applications for high dimensional data. In SIGMOD
Record (2001).

[5] AGUILERA, M. K., MOGUL, J. C., WEINER, J. L., REYNOLDS, P.,
AND MUTHITACHAROEN, A. Performance debugging for distributed
systems of black boxes. In SOSP (2003).

[6] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S.,
MALTZ, D., AND ZHANG, M. Towards highly reliable enterprise
network services via inference of multi-level dependencies. In
SIGCOMM (2007).

[7] BEYER, K., GOLDSTEIN, J., RAMAKRISHNAN, R., AND SHAFT,
U. When is "nearest neighbor" meaningful? In ICDT (1999).

[8] CHEN, M., KICIMAN, E., FRATKIN, E., AND FOX, A. Pinpoint:
Problem determination in large, dynamic, internet services. In IPDS
(2002).

[9] CHEN, X., ZHANG, M., MAO, M., AND BAHL, P. Automating
network application dependency discovery:experiences, limitations,
and new solutions. In OSDI (2008).

[10] CUNHA, T., TEIXEIRA, R., FEAMSTER, N., AND DIOT, C.
Measurement methods for fast and accurate blackhole identification
with binary tomography. In IMC (2009).

[11] DHAMDHEREY, A., TEIXEIRA, R., DOVROLIS, C., AND DIOT, C.
Netdiagnoser: Troubleshooting network unreachabilities using
end-to-end probes and routing data. In CoNEXT (2007).

[12] HECKERMAN, D. A tractable inference algorithm for diagnosing
multiple diseases. In Uncertainty in Artificial Intelligence (1989).

[13] KANDULA, S., KATABI, D., AND VASSEURI, J.-P. Shrink: A tool
for failure diagnosis in ip networks. In MineNet workshop (2005).

[14] KANDULA, S., MAHAJAN, R., VERKAIK, P., AGARWAL, S.,
PADHYE, J., AND BAHL, V. Detailed diagnosis in computer
networks. In SIGCOMM (2009).

[15] KATZ-BASSETT, E., MADHYASHTA, H. V., JOHN, J. P.,
KRISHNAMURTHY, A., WETHERALL, D., AND ANDERSON, T.
Studying black holes in the internet with hubble. In NSDI (2008).

[16] KLINGER, S., YEMINI, S., YEMINI, Y., OHSIE, D., AND STOLFO,
S. A coding approach to event correlation. In International
Symposium on Integrated Network Management (1995).

[17] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNOEREN,
A. IP fault localization via risk modeling. In NSDI (2005).

[18] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNOEREN,
A. Detection and localization of network blackholes. In Infocom
(2007).

[19] LAKHINA, A., CROVELLA, M., AND DIOT, C. Diagnosing
network-wide traffic anomalies. In SIGCOMM (2004).

[20] MAHAJAN, R., SPRING, N., WETHERALL, D., AND ANDERSON,
T. User-level internet path diagnosis. In SOSP (2003).

[21] MAHIMKAR, A., GE, Z., SHAIKH, A., YATES, J., ZHANG, Y.,
AND ZHAO, Q. Towards automated performance diagnosis in a large
iptv network. In SIGCOMM (2009).

[22] MURPHY, K. P., WEISS, Y., AND JORDAN, M. I. Loopy
belief-propagation for approximate inference: An empirical study. In
Uncertainty in Artificial Intelligence (1999).

[23] NAGARAJ, K., KILLIAN, C., AND NEVILLE, J. Structured
comparative analysis of systems logs to diagnose performance
problems. In NSDI (2012).

[24] OLINER, A. J., AND AIKEN, A. Online detection of
multi-component interactions in production systems. In DSN (2011).

14

(a) Single failure (b) Two simultaneous failures (c) Three simultaneous fail-
ures

(d) Four simultaneous failures,
1% Noise

Figure 12: Diagnostic efficacy of different algorithms with Exchange network with different number of failures.

[25] REYNOLDS, P., WEINER, J. L., MOGUL, J. C., AGUILERA, M. K.,
AND VAHDAT, A. Performance debugging for distributed systems of
black boxes. In WWW (2006).

[26] RISH, I. Distributed systems diagnosis using belief propagation. In
Allerton Conf. on Communication, Control and Computing (2005).

[27] STEINDER, M., AND SETHI, A. Probabilistic fault localization in
communication. In IEEE/ACM Trans. Networking (2004).

[28] STEINDER, M., AND SETHI, A. A survey of fault localization
techniques in computer networks. In Science of Computer
Programming (2004).

15

	Introduction
	Related Work
	Fault Localization Anatomy
	Design Space for Localization
	System Model
	Scoring function
	State space exploration
	Mapping fault localization algorithms

	Network Characteristics
	Analysis methodology
	Simulation harness
	Networks considered

	Analysis results
	Uncertainty
	Observation noise and Scoring Functions
	Observation Noise and State exploration
	Covering relationships
	Simultaneous failures
	Collective impact
	Large number of failures

	Gestalt
	Gestalt Evaluation
	Conclusions and Future Work
	References

