
Measuring and Troubleshooting Large Operational
Multipath Networks with Gray Box Testing

Hongyi Zeng†∗, Ratul Mahajan§, Nick McKeown†
George Varghese§, Lihua Yuan§, Ming Zhang§

†Stanford University §Microsoft
{hyzeng,nickm}@stanford.edu, {ratul,varghese,lyuan,mzh}@microsoft.com

ABSTRACT
Troubleshooting large operational networks is extremely dif-
ficult due to the extensive usage of multipath routing. We
present NetSonar, a system that localizes performance prob-
lems in such networks. It uses planned tomography, whose
input comes from a novel test technique that maximizes com-
ponent coverage while minimizing probing overhead. Ear-
lier techniques are either white box (assuming complete knowl-
edge of network’s forwarding state) or black box (assum-
ing no knowledge). We argue that the former is infeasi-
ble in large networks and the latter is inefficient. We use
gray box technique that needs only coarse forwarding in-
formation (e.g., multipath configuration without knowledge
of router-internal hash functions). NetSonar deals with non-
determinism in multipath by computing probabilistic path
covers, and localizes faults accurately with minimal test over-
head via diagnosable link covers. We describe our expe-
rience deploying NetSonar in a global inter-datacenter net-
work. In a one-month period, NetSonar triggered 66 alerts,
of which 56 were independently verified.

1. INTRODUCTION
In large networks, performance faults such as high

latency are not only commonplace but also difficult to
localize. Ideally, these faults would be repaired before
users complain. In the global inter-datacenter (DC) net-
work that we study, operators tried to achieve this by
monitoring SNMP counters (e.g., link load and drops)
at routers and alerting when the values cross a thresh-
old. Unfortunately, these counters are noisy and lead
to many false alerts (Section 7.3). Consequently, op-
erators routinely ignore them and instead rely on user
complaints to trigger fault isolation. Without a system-
atic method, and bedeviled by a large number of pos-
sible paths between two hosts, we have observed many
faults that took several hours to detect and localize.

Given the shortcomings of SNMP counters, opera-
tors [24] and researchers [8,10,21,29,30] have proposed
active testing. In such testing, test agents at the net-
work boundary send end-to-end probes (e.g., pings) along
∗Hongyi Zeng was an intern at Microsoft Research while
doing this work. He is now with Facebook.

network paths to detect faults. The results of the probes
are then fed to an localization algorithm using what
is known as network tomography [5]. Classic network
tomography [2, 11, 16] assumes that measurements are
fixed and seeks to maximize the accuracy of inferences
for a given input set of measurements.

However, in many networks, there is an opportunity
to plan the placement of test agents and decide which
probes to send. We can generate a test plan for op-
timal localization while minimizing probing overhead.
The results from executing the test plan can be fed to
a localization algorithm. We call this approach planned
tomography. Our primary contribution is a new test
plan generator for planned tomography in multipath
networks, and deployment results that show its bene-
fits over using router counters.

A straightforward testing technique is to choose all
nodes as test agents and to send test messages between
all pairs of test agents. This is a black box method
because it requires no knowledge of the network. It
shares the shortcomings of any black box tester—lack
of scalability and inability to reason about coverage.
To effectively test large networks, many test agents are
needed, which leads to an intractably large number of
probes per test interval [24]. Even if one could afford all-
pairs testing, it is difficult to reason about which nodes
and links are covered, especially when load balancing
over multiple paths is used in the network.

To overcome these shortcomings, researchers have pro-
posed the equivalent of white box testing [4, 17, 22, 28].
These techniques need detailed information about the
network such as traceroute logs or FIB (forwarding in-
formation base) from each router. Using this informa-
tion, they compute optimal locations for test agents and
a subset of all possible probes that can cover all the
routers and links in the network.

White box testing is impractical for large operational
networks for three reasons. First, existing white box
testers do not handle multipath networks which is pre-
cisely the complication (exponential number of paths
between sources and destinations) that exacerbates man-
ual fault isolation. With ECMP, traceroute logs and

1

the FIB do not fully describe how a given packet will
be forwarded; the outgoing link of a packet is decided
by hashing packet headers. However, the hash func-
tion is often not known to the network operator. Sec-
ond, white box testing is complicated by the amount
of information it needs to gather. Today, router CPUs
tend to be underpowered, and it is not possible to fre-
quently read the millions of FIB prefixes at each of hun-
dreds of routers. Finally, white box techniques assume
that traceroute logs and FIB state represent a consis-
tent snapshot across all routers, which is hard to obtain
in a large network with high churn.

We thus argue that testing in large networks be gray
box. Gray box network testing relies on partial, easily-
obtainable information about the network structure. It
uses this information to efficiently cover all links and
routers, thus offering simultaneously the practicality of
black box testing and efficiency of white box testing.
Based on the information available for a given network,
different gray box testing techniques can be developed.

We develop one such gray box test technique. It uses
as input the set of available paths between a source and
a destination (but not the exact path taken by a given
packet). To handle multipath routing, it computes the
test plan using probabilistic path covers – probes be-
tween a source S and destination D use a computed
number of packet headers such that all paths between
S and D are exercised with high probability. To aid
fault localization, plan computation also uses diagnos-
able link covers – each link is covered by a configurable
number of probes to allow rapid isolation and to ame-
liorate the effects of routing churn.

We develop a network tester, called NetSonar, which
uses our test technique. We deploy it in a global inter-
DC network of a large online service provider, here-
after referred to as IDN, with test agents located in
the DCs. Our results are encouraging. In a one-month
period, NetSonar detected 66 faults involving high la-
tency and localized them to a router or link in the core
of the network. Of these, 56 faults (84.8%) were cross-
verified with other monitoring data sources. Several of
the faults that we detected were deemed high priority,
and upon investigation, the operators confirmed that
NetSonar’s localization was correct. We also found that
SNMP-based alerting would have generated 87 times as
many alerts. The vast majority of these appear to be
false alarms as they are not accompanied by any end-
to-end performance degradation.

2. MOTIVATION
Consider the simple topology in Figure 1 with four

routers and four hosts that can act as test agents. As-
sume that our goal is to test all 3 inter-router links
for gray faults (i.e., those that go undetected by low-
level monitoring such as keep alive messages) that cause

R1 R2 R3 R4

h1 h4h2 h3

Figure 1: Probing based on knowledge of the
network can reduce the number probes by
strategically selecting probes. All-pairs testing
will generate 12 probes, while only 2 probes
(h1→ h4, h4→ h1) can cover all links.

R1

R2

R5 R6

R3

R4

h1 h4

Figure 2: A link with performance problems is
difficult to detect in the presence of multipath
routing.

packet loss or delay. A black box approach such as all-
pairs can achieve this goal, but with 12 (4× 3) probes.
Such quadratic behavior cannot scale to large networks.

A white box approach can compute that the same test
coverage can be achieved using only 2 probes: h1→ h4
and h4 → h1. Both are needed because we must test
the links in both directions. Such minimal probe sets
can be computed by the Min-Set-Cover algorithm, as
in [3,4,28]. While a white box technique can compute a
small set of probes, as mentioned before, it needs highly
detailed information (e.g., the entire FIB state) that is
difficult to acquire in large networks.

Further, current white box approaches do not con-
sider multipath routing, which is prevalent in large net-
works. Figure 2 illustrates the challenge posed by mul-
tipath routing. The network employs equal-cost multi-
path (ECMP): four shortest paths between R1 and R4
are used in parallel (R1 − R2 − R3 − R4, R1 − R2 −
R6−R4, etc.). Assume that the link (R2, R3) is faulty.
There is no guarantee that a probe sent between h1 and
h4 will traverse the faulty link. Whether the faulty link
is covered depends on packet headers in probes and the

2

(unknown) hash function used by R1 and R2.
We develop NetSonar based on the observations above.

We call it gray box because it relies on some knowledge
of network routing but not highly precise information
on how individual routers forward traffic. In particular,
we assume that the set of available paths (four paths in
Figure 2) between each pair of ingress-egress routers is
known, without knowing the precise path a given packet
header traverses.

3. RELATED WORK
NetSonar builds on the long, rich line of work in net-

work fault localization. While it is almost impossible
to cover all prior techniques, we classify prior work into
five categories and describe how we relate to each.

Unplanned tomography: NetSonar’s goal is to iden-
tify links with faults such as congestion, which falls
squarely under Boolean Network Tomography, pioneered
by Duffield et al. [11], followed by many others (e.g., [8,
10, 20, 21, 29, 30]). Besides, more general inference al-
gorithms include SCORE [16] and Sherlock [2]. Un-
planned tomography assumes that the set of input mea-
surements is fixed (and uncontrollable). It thus cannot
provide guarantees on failure detection and coverage
(Section 8.2). NetSonar leverages the inference algo-
rithms developed in this line of work, but provides them
as input the results of its planned testing.

Planned testing: Many researchers have used op-
timization techniques to plan tests. Bejerano and Ras-
togi [4] consider the problem of minimizing test agents
and probes to cover every link. Nguyen and Thiran [22]
extend these results to diagnose multiple failures. Ku-
mar and Kaur [17] further explore test agent place-
ment in the face of routing dynamics. Barford et al. [3]
propose a time-variant weighted based cover algorithm.
ATPG [28] extends traditional link covers to more gen-
eral forwarding and access control rule covers. Huang
et al. [13] evaluate the Nguyen and Thiran’s approach
in a controlled testbed; they point out several practical
issues such as scalability and errors caused by a lack of
consistent snapshots.

NetSonar improves existing planned testing methods
in two ways. First, all these works cannot handle mul-
tipath networks. As we show in Section 4.3, handling
multipath networks is non-trivial, as it requires tech-
niques such as probabilistic path covers. Second, min-
imizing the number of test agents or probes may lead
to identifiability problem, which means bad links are
not uniquely identifiable. Existing approaches usually
require iterative active probing [3] after problem detec-
tion, or direct probing of router interfaces [4, 17]. Our
diagnosable link covers provide a simple, practical way
to balance probing efficiency and identifiability.

Scalable end-to-end monitoring: Scalable end-
to-end monitoring techniques infer end-to-end measures

(e.g., latency) between all test agents using measure-
ments taken between some test agents. Techniques in-
clude rank-based [6], SVD [7], and Bayesian experiment
design [27]. In principle, the results of such methods
could be fed into a network tomography solution to iso-
late high delay links. However, this is an indirect and
unnecessarily complex way to do fault diagnosis. Fur-
ther, the evaluations of these techniques only demon-
strate their effectiveness for inferring end-to-end mea-
sures, not for fault localization.

Multipath measurement: Recent studies [1, 9, 23]
point out that traditional host-based diagnosis tools
such as ping and traceroute are inadequate for multi-
path networks. While Paris Traceroute [1] also varies
packet headers like NetSonar in order to cover paths, it
outputs a topology, not the tuples required for cover-
age. It also uses a dynamic scheme based on hypothesis
testing to discover a multipath topology. By contrast,
NetSonar uses static analysis of the topology to com-
pute the number of random tuples needed.

Using other data sources: NetDiagnoser [10] takes
control plane messages into account in Binary Network
Tomography. Others [14, 15, 18, 19] focus on temporal
correlation between different network events using sta-
tistical mining. These tools complement NetSonar by
exploring several different dimensions.

In summary, the first contribution of NetSonar is test
plan computation for large multipath networks; this is
different from other work that computes test plans but
cannot handle multipathing [4, 17, 21, 28] and require
complete network knowledge. The second contribution
of NetSonar is deployment experience in IDN, together
with comparison with SNMP counter methods.

4. NETSONAR
We designed NetSonar to cover all links and routers

in a global backbone network, mainly targeting perfor-
mance problems such as packet loss and latency spikes.
Today, global backbone networks typically use MPLS to
establish many parallel label switched paths (LSPs) be-
tween two sites. NetSonar examines the network topol-
ogy and LSP configuration to generate test plans with
high link coverage. The plans are then executed by cor-
responding test agents—currently, ping and traceroute
agents. Once the test data is collected, post-processing
cleans the data, triangulates the problem and provides
reports to human operators.

4.1 Overview
NetSonar works in three phases: computing covers,

executing test plan, and localizing faults.
In the first offline bootstrapping phase, NetSonar com-

putes a cover by reading the set of LSPs in the network.1

1In an IP (non-MPLS) network, NetSonar can use shortest
paths or link weights to bootstrap.

3

It then uses its knowledge of routes and available test
agents to compute a set of test probes that forms two
covers: First, for each pair of test agents connected
by N LSPs, it generates a probabilistic path cover by
choosing k random TCP port-pairs to send test pack-
ets between them. If we assume that the (unknown)
hash function in the edge router maps every 5-tuple (IP
source/destination addresses, TCP source/destination
ports, IP protocol type) to a route with equal probabil-
ity, the relationship of N and k follows the analysis of
the “coupon collector’s problem” (Problem 1). Second,
across the entire network, we generate a diagnosable link
cover to cover all links – in other words, if a single link
exhibits a performance fault, there is sufficient informa-
tion for the tester to localize that link without further
probing. This is done by selecting pairs of test agents
so that each link is covered multiple times.

In the second online testing phase, for all these 5-
tuples, NetSonar sends low-frequency traceroute and
high-frequency ping simultaneously. Why is traceroute
needed when we already know the paths through LSPs?
First, LSP information may be outdated when the ac-
tual probes are sent out. More fundamentally, the LSP
information is insufficient. Assume there are two paths
p1 and p2 between S and D. Recall that a probabilis-
tic path cover only guarantees a certain probability of
covering both p1 and p2. However, because of the non-
determinism, for a specific packet, the test agent does
not know whether it is mapped to p1 or p2. Hence,
its ping results cannot be mapped to the correct links.
Traceroute maps each chosen 5-tuple (and ultimately
associated pings) to a specific path. Note that tracer-
oute triggers ICMP responses from routers; thus it can-
not run very often, currently once every five minutes
for each 5-tuple. At the same time, NetSonar sends
ping probes for each 5-tuple chosen in the diagnosable
link cover much more frequently, currently every 3 sec-
onds between any pair of agents. We call this combined
ping-traceroute approach traceable probes. Thanks to
the traceroute done earlier, NetSonar knows the path
taken by each ping packet.

Finally, in the offline analysis phase, NetSonar col-
lects ping and traceroute results, and uses a fault local-
ization algorithm to pinpoint the faulty spot.

The entire NetSonar workflow is an open loop. This is
to ensure that even when forwarding information changes
between phases, each phase can still capture relatively
accurate information. For example, in the offline phase,
the cover calculation does not depend on the traceroute
results in the online phase. Similarly, in the final analy-
sis phase, NetSonar does not need to issue more probes
(back to the online phase) since each link has already
been covered multiple times.

4.2 Components

Controller	
 Data	
 Sink	

Test	
 Agent	

Test Plan
XML

HTTP GET HTTP POST

To Storage

Probes
Ping	
 Traceroute	

Results
CSV

Figure 3: NetSonar Components

NetSonar contains three loosely coupled main com-
ponents: test agents, the controller, and the data sink,
as depicted in Figure 3.

Test agents: Test agents running on DC servers ex-
ecute the test plan. Each test agent contains two test
clients: a TCP traceroute client and a TCP ping client.
Traceroute client collects only path information; ping
client collects latency information.

We choose TCP ping and traceroute because TCP is
the dominant traffic type, hence the test results closely
reflect application-perceived performance. Each ping
probe is a TCP SYN packet sent to an open remote
TCP port. We measure the time gap between this SYN
packet and the returned ACK packet as the latency.
A TCP traceroute probe is a set of SYN packets with
small TTLs, so that routers along the path can return
ICMP Time-Exceeded messages.

Each test agent downloads its own test plan – a list of
commands – periodically. The commands are executed
by both traceroute and ping clients. Traceroutes and
pings in the a single test use the same 5-tuples, so that
we know the exact path for each ping result in a multi-
path network. Notice that these traceable probes also
provide certain level of robustness against path changes
- even the LSP data is slightly outdated, we are still
able to map ping results to correct paths at the time of
testing. Both ping and traceroute intervals are config-
urable. The frequency of traceroute is chosen to avoid
overwhelming routers.

Controller and data sink: The logically central-
ized controller periodically reads the network topology,
LSP data, as well as the health of test agents, and gen-
erates test plans for individual test agents that cover all
links and routers. The controller ensures that traceroute-
triggered ICMP responses from any router and the num-
ber of commands assigned to any individual test agent
are below certain safe thresholds. Moreover, the loss of
individual test agents will not result in a large drop in
coverage. The data sink collects the results in comma-
separated values (CSV) from test agents, and uploads

4

A B

C

D

E

Figure 4: Source multipath. Source router A
can select one of three paths (N = 3).

the aggregated data to data storage for analysis.

4.3 Probabilistic Path Covers
Following Paris traceroute [1], we disambiguate differ-

ent load balancing paths by varying the 5-tuple headers
of ping and traceroute probes between the same pair of
test agents. A fundamental question is: without knowl-
edge of the hash functions used by routers, how many
different 5-tuples are needed to cover all links and in-
terfaces between a pair of test agents?

4.3.1 Source Multipath
We start by examining the source multipath network,

where load balancing only happens at the source router.
A example source multipath network is depicted in Fig-
ure 4: router A is the source router that chooses path
among A−C−B, A−D−B, and A−E−B. This load
balancing approach is popular in LSP-based wide-area
networks such as IDN, where multiple paths are set up
between two edge routers, and only the edge router can
decide the exact path of a particular class of packets.

Consider a router that has N next-hops for a class of
outgoing packets. In the worst case, we need all possible
5-tuples assuming an unknown, adversarial hash func-
tion. Instead, we assume: (1) Each 5-tuple is hashed
to a next-hop with a uniform probability of 1/N ; (2)
Each tuple is treated by the hash function indepen-
dently. The first assumption is reasonable because of
the prevalent use of ECMP to spread the traffic uni-
formly; the second is reasonable because most router
hash functions treat tuples statelessly. With these as-
sumptions, the number of tuples needed can be derived
from the Coupon Collector’s problem [12]:

Problem 1 (Coupon Collector’s Problem).
Suppose that there are N different coupons, equally likely,
from which coupons are being collected with replacement.
What is the probability of collecting all N coupons in less
than k trials?

The analogy is easily seen: each next-hop is a dif-
ferent coupon; each sending of a probe with a specific
5-tuple is equivalent to drawing a coupon from the pool.
Let T be the number of trials needed, we can calculate

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16 18 20

In
fla

tio
n

F
ac

to
r

Number of Next-hops

P=90%
P=95%
P=99%

Expected

Figure 5: The number of 5-tuples needed to ex-
ercise N next-hops, with different confidence.

the expectation as follows:

E(T) = N

N∑
i=1

1

i
∼ O(N log(N))

The expected value of T does not guarantee 100%
coverage. One can calculate the exact probability:

Pr(T ≤ k) =

N∑
i=1

(−1)(i+1)

(
N

i

)(
1− i

N

)k

, where k ≥ N

Figure 5 shows the number of 5-tuples needed to exer-
cise different next-hops. We define the “inflation factor”
as T divided by N . For instance, 75 randomly selected
5-tuples with inflation factor 4.7 can exercise 16 next-
hops with 90% confidence. To achieve 99% confidence,
we need approximately 110 5-tuples with inflation fac-
tor 6.9. Note that the percentage here represents the
confidence to cover all next-hops, not the percentage of
next-hops covered. The analysis above guides NetSonar
in creating a test plan to cover all links and routers in
a multipath network at a given confidence level. We
call each set of 5-tuples between a pair of test agents a
probabilistic cover.

We will show in Section 8.1 that when test agents are
deployed at all sites, we can cover all links and routers
with a smaller inflation factor (e.g., 2 in IDN). This is
because even if some paths are missed between a pair
of test agents, the links on these paths can still be cov-
ered by other test agent pairs. By contrast, a sparse
deployment requires larger inflation factor.

4.3.2 Multilevel Multipath
Today’s data center networks (such as a fat-tree net-

work) often employ a more general load balancing scheme
than source multipath, which we refer to as multilevel
multipath. In multilevel multipath, routers are catego-
rized into levels. A set of “symmetric” links connecting
two levels share the traffic load equally. Figure 4 shows

5

A B

C

D

E

H

I

F

G

Figure 6: Multilevel multipath with 3 levels of
edge, aggregation and core. N is determined by
the maximum number of links between any two
levels (N = 6).

A

C

D F

E

B

1/3
1/3

1/3

1/31/6

1/6

1/2

1/2

Figure 7: General multipath. N can be de-
termined by the minimum traversal probability
(N = 6).

a full-mesh, 3-level network: A and B are two edge
routers; F,G and H, I are two aggregation levels; and
C,D,E form the core level. All three levels can inde-
pendently make load balancing decisions. For example,
router F can choose C, D, or E as its next hop.

Observe that the number of unique paths grows ex-
ponentially – in this example, there are 2× 3× 2 = 12
paths between A and B. However, this does not imply
that we should plug N = 12 into Problem 1. This is
because a packet sent from A to B has a probability
of 1/2 to traverse any particular link between edge and
aggregation levels such as (A,F), and a probability of
1/6 to traverse any link between aggregation and core
such as (F,C). Hence, we need approximately 2 log (2)
and 6 log (6) packets respectively to cover these links.
Since the same packet will traverse all levels, we only
need the maximum (not the sum or product) of these
two numbers, which is equivalent to N = 6.

More generally, in a multilevel multipath network,
the results in Problem 1 can apply where N equal to
the maximum number of links between any two levels.

4.3.3 General Multipath
A natural way to generalize multilevel multipath is

to remove the constraints of levels and symmetry. Such
general multipath routing is common in large ISP net-
works. In general, the set of paths between a source and
destination forms a single-source, single-sink directed
acyclic graph, where each node represents a router, and

each edge marks a (possible) forwarding direction. Fig-
ure 7 shows such an example. For simplicity, assume
that each node sends packet to all its next hops with
equal probability as in ECMP.

We first calculate the probability of a random packet
sent from A to B traversing a particular link, called
traversal probability :

1) Sort the nodes topologically so that any prior hop
of a node X occurs before X in the sorted order.

2) Initialize the traversal probability of all links and
nodes to 0 except for the source node which is assigned
probability 1.

3) Start from the source node in topological order: for
each node with probability of p and m outgoing links,
assign p/k to each outgoing link and add p/m to each of
its next-hop node’s probability. Note that we can gen-
eralize to unequal load balancing (as in weighted cost
multipath) by having each node add a weighted portion
of its probability to its next-hop. We can add these
probabilities because the events are disjoint: a particu-
lar packet must arrive from exactly one prior hop.

In Figure 7, each link is annotated with its traversal
probability. For example, a random packet sent from A
to B has probability of 1/3 traversing link (C,F).

Next, we find the link l with minimum traversal prob-
ability p. In our example, l is either (C,E) and (C,F),
both with p = 1/6. We can now use the coupon collector
formula of Problem 1 with N = d1/pe. This is because
with O(N logN) packets we will (almost for sure) tra-
verse l. This also implies that we will traverse all other
links that have higher traversal probability. Note that
this is a coarse upper bound; finding the exact number
is known as the non-uniform coupon collector’s prob-
lem [25].

4.4 Diagnosable Link Covers
A probabilistic path cover only covers all paths be-

tween a pair of test agents. NetSonar’s goal is to gener-
ate a list of test targets for each test agent so that the
overall set of tests forms what we call a diagnosable link
cover. More formally, assume the network topology is
a directed graph G = (V,E), where V are nodes and
E are links. Besides the topology, we also know a set
of paths. Each path is a set of links that connects two
nodes. We can treat each path as a subset of E, and
choose a minimum set of paths to cover all links in E.
This is known as a NP-Hard “Min-Set-Cover” problem.
A well-known O(N2) approximation (hereafter referred
to as MSC) can solve this problem, where N is the num-
ber of paths. MSC first initializes the uncovered edge
set U to E. In each iteration, MSC greedily chooses the
path p that covers the maximum number of uncovered
links (maximize |p ∩ U |), and removes links in p from
U . The algorithm terminates when there are no links
left in U .

6

U ← E
Initialize counters
for link ∈ U do

visited[link]← 0

repeat
path, score← find max(U , paths)
paths← paths− path
if score > 0 then

for link ∈ path do
visited[link]++
if visited[link] == α then

U ← U − link
until U == ∅ or score == 0 or paths == ∅

Figure 8: MSC-α algorithm. A link is only re-
moved when it is covered at least α times.

NetSonar modifies the basic MSC algorithm to handle
multipath and to enable open-loop diagnosis. To handle
multipath, we group the paths by source/destination
pair. In each step, either all links in the probabilistic
cover P for a source-destination pair are chosen, or none
of them are chosen. This is because we cannot control
the coverage of an individual path in a probabilistic
cover. Furthermore, recall that the number of probes
in the probabilistic cover between a pair of test agents
depends on the number of paths between them. Hence,
when choosing a probabilistic cover P in each iteration,
instead of using |P ∩ U | as the scoring function, we
normalize |P ∩U | by the number of probes to favor a P
that covers new edges most economically.

We need one more twist for open-loop diagnosability.
The original MSC aims to minimize the overall num-
ber of probes. However, this can introduce ambiguity
in fault localization. For example, if two links l1 and
l2 are only exercised by path p but no other paths, in
the original MSC, both links are considered “covered”
and no new path will try to exercise these links. If p
encounters latency problems, it is not clear whether l1
or l2 is the culprit. Traditionally, such ambiguity is re-
moved by sending additional probes after performance
problems are discovered [27, 28]. However, in a large
network like IDN, such close-loop, multi-iteration diag-
nosis can be difficult to implement due to the additional
latency in the measurement data processing pipeline.

NetSonar takes a different approach. We introduce a
parameter α. NetSonar uses MSC-α (Figure 8) which
requires each link to be exercised by at least α times,
except when less than α paths can exercise a link, in
which case the link is exercised maximum possible times
(≤ α). This modification can be easily done by adding
a counter to each link initialized to 0. As shown in Fig-
ure 8, we increment the counter every time a path is
chosen that covers the link, and only remove the link
when the counter reaches α. Note that MSC-1 is equiv-

alent to the original MSC, and MSC-∞ is “all-pairs”
where all paths are exercised.

The intuition behind MSC-α is that by requiring each
link to be covered α times, it is more likely to be cov-
ered in different combinations of links as part of dif-
ferent paths. Thus, we can distinguish a culprit link
from other healthy links (during fault localization) by
observing the health of different paths. Although MSC-
α is very simple, it is a practical way to improve what
is referred to as identifiability in the tomography liter-
ature [5], leveraging the fact that NetSonar can control
the generation of test probes. As we show in Section 8.3,
MSC-α also improves resilience to path changes.

5. DATA ANALYSIS
After computing covers and gathering path and la-

tency data, NetSonar analyzes the data as follows. First,
NetSonar cleans the ping and traceroute data to reduce
noise caused by missing or inaccurate test probes. Next,
NetSonar integrates information from other sources, such
as topology, LSPs and device configurations, and stores
the resulting data in an analysis database. Finally, it
detects and localizes network performance faults.

Noise reduction: One common source of noise in
our traceroute data is “unknown” hop, due to missing
ICMP response messages. ICMP messages may be miss-
ing for various reasons: e.g., a misconfigured router or
packet drops caused by an overloaded router or server.

We found all routers in IDN use the incoming in-
terface IP address as the source address in the ICMP
message. 2 This allows us to reconstruct most missing
traceroute hops using our knowledge of the topology: if
a router r is missing, but the incoming interface I of the
next hop router responds, we can recover r by identify-
ing the interface that corresponds to the remote end of
I in the network topology.

Another common source of noise is inflated latency
measurements caused by server load. Latency values up
to 10-times the average appear frequently in our data.
To deal with this, we discard the top 1% of all latency
measurements, i.e., we only take the 99th percentile
value as a data point during a ping aggregation win-
dow. If the latency in the current aggregation window
exceeds a predefined threshold compared to the average
of the last 3 data points, we consider it a latency spike.

We identify two common types of faults in IDN as fol-
lows. For each of them we develop a detector to process
the data NetSonar collects.

Latency inflation detector: Latency spikes may
arise as a result of packets taking a longer path. By
mapping each ping to a specific path, we can identify
such latency inflation by comparing the paths before,

2This behavior is actually non-standard: RFC1812 requires
the ICMP message’s source address to be one of the outgoing
interfaces.

7

during and after each latency spike.
Troubled link detector: Latency spikes that can-

not be explained by route changes may indicate a “trou-
bled” link along the path. We can identify the cul-
prit by triangulating the latency results collected on
different paths. While other inference algorithms do
exist [10,11,21,27], we chose Sherlock [2] for its relative
simplicity and robustness to noise (recall that our test
agents run on busy production servers).

We feed latency spikes, along with their associated
path information, into Sherlock to locate faulty links.
Sherlock considers all possible failure scenarios (assum-
ing at most m simultaneous faulty links), and assigns a
score to each scenario to quantify how well it matches
the behaviors we observe. For the single failure case
(m = 1), Sherlock works as follows starting with a list
of all spikes and paths.

1) In each iteration, assume only one link is “bad”.
Any path that traverses the “bad” link is also labeled as
“bad”. All other paths are labeled as “good”.

2) After all paths are labeled, calculate the following:
(a) ef : explained failures, the number of paths that
encounter latency spikes and are labeled as “bad”; (b)
uf : unexplained failure, the number of paths that en-
counter latency spikes but are labeled as “good”; (c) us:
unexplained success, the number of paths that have no
latency spike but are labeled as “bad”.

3) Given a link labeled as “bad”, calculate a score
S = ef/(ef + uf + us). When this iteration finishes,
return to Step 1 and try other candidate links until all
links have been tried.

4) Output all the links ordered by their scores from
high to low.

The process above can be easily modified to handle
multiple faulty links; details are in [2].

6. IMPLEMENTATION
Each NetSonar component is kept simple for reliabil-

ity and to minimize load on the servers. Every 30 min-
utes, the controller generates test plans in XML files
and serve them via a web server. Every test agent pe-
riodically reloads its own XML file from the controller
and runs the set of tests. Results are uploaded to the
data sink, which in turn uploads them to a distributed
file system on which the analysis code is run directly.

Controller: The NetSonar controller, implemented
in C#, contains two parts: a file generator and a web
server. The file generator periodically reads network
topology and LSP information. It then uses the test
plan generation algorithms described before to select
paths that can cover all links. Finally, these paths are
clustered by the source test agents; each test agent has
a dedicated XML file containing a list of test targets.

Figure 9 shows an example XML file that is run by
Host A’s test agent. In this example, Host A should

send traceroute every 300 seconds to Host B with re-
mote port 1100 and local port 50000. The “physicalIP”
field is used to avoid unnecessary DNS queries from a
large number of agents. The “level” field identifies a
test level. For example, a test agent can participate in
both “global” and “north america” tests. Data reported
to the data sink is tagged with the “level” field. The
web server hosts all the XML files so they can be down-
loaded by test agents; it does not participate in test
plan generation.

Test agent: Each test agent, implemented in C++,
contains a management module and several test clients.
Periodically, the management module downloads its XML
file from the controller, and dispatches the tests to the
two test clients used by NetSonar: TCP ping and TCP
traceroute. The module is also responsible for upload-
ing test results to the data sink.

Data sink: The NetSonar data sink is also a web
server. The test agents POST 2KByte test results each
time in the form of comma-separated values, includ-
ing timestamp, source/destination IP and port, latency,
path, and other metadata. The results are uploaded to
a distributed file system for post-analysis.

Practical considerations: Being part of a global
DC infrastructure, NetSonar is implemented for scala-
bility and reliability. First, both the controller and the
data sink are implemented as simple, distributed web
services. For example, each logical controller is actually
a cluster of machines that hosts the same set of XML
files. The HTTP GET requests from test agents are au-
tomatically load balanced across different machines, to
avoid the failure of a single machine bringing down the
entire system. A watchdog program monitors the health
of machines and removes bad ones from the system.

Second, the test agent is fault tolerant. To avoid a
malfunctioning controller disrupting the entire network,
test agents have a local hard limit on the number of
tests they can generate per minute. If an agent loses
its connection to the controller or the data sink, it uses
the cached XML file to continue testing and buffers the
results locally, but will stop testing after a certain pe-
riod of time. Following conventional fault-tolerant de-
sign practice, test agents, controllers, and data sinks
are distributed across different availability zones, and
do not share top-of-rack switches or power supplies.

Finally, the HTTP interface between different com-
ponents uses plain-text and is standard-compliant, fa-
cilitating debugging and profiling. It also allows compo-
nents to evolve independently. For example, we have de-
veloped new test plan generation algorithms in the con-
troller without touching the data sink or test agents.

7. DEPLOYMENT AND EVALUATION
We deployed NetSonar as part of IDN’s DC man-

agement system. As a result, test agents are automat-

8

<Testlist server="A" majorVersion="1" minorVersion="0">

<Peer uri="test://B:1100:50000" physicalIP="10.0.0.1" interval="300000" level="global"/>

<Peer uri="test://C:1100:50000" physicalIP="10.0.0.2" interval="300000" level="global"/>

</Testlist>

Figure 9: Example XML file for a test agent.

0

1000

2000

3000

4000

5000

6000

02/16 02/17 02/18 02/19 02/20 02/21 02/22 02/23 02/24 02/25

M
ac

hi
ne

 p
ai

r
in

de
x

Time

(a)

(b)

(c)

Figure 10: Spikes detected by NetSonar, show-
ing (a) vertical strips, (b) horizontal strips, and
(c) periodic spikes. Neighboring devices are
given consecutive indexes.

ically deployed to all hosts in a DC and co-exist with
other production services. This approach is unlike some
other monitoring systems, which only deploy a small
number of dedicated vantage points. It helps to cover
more routers and links. However, these machines may
be also running other services such as web indexing,
which means that their test results can be inaccurate
when the servers are busy.

Four machines, acting as both the controller and the
data sink, manage the entire NetSonar system. Every
30 minutes, the controller extracts the network topol-
ogy and LSP information from various data sources and
re-generates XML files for test agents. Our current de-
ployment is limited to a modest number (8) of DCs.

We report on incidents captured by NetSonar during
a one-month period spanning Feb and March, 2013.

7.1 Failure Characteristics
Part of the incident heatmap generated by NetSonar

is shown in Figure 10. Each black dot indicates the time
and the machine pair that experiences a latency spike.
The y-axis is machine-pair index number ordered first
by the source host name and then by the destination
host name. Due to this naming scheme, hosts in the
same DC will be adjacent to each other. In the graph,
vertical strips indicate an incident affecting many ma-
chine pairs at the same time, and the horizontal strips
indicate an incident affecting a small number of machine
pairs but for a long time.

We observed the following using NetSonar’s output:
Frequent spikes: To reduce false positives, we use a

conservative spike detection threshold of 50 ms, which
means that each dot represents at least a 50 ms latency
jump from the average of past 3 data points. Each data
point is the 99th percentile latency during a one-hour
ping aggregation window. Even with such a conserva-
tive threshold, over the entire one-month period, there
are over 40,000 machine-pair spikes. Each spike is not
a unique incident, as an incident can cause many spikes
(across time or machine-pairs).

Bad agents: To increase coverage, NetSonar agents
co-locate with production machines. Even if we used
dedicated machines as test agents, performance impact-
ing incidents such as software updates, hardware fail-
ures, and power cycling are inevitable. Hence, some
test agents experience sustained periods of high latency.
The horizontal strip (b) in Figure 10 indicates one such
“bad test agent” during Feb 19 - 22. The width of the
strip indicates that this test agent experienced high la-
tency when communicating with all other test agents.

Periodicity: There are some periodic, vertical strips
(c) in the lower half of Figure 10. The interval between
the spikes are roughly 12 hours, at 12AM and 12PM re-
spectively. Moreover, the spike incident was DC wide.
This is likely to be caused by periodic application level
activities, such as website indexing. Some of these ac-
tivities affect test agents directly, while others generate
cross-traffic affecting test agents.

7.2 Validation
To validate the root cause of spike incidents inferred

by NetSonar, we manually cross-verify the top 5 sus-
pects of each incident using other data sources such as
SNMP counters. NetSonar captured 140 incidents dur-
ing Feb-March, 2013. Of these incidents, 84 were local-
ized to edge devices. That means either the top suspect
was the machine itself or there were local issues inside
the DCs. We could not validate these incidents due to
the lack of reliable, independent information for cross-
verification. The remaining 66 incidents were localized
to core devices. The most common problem was trou-
bled link, e.g., due to large, bursty inter-DC transfers.
56 out of 66 incidents can be validated using SNMP
counters and other data sources; that is, these other
data sources confirmed that the router interface inferred
as culprit by NetSonar was indeed overloaded or drop-

9

Th
ro

ug
hp

ut

P
acket D

rops

Time /h
Pkt In Pkt Out Drop

0 8 16 24 28 32

Figure 11: A congestion incident captured by
NetSonar. SNMP counters show packet drops.
This is due to a sudden increase of outgoing
packets. Only relative scales are shown.

Th
ro

ug
hp

ut

P
acket D

rops

Pkt In Pkt Out Drop
Time /h

0 8 16 24 28 32

Figure 12: A sudden packet drops within just
a few minutes. However, the root cause is un-
clear since the incoming and outgoing traffic are
stable according to SNMP counters.

ping packets (without being overloaded) at the time of
the incident.

We cannot validate the remaining 10 core incidents
with the data sources we have. This does not necessar-
ily mean that these problems were incorrectly localized.
Due to the lack of the ground truth, we can only validate
NetSonar alerts that correlate well with other available
data sources.

To provide insight into the nature of faults, we report
on 3 typical incidents in detail.

Case 1: Congestion Figure 11 illustrates the router
counters in a typical troubled link incident reported by
NetSonar. The outgoing traffic increases by 2x in just a
few minutes and packets started being dropped. Notic-
ing the increased latency due to the congestion, Net-
Sonar successfully triangulated to this interface. This
is likely due to an unplanned inter-DC activity initiated
by the application. The traffic went back to normal af-
ter about 3 hours.

Case 2: Packet drops without obvious reasons
Figure 12 shows a packet drop incident without obvi-
ous reasons. NetSonar found that the latency between

C

A

B

D

Figure 13: A fiber cut between two DCs C and B
causes the traffic to reroute to west coast. Fig-
ure does not represent the actual DC locations

various DCs had increased. It narrowed down the sus-
pect to the link between two DCs. Validation showed a
short-lived packet loss of hundreds of packets per second
for around 5-10min, which triggered the 99th percentile
latency spikes. However, the root cause was not clear
from SNMP counters alone, because the traffic was rel-
atively stable during this period. In NetSonar we do
not directly measure packet loss. Instead, packet loss is
captured as higher latency due to TCP retries.

Case 3: Fiber cut Due to a maintenance-related
activity by a circuit provider, the link connecting two
sites B and C (Figure 13) lost 20 Gbps of bandwidth.
Because there are multiple links between B and C, and
only a portion of the links were cut, one might not cor-
rectly localize the problem with just ping and tracer-
oute. In fact, NetSonar captured the latency increase
between these two DCs using the troubled link detector
and pinpointed the culprit as devices in D since they
appeared in several spikes. However, at the same time,
NetSonar’s latency inflation detector captured the route
changes from B-C to B-D-C, and A-C-B to A-D-B. By
combining both results, we were able to correctly un-
derstand what was happening.

7.3 Comparison with SNMP counters
Today, many large network operators still rely on

SNMP counters as a primary tool for network mon-
itoring, which can be surprising given the significant
progress in network tomography and other monitoring
techniques. In our evaluation, SNMP counters are also
an important data source to cross-validate the findings
of NetSonar. However, we find that solely using SNMP
counters for monitoring, without additional testing, is
inefficient and often misleading.

To illustrate the shortcomings of SNMP counters, we

10

compared alerts from April, 2013 reported by SNMP
counters and NetSonar. SNMP counters are polled ev-
ery 5 minutes, while NetSonar’s ping aggregation win-
dow is 60 minutes. To enable fair comparison, we ag-
gregated all SNMP alerts in a 60-minute window as one
alert. The SNMP alerts were generated based on two
thresholds: 1) when link utilization exceeds 90% of ca-
pacity; 2) when the error or drop rate is higher than
1,000 packets per minute. These criteria are extracted
from the network operator’s alerting system.

We found 36 NetSonar alerts during this period, where
30 of them could be verified by SNMP counters; we
could not identify the root cause of the remaining 6
latency incidents. On the other hand, we saw 1,052
high utilization alerts, and 2,091 error/drop alerts from
SNMP counters, most of which do not have any impact
on end-to-end latency as measured by NetSonar. The
total number of SNMP alerts is almost 87x the number
of NetSonar alerts. It equates to 104.8 alerts per day,
which is well beyond what operators can handle.

The key reason for such a high false positive rate is
that SNMP alerts are generated based on 5-minute ag-
gregate data and hence does not always reflect packet-
level end-to-end performance. For example, a 90%+
link utilization may look high but if the traffic is smooth,
there could be very little queuing or congestion. Simi-
larly, 1,000 error/dropped packets per minute may look
high. But consider a 10 Gbps link rate and 1,500 bytes
packet size; the average error/drop rate over the 5-
minute interval is merely 0.002% which is again barely
noticeable from the perspective of an individual flow.
Raising the two thresholds would reduce false positives,
but it would also dramatically increase the false nega-
tives and cause us to miss most of the NetSonar alerts.
In fact, there simply does not exist an ideal “threshold”
that can achieve both low false positive rate and low
false negative rate. This problem was also echoed in
our conversations with IDN operators.

8. SIMULATION
In this section, we evaluate NetSonar’s ability to lo-

cate troubled links using simulations. We first eval-
uate the effectiveness of probabilistic path covers and
diagnosable link covers. We then study the impact of
latency spike threshold, measurement noise, ping aggre-
gation window, and traceroute frequency.

The topology and MPLS configuration used in our
simulations are based on IDN. In all tables below, the
“≤ N” columns mean the fraction of trials in which
NetSonar captures the culprit in the top N suspects.
All results are based on 1,000 trials. The “Total” and
“Max”columns denote the total number of probes in the
network and the maximum number of probes traversing
a single router in one “round” (during which all links are
tested at least once). Unless stated otherwise, we pick

Inflat. Accuracy (%) Probes (#/round)
factor ≤ 1 ≤ 2 ≤ 3 Total Max

0.5 76.9 82.4 84.7 2,401 280

1 89.8 94.1 96.1 4,813 582

2 92.1 96.0 98.8 9,626 1,100

3 95.7 97.6 99.8 14,439 1,653

Table 1: Accuracy and overhead of probabilistic
covers. “Inflation factor” indicates the number
of 5-tuples chosen per site pair, normalized by
the number of LSPs between two sites.

Algorithm
Accuracy (%) Probes (#/round)
≤ 1 ≤ 2 ≤ 3 Total Max

MSC-1 74.6 87.1 94.9 8,073 800

MSC-2 92.1 96.0 98.8 9,626 1,100

MSC-3 96.0 98.8 99.9 18,957 2,206

All-pairs 98.5 99.3 99.9 51,621 7,054

Table 2: Accuracy and overhead of diagnosable
covers with different α values.

an inflation factor of 2 for probabilistic covers, use MSC-
2 in diagnosable covers, and simulate a single faulty link.

8.1 Accuracy and Overhead
Probabilistic path covers: A large inflation factor

can increase the path coverage, but it also adds prob-
ing overhead. Table 1 shows how inflation factor in
probabilistic cover affects performance. The total and
maximum number of probes grows almost linearly with
the inflation factor. NetSonar can achieve high accu-
racy when inflation factor > 1. This is because test
agents are present in all sites. Even when some paths
are not covered by one test agent pair (because a rela-
tively small inflation factor is chosen), MSC-2 ensures
that there are some other test agent pairs which will
exercise the links on those uncovered paths.

Diagnosable link covers: α determines how redun-
dant a diagnosable link cover is. Table 2 compares the
diagnosable link covers under different α values.

Overall, MSC-2 attains a good balance between over-
head and accuracy. Compared to MSC-1, MSC-2 in-
creases the accuracy to over 90% with only 1.4x prob-
ing overhead. Further increase in α has little effect on
accuracy and only results in larger probing overhead.

Multiple faulty links: Multiple simultaneous faulty
links, while less common, can occur in a large net-
work. We evaluate how NetSonar performs with multi-
ple faulty links by selecting top N or top X% suspects
inferred by Sherlock. Table 3 shows that, with 2 or 3
faulty links, NetSonar may not be able to accurately lo-
calize the culprits to the top 2 or 3 suspects. However,
in over 90% of the cases, NetSonar can still capture the

11

N
Accuracy (%)

≤ N 0.5% 1% 2%

1 92.1 100 100 100

2 46.4 85.1 94.5 97.6

3 19.1 56.2 79.6 92.9

Table 3: Accuracy with multiple failures. N de-
notes the number of simultaneous failures. The
percentage in “Accuracy” column denotes the
failures fall in top X% suspects.

Algorithm
Accuracy (%) Coverage
≤ 1 ≤ 2 ≤ 3 (%)

NetSonar 92.1 96.0 98.8 100
All-pairs
+Single Path

60.9 68.4 73.8 78.2

Random pairs
+Prob. Cover

71.9 79.7 82.8 84.5

Table 4: NetSonar provides higher accuracy
and coverage compared to either ignoring mul-
tipathing or using unplanned tomography.

culprits within the top 2% candidates. In other words,
NetSonar can still successfully help operators eliminate
a vast majority of the links from the suspect set.

8.2 Multipathing and Planned Tomography
We compare NetSonar’s coverage techniques to two

simple alternatives suggested by the existing literature.
First, most existing planned tomography schemes (e.g.,
[4, 28]) assume a single forwarding path between sites,
and do not consider multipathing. To simulate this, we
pick one random path from the set of paths between
two sites for measurement. Table 4 shows that, even
with these all-pairs measurements, ignoring multipath
causes diagnosis accuracy to drop by more than 30%
compared to NetSonar. The lack of probabilistic path
covers and the single path assumption results in only
78.2% of links being covered.

Second, we assume a probabilistic cover for multi-
pathing and consider using unplanned tomography, where
the measurements are not designed using a test plan
(Section 3). We simulate unplanned tomography by
randomly picking the same number of pairs of test agents
as NetSonar’s diagnosable link cover. The random choice
simulates the lack of planning. The last row in Table 4
shows that accuracy is 20% lower than NetSonar with
the same testing overhead, again due to reduced link
coverage. These experiments suggest that we need to
incorporate both multipathing and planning to achieve
better coverage.

8.3 Robustness and Parameters

False negatives (%)
Accuracy (%)
≤ 1 ≤ 2 ≤ 3

0 92.1 96.0 98.8

5 91.5 95.6 97.9

10 91.0 95.2 97.6

20 90.6 94.5 96.6

Table 5: Accuracy as false negative rate varies
due to threshold selection.

Bad agents (%)
Accuracy (%)
≤ 1 ≤ 2 ≤ 3

0 92.1 96.0 98.8

0.25 90.0 94.6 95.4

0.5 79.3 88.0 92.7

1 44.7 59.2 72.9

Table 6: Accuracy as agent noise varies.

False Negatives in Measurement: To detect a
latency spike, we use a threshold to compare the 99th
percentile latency in the current aggregation window to
the average of the past three data points. To prevent
raising too many false positives, we pick a fairly conser-
vative threshold (50 ms) to filter out most small latency
variations. However, such a conservative threshold may
generate false negatives, i.e., “bad” probes that traverse
a faulty link are mistakenly labeled as “good”. In the
following simulations, we randomly and deliberately re-
label a certain percentage of “bad” probes as “good”.

Table 5 shows how NetSonar performs under different
percentage of false negatives. Surprisingly, even with
20% of false negatives, the ≤ 3 accuracy is still above
95%. This is because with MSC-2, one faulty link will
be covered by multiple probes between different test
agent pairs. Thus, a small percentage of false negatives
will have little impact on fault localization accuracy, as
long as the faulty link is captured by a sufficient number
of other probes. This result also indicates that a con-
servative latency spike threshold works well in practice.

Bad agents: False positives can arise from bad agents,
which would nudge Sherlock away from the actual cul-
prit. In this simulation, we assume a certain fraction
of bad agents which will distort latency measurements,
with a probability varying from 10% to 90%. Table 6
shows that 0.5% of bad agents will cause noticeable drop
in localization accuracy. Because of the use of 99th per-
centile latency in spike detection, even 10% of distorted
latency measurements will trigger false positives.

We identify bad agents by examining all latency mea-
surements from the same agent. If an agent reports la-
tency spikes from all of its probes (to different targets),
we will discard all of its latency measurements. By ap-
plying this simple trick, we can restore the localization

12

Path changes
≤ 2 Accuracy (%)

MSC-1 MSC-2 MSC-3

0 87.1 96.0 98.8

1 74.6 88.6 95.3

2 72.6 84.0 93.7

3 65.2 81.3 84.8

Table 7: Accuracy as the number of path
changes per aggregation window varies for vari-
ous values of α in diagnosable link cover. Only
≤ 2 accuracy is shown.

TR Period Accuracy (%) Overhead (pps)
(min) ≤ 1 ≤ 2 ≤ 3 Total Max

0 92.1 96.0 98.8 ∞ ∞
5 89.3 95.8 98.1 32.1 3.7

10 87.5 94.1 96.3 16.0 1.8

20 82.4 90.3 94.0 8.0 0.9

Table 8: Accuracy as traceroute frequency varies

accuracy to the level when there is no false negative
(first row in Table 6).

Path changes within aggregation windows: Path
changes may occur during an aggregation window. In
other words, the latency measurements may actually
correspond to multiple paths. In the following simula-
tions, we introduce path changes by randomly picking a
new LSP within the same pair of test agents. We then
vary the number of path changes in an aggregation win-
dow. When a latency spike is detected, NetSonar will
blame all paths appearing in the same window.

Table 7 shows how path changes affect accuracy and
overhead. The first row represents the ideal case where
we can exactly map each latency measurement to the
correct path. When the number of changes grows, ac-
curacy drops. We see that the diagnosable link cover
provides extra protection against path changes. For ex-
ample, in the last row, MSC-2 has 16.1% higher ac-
curacy compared with MSC-1 when there are 3 path
changes in the same aggregation window. In a diagnos-
able link cover, the same link is tested independently by
multiple probes. Even if probes between certain pairs
of test agents fail to map to a correct link, other probes
traversing the same link can still provide accurate iden-
tification of a troubled link.

Path changes between traceroutes: If a path’s
lifetime (from the time when a new path is set up to
the time when the path is torn down) is shorter than
the traceroute probing period, such a path will not be
captured by traceroute and some latency measurements
may be mapped to incorrect paths. In the following sim-
ulations, we again introduce path changes as in the last

experiment but with a median life time of 15 minutes.
In Table 8, the first row (0 min TR period) denotes
the ideal case where we can associate each ping with
the correct path at the cost of traceroutes sent at an
infinite frequency. We can see a traceroute period be-
tween 5 and 10 minutes strikes a good balance between
overhead and accuracy.

9. LIMITATIONS
Matching measurements: NetSonar combines ping

and traceroute but ping measures round-trip latency,
while traceroute only reports forward path information.
This mismatch can lower the diagnosis accuracy - the
long ping latency caused by bad reverse paths may be
incorrectly attributed to the forward path reported by
traceroute. This problem can be solved by applying
One-Way-Ping [26], or probing reverse path information
with a reversed 5-tuple (swapping source/destination IP
and TCP port) by the receiving test agent.

Single administrative domain: NetSonar assumes
the entire network belongs to the same administrative
domain and that the network operator knows the topol-
ogy as well as basic forwarding information (such as
LSPs) in advance. Otherwise, the host selection algo-
rithm cannot perform path and link covers, which may
reduce the coverage and diagnosis accuracy. In this
case, the system has to fallback to all-pairs probing,
where no attempt is made to reduce probing overhead.

IP level probing: NetSonar relies on IP level prob-
ing (traceroute) to map pings to physical paths. For
some devices, such probing may not be as useful. For ex-
ample, the Ethernet level link aggregation groups (LAGs)
prevent traceroute from discovering the physical links
used, since the entire group is a single IP link.

Uneven hashing: In Section 4.3, we assume that
hash functions always distribute traffic to all next-hops
uniformly, or at least with a known distribution as in
weighted cost multipath (WCMP). This may not be
true in some cases. For example, a broken hash function
can create unknown, non-uniform traffic distribution,
which may lower NetSonar’s path/link coverage.

Intra-DC diagnosis: NetSonar performs well in trou-
bleshooting inter-DC performance problems, and in the-
ory it can also be used in intra-DC fault localization.
However, our trial deployment experience reveals that
while the cover algorithms work, there are still sev-
eral practical difficulties. First, intra-DC latency is
extremely small (usually much less than 1ms), hence
the measurements are much more sensitive to machine
“hiccups”. By comparison, inter-DC latency is usually
more than 20 ms. Second, intra-DC distributed appli-
cations, such as web indexing, can simultaneously over-
load many devices. Such behavior is likely to confuse
our fault localization algorithm.

13

10. CONCLUSION
NetSonar is a large-scale network tester: it treats the

whole network as a device-under-test, and automati-
cally generates high-coverage test plans. NetSonar han-
dles the complexities of real networks including chang-
ing paths and multipath routing. NetSonar is also a
gray box tester: it utilizes partial forwarding informa-
tion and deals with the remaining uncertainty by com-
puting efficient probabilistic and diagnosable covers that
allow diagnosis in a single pass. Both probabilistic and
diagnosable covers are general ideas that apply to net-
works that belong to a single administrative domain.
Beyond these ideas, to the best of our knowledge, Net-
Sonar is the first tester to report deployment experience
in a large operational inter-DC network beyond simula-
tions [3, 17] and testbeds [13].

Many aspects of NetSonar’s design are driven by im-
perfect knowledge of the data plane today. We do not
know the hash functions used by multipath routing; so
we need to use traceroute to map pings to paths. Router
CPUs are underpowered and responsible for other criti-
cal tasks such as route computation; so we can only in-
frequently harvest snapshots of the data plane to boot-
strap testing. One might argue that these problems are
temporary, and will disappear with newer router hard-
ware and the stronger consistency between data and
control planes that SDN provides.

However, even in a future network with perfect tech-
nology, we believe some uncertainty is inevitable, at
least for non-technical reasons such as policies and orga-
nizational boundaries. Thus, gray box testing will still
be needed to achieve trustworthy results. Moreover, our
experience with NetSonar shows that, contrary to what
one may think at first, accounting for uncertainty is
practical. It can be done with minimum overhead while
achieving high accuracy. We hope that NetSonar is a
first step towards building tools that balance what can
be known about networks with their unknowns.

11. REFERENCES
[1] B. Augustin, T. Friedman, and R. Teixeira. Measuring

load-balanced paths in the internet. IMC ’07, pages 149–160.
ACM, 2007.

[2] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,
and M. Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies. SIGCOMM
’07, pages 13–24. ACM, 2007.

[3] P. Barford, N. Duffield, A. Ron, and J. Sommers. Network
performance anomaly detection and localization.
INFOCOM’09, pages 1377–1385, 2009.

[4] Y. Bejerano and R. Rastogi. Robust monitoring of link delays
and faults in IP networks. Networking, IEEE/ACM
Transactions on, 14(5):1092–1103, 2006.

[5] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network
tomography: recent developments. Statistical Science,
19:499–517, 2004.

[6] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An algebraic
approach to practical and scalable overlay network monitoring.
SIGCOMM ’04, pages 55–66. ACM, 2004.

[7] D. Chua, E. D. Kolaczyk, and M. Crovella. A statistical
framework for efficient monitoring of end-to-end network
properties. SIGMETRICS ’05, pages 390–391. ACM, 2005.

[8] I. Cunha, R. Teixeira, N. Feamster, and C. Diot. Measurement
methods for fast and accurate blackhole identification with
binary tomography. IMC ’09, pages 254–266. ACM, 2009.

[9] I. Cunha, R. Teixeira, D. Veitch, and C. Diot. Predicting and
tracking internet path changes. SIGCOMM ’11, pages 122–133.
ACM, 2011.

[10] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot.
Netdiagnoser: troubleshooting network unreachabilities using
end-to-end probes and routing data. CoNEXT’07, pages
18:1–18:12. ACM, 2007.

[11] N. Duffield. Network tomography of binary network
performance characteristics. IEEE Transactions on
Information Theory, 52(12):5373 –5388, dec. 2006.

[12] W. Feller. An Introduction to Probability Theory and Its
Applications. John Wiley & Sons, Inc., 1968.

[13] Y. Huang, N. Feamster, and R. Teixeira. Practical issues with
using network tomography for fault diagnosis. SIGCOMM
Comput. Commun. Rev., 38(5):53–58, Sept. 2008.

[14] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye,
and P. Bahl. Detailed diagnosis in enterprise networks.
SIGCOMM ’09, pages 243–254. ACM, 2009.

[15] E. Katz-Bassett, H. V. Madhyastha, J. P. John,
A. Krishnamurthy, D. Wetherall, and T. Anderson. Studying
black holes in the internet with hubble. NSDI’08, pages
247–262. USENIX Association, 2008.

[16] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. IP
fault localization via risk modeling. NSDI’05, pages 57–70.
USENIX Association, 2005.

[17] R. Kumar and J. Kaur. Practical beacon placement for link
monitoring using network tomography. Selected Areas in
Communications, IEEE Journal on, 24(12):2196–2209, 2006.

[18] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang, J. Emmons,
B. Huntley, and M. Stockert. Rapid detection of maintenance
induced changes in service performance. CoNEXT’11, pages
13:1–13:12. ACM, 2011.

[19] A. Mahimkar, J. Yates, Y. Zhang, A. Shaikh, J. Wang, Z. Ge,
and C. T. Ee. Troubleshooting chronic conditions in large ip
networks. CoNEXT’08, pages 2:1–2:12. ACM, 2008.

[20] H. Nguyen, R. Teixeira, P. Thiran, and C. Diot. Minimizing
probing cost for detecting interface failures: Algorithms and
scalability analysis. INFOCOM’09, pages 1386–1394, 2009.

[21] H. Nguyen and P. Thiran. The boolean solution to the
congested ip link location problem: Theory and practice.
INFOCOM’07, pages 2117–2125, 2007.

[22] H. X. Nguyen and P. Thiran. Active measurement for multiple
link failures diagnosis in ip networks. PAM’04, pages 185–194,
2004.

[23] C. Pelsser, L. Cittadini, S. Vissicchio, and R. Bush. From paris
to tokyo: On the suitability of ping to measure latency. IMC
’13, pages 427–432. ACM, 2013.

[24] All-pairs ping service for PlanetLab ceased. http://lists.
planet-lab.org/pipermail/users/2005-July/001518.html.

[25] H. V. Schelling. Coupon collecting for uneqal probabilities. The
American Mathematical Monthly, 61(5):pp. 306–311, 1954.

[26] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and
M. Zekauskas. A One-way Active Measurement Protocol
(OWAMP). RFC 4656 (Proposed Standard), Sept. 2006.

[27] H. H. Song, L. Qiu, and Y. Zhang. Netquest: a flexible
framework for large-scale network measurement. IEEE/ACM
Trans. Netw., 17(1):106–119, Feb. 2009.

[28] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic test packet generation. CoNEXT ’12, pages 241–252.
ACM, 2012.

[29] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang.
Planetseer: internet path failure monitoring and
characterization in wide-area services. OSDI’04, pages 12–12.
USENIX Association, 2004.

[30] Y. Zhao, Y. Chen, and D. Bindel. Towards unbiased end-to-end
network diagnosis. IEEE/ACM Trans. Netw., 17(6):1724–1737,
Dec. 2009.

14

http://lists.planet-lab.org/pipermail/users/2005-July/001518.html
http://lists.planet-lab.org/pipermail/users/2005-July/001518.html

	Introduction
	Motivation
	Related Work
	NetSonar
	Overview
	Components
	Probabilistic Path Covers
	Source Multipath
	Multilevel Multipath
	General Multipath

	Diagnosable Link Covers

	Data Analysis
	Implementation
	Deployment and Evaluation
	Failure Characteristics
	Validation
	Comparison with SNMP counters

	Simulation
	Accuracy and Overhead
	Multipathing and Planned Tomography
	Robustness and Parameters

	Limitations
	Conclusion
	References

