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Abstract — Motivated by poor network connectivity
from moving vehicles, we develop a new loss recovery
method called opportunistic erasure coding (OEC). Un-
like existing erasure coding methods, which are oblivious
to the level of spare capacity along a path, OEC trans-
mits coded packets only during instantaneous openings
in a path’s spare capacity. This transmission strategy en-
sures that coded packets provide as much protection as
the level of spare capacity allows, without delaying or
stealing capacity from data packets. OEC uses a novel en-
coding that greedily maximizes the amount of new data
recovered by the receiver with each coded packet. We
design and implement a system calledPluriBus that uses
OEC in the vehicular context. We deploy it on two buses
for two months and show thatPluriBus reduces the mean
flow completion time by a factor of 4 for a realistic work-
load. We also show that OEC outperforms existing loss
recovery methods in a range of lossy environments.

1. Introduction
Internet access on-board buses, trains, and ferries is

increasingly common. Many public transit agencies pro-
vide this access today [48, 46, 14]. It is seen as an added
amenity that boosts ridership, even in the age of the 3G
smart phones [28, 35]. Corporations also provide such
access on their commute vehicles [45, 47]. For instance,
over one-quarter of Google’s employees in the Bay Area
use such connected buses [45]. By all accounts, riders
greatly value this connectivity.

Our work is motivated by our experiences of poor per-
formance of such connectivity and those of other users [43,
44]. Experiences with its commuter service led Microsoft
to pre-emptively warn the riders that “there can be lapses
in the backhaul coverage or system congestion” and sug-
gest “cancel a failed download and re-try in approximately
5 minutes.” Despite increasing popularity and a unique
operating environment, the research community has paid
little attention to how to best engineer these networks.

Figure 1 shows the typical way to enable Internet ac-
cess on buses today. Riders use WiFi to connect to a de-
vice on the bus (e.g., [13]), which we callVanProxy. The
device provides Internet access using one or more links
based on wide-area wireless network (WWAN) technolo-
gies such as EVDO or HSDPA. The key to application
performance in this setup is the quality of connectivity
provided by the WWAN links.

To understand this connectivity, we conducted detailed
measurements of multiple technologies. Consistent with
earlier findings [34, 18], we find that WWAN paths of-
fer poor service from moving vehicles. They have high
delays and frequently drop packets. Occasionally, they
suffer “blackout” periods with very high loss rates. Thus,
poor application performance is only to be expected.

To improve user experience, we must mask losses from
applications and offer them a more reliable communica-
tion channel. While numerous loss recovery schemes ex-
ist, we find that they fall short in this environment. Exist-
ing schemes can be categorized as either retransmission-
based (ARQ) and erasure coding based. Retransmission-
based schemes perform poorly because of the high delay
in receiving feedback from the receiver.

Proactive erasure coding is more appropriate in high-
delay scenarios but existing schemes (e.g., Maelstrom [2],
CORE [23], LT-TCP [41]) have a basic limitation: they
are oblivious to spare capacity along a path. For a given
set of data packets, the number of erasure coded packets
sent does not depend on the available capacity of the path.
If this coding redundancy is low, existing schemes do not
provide sufficient protection even though there may be
spare capacity in the system. If it is high, valuable capac-
ity is stolen from data packets.

In this paper, we explore a new point in the design
space of erasure coding and evaluate it in the vehicular
context. Our method, called opportunistic erasure coding
(OEC), dynamically adjusts coding redundancy to match
the spare capacity of the path at short time scales. Match-
ing at short time scales is important because, as we show,
the traffic is highly bursty. Matching coding overhead to
average spare capacity is not sufficient, as it can lead to
significant short-term mismatches.

To match coding redundancy to spare capacity at short-
time scales, OEC sends coded packets opportunistically,
based on an estimate of bottleneck queue length. Coded
packets are transmitted as soon as and only when the
queue is deemed empty. Thus, OEC does not delay data
packets and yet provides as much protection as available
capacity allows.

To make the best use of such opportunistic transmis-
sions, we construct coded packets using a greedy encod-
ing that maximizes the expected number of data packets
recovered using each coded packet. Our encoding can
be considered a generalization of Growth codes [19] that
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Figure 1: A common way of providing Internet access on
board vehicles today.

explicitly accounts for the information available at the re-
ceiver while constructing the next coded packet. In con-
trast, conventional erasure coding methods such as Reed-
Solomon [33] or LT [24] aim to minimize the number of
packets needed at the receiver to recover all data. But
when the required threshold of packets are not received,
they recover very little data [36]. In a highly dynamic
environment, it is difficult to guarantee that the required
threshold number of packets will be sent, let alone re-
ceived. Thus, these codes are not suitable for our use.

The combination of opportunistic transmissions and
our encoding means that OEC greedily maximizes good-
put with each packet transmission. OEC retains this prop-
erty even when data is spread across multiple paths with
disparate loss and delay. We accomplish this through
delay-based path selection [9]: each data packet is sent
over the path that is estimated to deliver it first.

We design and implement a system calledPluriBus that
applies OEC to the vehicular context. We deployPluriBus

on two buses for two months. Each bus is equipped with
two WWAN links, one EVDO and one WiMax.

Our evaluation using this deployment as well as con-
trolled experiments show thatPluriBus is highly effective
over a range of network conditions. In our deployment,
it reduces the mean flow completion time for a realis-
tic workload by a factor of 4 compared to the current
practice of not using any loss recovery method (beyond
end-to-end TCP). Compared to using retransmissions or
capacity-oblivious erasure coding, OEC reduces the mean
flow completion time by at least a factor of 1.4.

2. Target environment
We begin by characterizing the network and workload

in our target environment. To understand the connectivity
provided by WWAN links to moving vehicles, we use two
buses that ply around the Microsoft campus from 7 AM
to 7 PM on weekdays. Each bus has a computer equipped
with an 1xEVDO (Rev. A) NIC on Sprint’s network and a
(draft standard) WiMax modem on Clearwire’s network.

2.1 Network path characteristics
We characterize path quality by sending packets be-

tween the bus and a computer connected to the wired In-
ternet. A packet is sent along each provider in each direc-
tion every 100 ms. Our analysis is based on two weeks
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Figure 2: (a) Loss rate for paths to the buses. They-axis
begins at 50%. (b) Path round trip times (RTT).

of data. Figure 2(a) shows the CDF of loss rates, aver-
aged over 5 second intervals, from the wired host to the
buses. The reverse direction has similar behavior. We
see that both paths are lossy. WiMax is worse—half of
the intervals experience some packet loss, and 15% suf-
fer over 10% loss. For EVDO, 97% of the intervals see
no loss, but 2% suffer over 10% loss. Note that these
losses are measured at the IP layer and represent cases
where low-level reliability mechanisms (e.g., link-layer
FEC) have failed. They will be experienced by TCP con-
nections traversing these links.

Our observations are consistent with other WWAN
studies [22, 18]. These studies also find that most losses
are not due to congestion but occur due to problems in-
herent in wireless transmissions. Wireless collisions with
other WWAN clients are not an issue; unlike WiFi, the
WWAN MAC protocols prevent such collisions.

Figure 2 shows the CDF of RTT for each provider.
Both providers have high delay. For EVDO, the me-
dian RTT is 150 ms. For WiMax, it is roughly 40 ms.
Even this lower of the two delays is surprising given that
the path end points are in the same city. We find using
traceroute that nearly all of this delay is inside the wire-
less carriers’ networks; in fact, a significant fraction is to
the first IP-level hop from the wireless client. Details of
this experiment are in our extended report [27]. This high
delay has implications for how losses can be masked.

We also see that the two links have disparate loss and
delay characteristics. This disparity creates significant
complications if we want to use them simultaneously. For
instance, the factor of three difference in the path RTTs
implies that a scheme like round robin will perform poorly.
It will significantly reorder packets and unnecessarily de-
lay some packets even though a shorter path exists. Send-
ing all data on the shorter path may not be possible due
to capacity constraints, and as is the case in our setup,
the lower delay path may have more loss. Using multiple
links from the same provider can alleviate the disparity in
path properties, but it also reduces reliability because of
correlated losses [34].
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Figure 3: Traffic from Internet to clients

2.2 Workload characteristics
To understand the workload in our target environment,

we collect traffic logs from two corporate commuter buses.
These buses are different from the ones in our testbed.
They have the setup shown in Figure 1, with one Sprint-
based 1xEVDO NIC. We sniffed the intra-bus WiFi net-
work for two weeks to capture packets that are sent and
received by the riders.

We find that this workload is dominated by short TCP
flows [27] which are highly vulnerable to packet loss. It
is also highly bursty, as illustrated by an example 100-
second period in Figure 3. The average load over the en-
tire trace is quite low, only 86 Kbps, which implies that
there is ample leftover capacity along these paths on av-
erage. However, short-term load is often above 1 Mbps,
which indicates short-term capacity limitations given the
throughput that EVDO can achieve. This burstiness means
that short-term spare capacity is bursty as well and can
differ substantially from the long-term average.

2.3 Discussion
In summary, we characterize our network environment

as follows: (i) paths are lossy; (ii) paths have high delays
such that timely feedback on packet loss is not available;
(iii) the workload is highly bursty such that while there
is plenty of capacity available on average, the utilization
can approach 100% at short time scales; and (iv) if multi-
ple paths are used, different paths may have different loss
and delay properties.

Improving application performance in this environment
requires that we reduce packet loss experienced by appli-
cations. We could urge the wireless carriers to further im-
prove the lower-layer reliability mechanisms and handoff
protocols. This is a long-term proposition that requires
significant investment and does not help today’s users.
We thus build a high performance system on top of exist-
ing unreliable connectivity. Improvements to lower-layer
connectivity are complementary to our approach.

3. Limitations of existing options
There has been much work on improving application

performance over lossy paths. The set of proposed schemes
can be broadly classified as those that use retransmissions
and those that use erasure coding.

3.1 Retransmission based methods

One way to combat packet loss is by having the sender
retransmit lost packets based on feedback from the re-
ceiver. This method is used, for instance, in TCP and its
variants.1 However, retransmission based recovery is too
slow in settings with high delays. Loss recovery takes at
least 1.5 times the round trip time (RTT). We show later
that this delay leads to poor performance.

Some methods reduce this delay by isolating the lossy
segment of the path such that retransmissions can be per-
formed more quickly. Such retransmissions can be done
using support from the wireless base stations (e.g., Snoop
TCP [1], Flow Aggregator [7], Ack Regulator [8]) or us-
ing additional proxies (e.g., Split TCP [21]). We cannot
use these techniques because we do not have access to the
wireless carrier’s infrastructure. As long as we are sitting
outside this infrastructure, the lossy segment of the path
will have high delay as well. Thus, the performance of
techniques like Split TCP is similar to using an end-to-
end TCP connection. We have verified this behavior via
experiments in our setting.

Tsao and Sivakumar propose to retransmit lost TCP
segments on one interface via another [42]. Their pro-
posal does not use coding is limited to mobile phones,
requiring significant changes to TCP stacks on both ends.

3.2 Erasure coding methods
In environments with high delay, erasure coding is a

better fit [2]. Erasure coded packets are sent proactively
to guard against losses. However, existing erasure coding
methods are capacity-oblivious. Systems such as Mael-
strom [2] or CORE [23] transmit a fixed number of coded
packets for a given set of data packets. If their coding
overhead is too low, they do not provide sufficient pro-
tection even though there may be excess capacity in the
system. If it is too high, they hurt goodput by stealing
capacity from data packets.

Even adaptive systems such as MPLOT [38] or LT-
TCP [41] adapt to path loss rate and not to spare capacity.
Based on the expected loss rate, they add enough redun-
dancy such that data is delivered with a high probability.
But because losses as well as spare capacity are bursty,
at any given time these systems too can provide insuffi-
cient protection even though spare capacity exists or hurt
goodput when there is capacity pressure (§6.2).

We argue that the most effective way to protect against
losses is to useall spare capacity [26]. However, the
bursty nature of traffic and thus of spare capacity implies
that it is not sufficient to match the level of redundancy to
average spare capacity. The short-term mismatch can be
significant, leading either to insufficient protection or to
1Some experimental TCP variants do not reduce sending rate
for non-congestion losses, but their reliability mechanism is still
based on retransmissions.
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overload. Hence, we develop opportunistic erasure cod-
ing (OEC) that provides as much protection as the avail-
able capacity allows at short time scales without hurting
data packets.

Rateless erasure codes such as LT [24] can generate
an unlimited stream of coded packets, but they are not
complete erasure coding systems. One must still decide
when and how many coded packets to transmit. We also
point out later why these codes are inappropriate if one
wanted to opportunistically use leftover spare capacity.

4. Opportunistic erasure coding
OEC is meant for lossy environments in which timely

feedback on which packets were lost is not available to
the sender. Our current design assumes that all packets
are equally important; extending OEC to unequal protec-
tion (e.g., for video codecs) is a subject of future work.

An ideal goal for an erasure coding scheme in a setting
with short TCP flows is to minimize connection comple-
tion time, as that directly impact user experience. How-
ever, no practical method can achieve this goal when traf-
fic, losses, and path capacity are highly dynamic. We thus
modulate our goal to be greedy goodput maximization:
each transmission should maximize the amount of new
data at the receiver. We show later that this strategy leads
to significant reduction in connection completion time.

OEC requires an estimate of the usable capacity of
the path. This capacity is not necessarily the physical
capacity of the path but is what the OEC traffic can use
along the path without hurting others. It may be either be
configured or estimated. InPluriBus, we estimate it using a
technique based on recent bandwidth measurements tools
(§5.2). It can also be estimated using other techniques,
e.g., those similar to TCP Vegas [4].

We first describe how OEC functions in the case of
one path between the sender and receiver and then de-
scribe the generalization to multiple paths.

4.1 Single path case
Consider the following idealized protocol, of which

OEC is a practical instantiation. This protocol views net-
work path as a communication channel whose bottleneck
capacity matches the given usable capacity. It transmits
new data packets as soon as they are generated by the ap-
plication. If new data is being generated at a rate faster
than the channel capacity, it will be queued at the bottle-
neck. The protocol transmits an erasure coded packet as
soon as and only if the packet will find an empty queue.
In this way, it uses for coded packets any and all left-
over capacity at short time scales. Finally, it encodes each
coded packet in a way that maximizes the amount of new
data recovered at the receiver.

We argue that this protocol greedily maximizes good-
put. By using all capacity, it achieves the highest possi-

ble throughput (i.e., rate of unique + non-unique data).
Whether it maximizes goodput depends thus on the order
and contents of the packets sent. In terms of order, strictly
prioritizing data packets, as we do above, is optimal. The
reception of a data packet provides one new data packet
to the receiver and of a coded packet provides less than
one on average [24]. Some coded packets may yield more
than one but the average yield will be less than one. Fi-
nally, each coded packet is constructed to maximize the
amount of new data recovered by the receiver. Thus, in
combination, no other protocol can achieve higher good-
put at each step, without future knowledge.

To implement this protocol, we need two capabili-
ties. First, we need a method to estimate when the bottle-
neck queue, which is not necessarily local, will be empty.
The knowledge of path capacity and past data and coded
transmissions lets us estimate the number of OEC packets
at the bottleneck at any given time. We can then transmit
coded packets such that they reach the bottleneck when
there are no other packets. This way, coded packets al-
ways defer to data packets and delay them by at most one
packet, while providing as much protection as the amount
of spare capacity allows.

In the extreme case where data packets are generated
at a rate faster than capacity for an extended period, OEC
sends no coded packets. This behavior is optimal with re-
spect to our goal of greedy goodput maximization. How-
ever, a certain fraction of coded packets can be easily
added to the stream if some minimum protection against
loss is desirable at all times. Note, however, that if the
end hosts are using end-to-end congestion control, the
data rate is unlikely to stay higher than capacity for an
extended period if the loss rate experienced is high.

The second capability is an encoding technique that
maximizes the amount of data with each coded packet.
Conventional erasure codes, whether rateless (e.g., LT [24])
or not (e.g., Reed-Solomon [33]), cannot be used for this
purpose. These codes are designed for efficient recovery.
They seek to minimize the number of packets needed at
the receiver to recover all data. But they recover very lit-
tle if fewer than the needed threshold number of packets
are received [36]. In our setting, with bursty data arrivals,
we cannot even predict how many coded packets can be
transmitted, let alone how many can be received.

We develop an encoding that greedily maximizes the
expected amount of new data recovered by each coded
packet. It does that by explicitly accounting for what in-
formation might already be present at the receiver. Con-
ventional codes do not consider receiver state at interme-
diate points in time. We describe our encoding next.

4.2 Greedy encoding

Consider a point in time when the sender has sent a
windowW of data packets and some coded packets con-
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Figure 4: Illustration of our coding system. Data packets
P3 and P4 are dropped in transit. The receiver is able to
recover P3 after it receives coded packet P1+P2+P3.

structed per our scheme. The sender has not received any
feedback from the receiver about the packets inW , and
so it is unaware of the exact fate of each data packet. (In
§5.1, we describe howW is updated as the sender sends
data and coded packets and receives feedback from the
receiver.) The receiver has a given data packet either if
it received the original transmission of the data packet or
if it recovered the packet using a subsequent coded trans-
mission after the original transmission was lost. An ex-
ample is shown in Figure 4.

Now, the sender has an opportunity to send one more
coded packet. Our aim is to construct a coded packet
that is “most useful” to the receiver. To keep encoding
and decoding operations simple, like several other era-
sure codes (e.g., LT [24], Growth [19], Maelstrom [2]),
we construct coded packets by XOR-ing data packets.
Further, to keep analysis simple, we assume that the re-
ceiver discards coded packets that cannot be immediately
decoded using the data packets that it has received or re-
covered in the past. The implementation can buffer such
packets and decode them later, but we found that this opti-
mization brings little additional gain in our environment.

Thus, to construct a coded packet, the sender must de-
cide which data packets to XOR such that the resulting
coded packet is likely to yield a previously missing data
packet when decoded using data packets already at the
receiver. From a sender’s viewpoint, the optimal solution
to this problem depends on the probability of each data
packet being available at the receiver. This probability is
in general different for different packets. It depends on
the path loss process, and the precise sequence of coded
packets transmitted thus far. It is computationally hard
for the senderi) to track these probabilities, as the num-
ber of possible combinations grows exponentially; and
ii) optimally encode based on individual probabilities.

For tractability, the sender makes a simplifying as-
sumption that each data packet has the same probability,
r, of being present at the receiver. We explored heuris-
tics that account for different per-packet probabilities,but
found that the performance hit of this assumption is neg-
ligible for loss rates and encoding windows sizes that oc-
cur in practice. In§5.1, we describe how the sender can
estimater based on path loss rate and past transmissions.

With this assumption, the problem of determining the
composition of an ideal coded packet boils downs to how

many packets should be XOR’d [10]. Suppose the sender
XORs c data packets. The probability that this coded
packet will yield a previously missing data packet at the
receiver equals the probability that exactly one out of the
c packets is missing. Thus, the expected yield of this
coded packet is:

Y (c) = c · (1 − r) · rc−1 (1)

To maximize the expected yield, we have:

c = −1/ln(r)

This result can be intuitively explained. Observe thatc is
inversely proportional tor. If the fraction of data pack-
ets at the receiver is low, we construct a coded packet by
XOR-ing few data packets. For instance, if most packets
are missing, the best strategy is to encode only one packet
(i.e., send a duplicate); coding even two is sub-optimal as
the chance of both being absent and nothing being recov-
ered is high. Conversely, if a higher fraction of packets
are present at the receiver, encoding more packets recov-
ers missing data faster.

Thus, the sender randomly selectsmax(1, ⌊ −1
ln(r)⌋) data

packets to XOR. We round down because including fewer
data packets is safer than including more.

4.3 Generalizing to multiple paths
OEC can be generalized to the case where transmis-

sions are spread over multiple paths with disparate loss
and delay characteristics, while maintaining the greedy
goodput maximization property.

In the presence of multiple paths, we send each data
packet along the path that currently offers the least de-
lay [9], which is judged using estimates of queue length
and propagation delay. We continue to send traffic along
the fastest path until queuing increases its delay to the
level of the next fastest path, and so on. This method
naturally generalizes striping mechanisms such as round
robin to the case of paths with different delays and ca-
pacities. It minimizes average packet delay, and makes
reordering less likely. Variations and mis-estimations of
path delay can still lead to some reordering, which we
handle using a small sequencing buffer. Coded packets
are sent as before, when spare transmission opportunities
open up along any path.

We argue that the use of delay-based striping in OEC
greedily maximizes goodput. Let there bek paths be-
tween the two proxies and let the capacity, delay, and
loss rate of pathi be ci, di and pi respectively. The
least delay selection policy then creates a virtual path
whose capacity is equal to the sum of the individual ca-
pacities, delay is less than the maximum individual delay,
and the loss rate is the weighted average of individual loss
rates [9]. That is,C =

∑k

i=1 ci, D ≤ maxki=1 di, and

P ≤
∑k

i=1
pi∗ci∑
k

i=1
ci

. This combination is optimal with
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Figure 5: The architecture of PluriBus. It uses OEC be-
tween the two proxies and can combine multiple WWAN
links for additional capacity.

respect to goodput [9]. OEC on top of this virtual path
greedily maximizes goodput, as it does for a single path.

4.4 Applying OEC
Applying OEC in an environment requires three tasks:

i) specifyW andr for greedy encoding;ii) estimate the
bottleneck queue length to guide when coded packets are
transmitted; andiii) if multiple paths exist, estimate cur-
rent delay along each, so that the least delay path is used
for each data packet. We describe below how we con-
duct these tasks in the vehicular environment, which is
particularly challenging because it is highly dynamic.

OEC is designed to use all spare capacity to improve
user performance. As such, it is more appropriate for set-
tings wherei) the underlying transmission channel iso-
lates users from one another, as is the case for WWAN
MACs; ii) the incremental cost of sending data is small,
as is the case with fixed-price, unlimited-usage data plans.
We revisit this issue in§ 5.5.

5. PluriBus: OEC in moving vehicles
Figure 5 shows the architecture ofPluriBus. The Van-

Proxy is equipped with one or more WWAN links. All
packets are relayed through LanProxy, which is located
on the wired Internet.2 Such relaying allows us to mask
packet losses on the wireless links without modifying the
remote computers to runPluriBus. OEC is used between
the two proxies for data flowing in both directions.

We describe below how we accomplish the three tasks
for applying OEC. Our methods for the latter two tasks
borrow heavily from prior work.

5.1 SpecifyingW and r for greedy encoding

The sender initializesW=φ (i.e., empty set) andr=0
and updates these values when a data or coded packet is
sent or feedback is received from the receiver.

2Relaying via LanProxy may increase end-to-end latency.
However, because of the high delay inside wireless carrier net-
works, any increase is small if the LanProxy is deployed in the
same city. Internet paths within a city tend to be short [40].
Interestingly, relaying through our deployed LanProxy actually
reduced latency to most destinations due to Detour effects [37].

i) When a new data packet is sent, it is inserted inW

and thenr is updated to reflect the probability that the
new packet is received. More precisely:

r ← ((|W | − 1) · r + (1− p))/|W |

wherep is a rough estimate of the loss rate of the path
along which the packet is sent. Receivers estimatep using
an exponential average of past behavior and periodically
inform the sender of the current estimate. Burstiness of
losses can complicate the task of estimating loss rates.
Our experiments show thatPluriBus is robust to the inac-
curacies that we find in practice [27].

ii) When a coded packet, formed by XOR-ingc data
packets, is sent,W does not change, andr is updated to
reflect the probability that the coded packet is received,
and yielded a new packet. That is:

r ← (|W | · r + (1− p) · Y (c))/(|W |)

whereY (c) is the expected yield of the packet (Eq. 1).
iii) When the receiver returns the highest sequence

number that it has received, which is embedded in packets
flowing in the other direction (§5.4), packets with lower
or equal sequence numbers are purged fromW . We reset
r to p.

The purge fromW ensures that the sender encodes
only over data packets generated roughly in the last round
trip time. Because higher-layer protocols such as TCP
detect losses and initiate recovery at this time-scale, it
avoids duplicate recovery of packets. Thus, even though
OEC logically uses all spare capacity, in practice it may
not. No coded packets are sent whenW is empty, that is,
no new data packets have arrived in the last RTT.

5.2 Estimating queue length
We maintain an estimate of queue length along a path

in terms of thetime required for the bottleneck queue to
fully drain our packets. It is zero initially and is updated
after packet transmissions:

Q←
(PacketSize ∗ PathCapacity)

max(0, Q− T imeSinceLastUpdate)

PathCapacity refers to the capacity of the path. The
capacity of a path is the rate at which packets drain from
queue at the bottleneck link. It is different from through-
put, which refers to the rate at which packets reach the
receiver. The two are equal only in the absence of losses.
We conservatively estimate path capacity using a simple
method described below.

The WWAN MAC protocols control media usage by
individual transmitters, making it easier to estimate ca-
pacity than CSMA-based links (e.g., WiFi). As an exam-
ple, Figure 6 shows the throughput of WiMax paths in the
two directions for a one-hour window in which we gen-
erate traffic at 2 Mbps in each direction. We see roughly
stable peak throughputs of 1500 and 200 Kbps, which
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Figure 6: WiMax downlink and uplink throughputs. The
y-axis ranges of the two graphs are different.

correspond to their capacity. Incoming sequence num-
bers confirm that throughput dips are due to packet losses
and not slowdowns in queue drain rate. For a detailed
analysis of 3G link capacity, see [22].

Our capacity estimation is conservative, so thatPluriBus

is more likely send fewer coded packets than sending too
many. The estimator, like other bandwidth estimation
tools [16, 17], is based on a simple observation: if the
sender sends a train of packets faster than the path ca-
pacity, the receive rate corresponds to the path capacity.
However, unlike prior tools [16, 17], we do not use sep-
arate probe traffic. Instead, we rely on the burstiness of
data traffic and the capacity-filling nature of OEC to cre-
ate packet trains with a rate higher than path capacity.

We bootstrap the proxies with expected path capaci-
ties. The receiver measures the rate of incoming pack-
ets and computes the sending rate using the transmission
timestamp in each packet. The two rates are computed
over a fixed time interval (500 ms). The capacity esti-
mate is updated based on intervals in which the sending
rate is higher than the current estimate. If the receive
rate is higher than the current estimate for three consec-
utive intervals, the estimate is increased to the median
rate in those three intervals. Similarly, if the receive rate
is lower for three consecutive intervals, the estimate is
decreased to the median rate. Because our sending rate
equals at least our estimated capacity, when actual capac-
ity is lower, the estimate is downgraded quickly. Changes
in capacity estimate are communicated to the sender.

Errors in capacity estimate can lead to errors in the
queue length estimate. In theory, this error can grow un-
boundedly. In practice, we are aided by periods where
little or no data is transmitted, which are common with
current workloads. Such periods reset the estimate to its
correct value of zero. While we cannot directly measure
the accuracy of our queue length estimate, we show in
§6.3.2 that our path delay estimate, which is based on it,
is fairly accurate.

5.3 Identifying minimum delay path
When spreading data across multiple paths,PluriBus

needs to estimate the current delay along each path. A
simple method is to use the running average of one-way
delays observed by recent packets, based on feedback

from the receiver. However, we find that this method is
quite inaccurate (§6.3.2) because of feedback delay and
because it cannot capture with precision short time scale
processes such as queue build-up along the path. Captur-
ing such processes is important to consistently select the
path with the minimum delay.

Our estimate of path delay is based oni) transmis-
sion time, which primarily depends on path capacity;ii)
queue length; andiii) propagation delay. We described
above how we estimate the first two. Measuring prop-
agation delay requires finely synchronized clocks at the
two ends, which may not be always available. We skirt
this difficulty by observing that we can identify the faster
path even if we only compute the propagation delay plus a
constant that is unknown but same across all paths. This
constant happens to be the current clock skew between
the two proxies.

Let the propagation delay of a path bed and the (un-
known) skew between the two proxy clocks beδ. We
estimated+ δ based on Paxson’s method [30]. A packet
that is sent by the sender at local times will be received
by the receiver at local timer, wherer = s + d + δ +
Q + PacketSize

PathCapacity
. If there is no queuing,d + δ = r −

s− PacketSize
PathCapacity

. We can thus computed+ δ using local
timestamps of packets that see an empty queue.

To enable the estimate above, the receivers keep a run-
ning exponential average ofr − s − PacketSize

PathCapacity
(i.e.,

d + δ) for each path. Only packets that have likely sam-
pled an empty queue are used for computing the average.
Packets that get queued at bottleneck link arrive roughly
PacketSize

PathCapacity
time units after the previous packet. We

use in our estimates packets that arrive at least twice that
much time after the previous packet. The running average
is periodically reported by the receiver to the sender.

It is now straightforward for the sender to compute
the path with least delay. This path is the one with the
minimum value of PacketSize

PathCapacity
+Q+ (d+ δ), which is

in fact an estimate of the reception time at the receiver.

5.4 Implementation
We now briefly describe our implementation ofPluriBus.

We encountered and overcame many interesting engineer-
ing challenges while deployingPluriBus on our testbed.
For instance, we need to correctly handle frequent IP ad-
dress changes for the VanProxy in a way that is trans-
parent to users and maintains their connections across
changes. Due to lack of space, we omit most of these de-
tails from this paper and document them separately [27].

The VanProxy and the LanProxy create a bridge be-
tween them, and tunnel packets over the WWAN paths
between them. The IP packets sent by users and remote
computers are encapsulated within UDP packets that are
sent over these paths. We do not use lower-overhead IP-
in-IP tunneling as our wireless carriers block them. The
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UDP packets include a special header that contains times-
tamps and additional information to allow the other end to
correctly decode and order received packets. Each proxy
caches incoming and decoded data packets for a brief pe-
riod (50ms). This cache allows it to decode coded packets
and temporarily store out of order packets. In-order data
packets are relayed immediately. Those received out of
order are relayed as soon as the previous packet is relayed
or upon expiration from the cache.

The PluriBus header and the encapsulation lowers the
effective link MTU by 41 bytes, which may lead to frag-
mentation issues (similar to those with VPNs). To min-
imize fragmentation, we inform the clients of the lower
MTU via DHCP. Some clients inform their wide area
peers of their MTU during TCP connection establishment,
via the MSS option. For other clients, we are experiment-
ing with modifying the MSS option of TCP SYNs as they
traverse the VanProxy. With these changes, only large
UDP packets destined for the clients, which constitute a
small fraction in our traces, will be fragmented.

5.5 Discussion
PluriBus aggressively uses spare capacity. If transit op-

erators subscribe to fixed-price, unlimited-usage plans,
this “selfish” design maximizes user performance. How-
ever, if they have a usage-based plan, their costs will in-
crease. In theory, this increase can be significant because
OEC logically fills the pipe. But in practicePluriBus is not
constantly transmitting because it encodes only over data
in the last round trip time. We show later thatPluriBus

increases usage by only a factor of 2 for realistic work-
loads, with the increment being lower when the baseline
demand is higher. We expect that transit operators would
be willing to pay extra for better performance, as the cost
of wireless access is likely a small fraction of their oper-
ational cost and amortizes over many users.

6. Evaluation
We now evaluatePluriBus. We show that it signifi-

cantly improves application performance (§6.1) and that
OEC outperforms loss recovery based on retransmissions
or capacity-oblivious erasure coding (§6.2). We also pro-
vide microbenchmarks for some aspects ofPluriBus (§6.3).

Experimental platforms: We deployedPluriBus on two
buses that operate regularly on a corporate campus (§2).
Each bus has one WiMax link and one EVDO link. The
observed average loss rate is 5% for WiMax and under
1% for EVDO, though it can be bursty. The round trip
delays are 40 and 150 ms respectively. The variations in
path loss, delay and capacity are all natural; we do not
control them in any way. A computer placed on each bus
generates the workload described below. Because of sup-
port and manageability issues, we were not allowed to
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Figure 7: Benefit of loss recovery inPluriBus. [Deployment]

carry real user traffic on our experimental system. These
two buses are our primary platform for studying the per-
formance ofPluriBus in a real environment. For more
extensive experimentation and to consider different envi-
ronments, we complement it with controlled experiments
using a network emulator. To avoid confusion, we label
our results with ”Deployment” or ”Emulator,” depending
on the platform used for the experiment.

Workload: For the experiments in this paper, we gen-
erate realistic, synthetic workloads from the traces de-
scribed in§2.2. We first process the traces to obtain distri-
butions of connection sizes and inter-arrival times, where
a connection is the standard 5-tuple. The synthetic work-
load is based on these distributions of connection sizes
and inter-arrival times [12]. The average demand of this
workload is 86 Kbps but it is highly bursty.

To verify if our conclusions apply broadly, we also
experimented with other workloads. These include work-
loads with a fixed number of TCP connections and those
generated by a synthetic Web traffic generator [3]. The
results are qualitatively similar to those below.

Performance measure: We use connection completion
time as the primary measure of performance. It is of di-
rect interest to interactive traffic such as short Web trans-
fers that dominate the vehicular environment.

This paper uses the mean to aggregate performance
across trials and connections. To show that the differ-
ences in means are statistically significant, we plot confi-
dence intervals as well. Results that plot median and in-
terquartile ranges can be found in our extended report [27].

6.1 Benefit ofPluriBus

We start by studying the benefit ofPluriBus compared
to the current practice of not using any loss recovery (be-
yond end-to-end TCP). We study other loss recovery mech-
anisms in the next section. The results in this section are
based on our deployment.

Figure 7(a) shows connection completion times for
PluriBus and without any loss recovery. The latter uses
delay-based path selection [9].3 These results are based

3Today, more capacity, if needed, is added by installing addi-
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on over four weeks of data. Each method operated for at
least four days and completed tens of thousands of con-
nections.

The graph shows the mean and 95% confidence in-
tervals (CI) around the mean computed using Student’s
t distribution. We see thatPluriBus significantly reduces
completion time. Its mean completion time is under 1 sec-
ond compared to over 4 seconds without loss recovery.
This reduction represents a relative improvement factor
of over 4 and an absolute improvement of over 3 seconds.

The reduction in completion time due toPluriBus can
significantly improve user experience. Web transactions
tend to have multiple connections (some sequential, some
parallel) and even tens of milliseconds of additional delay
can impact users’ interaction with some Web sites [20].

Though not shown here, we find thatPluriBus reduces
the loss rate seen by end hosts to almost zero (0.3%).
Without loss recovery, this loss rate is over 3%.

Benefit under higher load: Since the gains ofPluriBus

stem from using spare path capacity, an interesting ques-
tion is whether these gains disappear as soon as the work-
load increases. To study the performance ofPluriBus as a
function of load, we scale the workload by scaling the
inter-arrival times. To scale by a factor of two, we draw
inter-arrival times from a distribution in which all inter-
arrival times are half of the original values, while retain-
ing the same connection size distribution. Our workload
synthesis method does not capture many details, but it
captures the primary characteristics that are relevant for
our evaluation. We find that the performance for a syn-
thetic workload scaled by a factor of 1 is similar to an
exact replay of connection size and arrival times.

Figure 7(b) plots the mean and 95% confidence inter-
vals of flow completion time as a function of the scaling
factor used for the workload. Across both buses, these
results are based on over four weeks of data. Each data
point is based on at least two days. We seePluriBus per-
forms well even when the workload is scaled by a factor
of eight. In fact, its performance at that extreme level
is better than what the absence of loss recovery offers
without scaling the workload at all. Even at such high
load levels, there is ample instantaneous spare capacity
for PluriBus to mask losses by sending coded packets and
improve performance (see§6.3.1). The loss rate seen by
end hosts is roughly 0.5% withPluriBus, while it is 3%
without any loss recovery.

tional VanProxies, each with its own WWAN link. Each user
connects to exactly one VanProxy (i.e. an AP) and all her traffic
is exchanged through that VanProxy. This policy balances load
poorly because it operates at the granularity of users and often
there are only a handful of active users. Our experiments (not
shown here) confirm that its performance is poorer than that of
delay-based path selection.
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Figure 8: Performance of various loss recovery mecha-
nisms. The graph plots the mean and (the top end of) 95%
confidence interval for completion time. [Emulation]

6.2 Other loss recovery mechanisms
Having seen that loss recovery brings significant ben-

efits in the vehicular environment, we now compare the
use of OEC inPluriBus to other loss recovery mechanisms.
We consider both retransmission based and erasure cod-
ing based loss recovery.

In retransmission-based loss recovery, the receiving
proxy reports to the sender which packets have not been
received, at which point the sender retransmits them. Both
original packets as well as retransmissions are sent along
the path that we currently estimate as offering the least
delay. This policy provides an upper bound on policies
such as pTCP [15] that do retransmission-based loss re-
covery because it uses the least delay channel and does
not reduce the sending rate in response to losses.

The second loss recovery method that we consider is
the capacity-oblivious erasure coding. We implement a
code withK% redundancy by sending a coded packet
after every100

K
-th pure packet. Each coded packet codes

over packets in the current unacknowledgedwindow since
the last coded packet. Thus, whenK=10, every11th

packet is coded. This code is identical to(K, 1) Mael-
strom code [2]. Both coded and pure packets are sent
over the path with the least estimated delay.

The experiments in this section are based on emula-
tion of the characteristics of wireless paths that we ob-
serve in our deployment. As described earlier (§2, §5.2),
we have collected detailed traces to study the loss rate,
delay and capacity of the wireless links in our testbed.
We drive the emulation by updating emulated link’s de-
lay, loss, and capacity every second, as observed in the
traces. The workload is as before, based on our traces.

Figure 8 shows the results. Notice that the “No Loss
Recovery” and “PluriBus” bars are similar to those from
deployment experiment (Figure 7(a)), which suggests that
our emulation methodology is able to recreate the essen-
tial characteristics for these links.

We see that OEC-based loss recovery inPluriBus out-
performs loss recovery based on both retransmissions and
capacity-oblivious erasure coding. Compared to retrans-
missions, OEC’s mean completion time is lower by 0.6
seconds (reduction factor of 1.7) because its loss recov-
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Figure 9: Delay experienced by data for two loss recov-
ery methods. The graph plots the observed delay minus the
minimum observed. [Emulation]

ery is faster. Compared to using erasure coding with 10%
redundancy, its mean completion time is lower by 0.95
seconds (reduction factor of 2). This level of redundancy
does poorly because it does not recover from many losses.
Even though the average loss rate is low, the loss process
is bursty and in periods of higher loss rates, using 10%
redundancy is not sufficient. Data show that the post-
recovery loss rate is 1.5%.

Compared to erasure coding with 100% redundancy,
the mean completion time ofPluriBus is lower by 0.4 sec-
onds (reduction factor of 1.4). This level of redundancy
is able to recover from most losses in our environment.
Data show that the post-recovery loss rate is 0.5%. But
by not being opportunistic, it imposes a higher queuing
delay on data packets. This effect is shown in Figure 9,
which plots the one-way delay, in addition to the min-
imum observed, for the two methods. We see that the
100% redundancy imposes a much higher delay on data.

The poorer performance of both ends of the redun-
dancy levels relative toPluriBus, for different reasons, un-
derscores the challenge in extracting good performance
with capacity-oblivious erasure coding.

Impact of path loss rate: The results above demonstrate
that OEC outperforms other loss recovery schemes under
realistic path conditions. We now evaluate if the perfor-
mance advantage of OEC persists in a range of settings
with different loss rates.

To isolate the impact of loss rate, we perform emula-
tion experiments with a single link between the two prox-
ies. The link has a one-way delay of 75 ms and capacity
of 1.5 Mbps. The loss rate on the link is varied from 1% to
70%. We show results using the Gilbert-Elliot (GE) loss
model that induces bursty losses. Simpler loss models
in which each packet has the same loss probability yield
qualitatively similar results [27]. The GE model has two
states, a good state with no (or low) loss and a bad state
with high loss. The model is specified using the loss rate
in the two states and state transition probabilities. We set
both the transition probabilities to 0.5 and vary the loss
rate of the bad state.

Figure 10 shows the results as a function of loss rate.
We see thatPluriBus outperforms other loss recovery meth-
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Figure 10: Performance of different loss recovery methods
as a function of loss rate. The graph plots the mean and
95% confidence interval for completion time. [Emulation]

ods across the board. These results also show that OEC
performs better than capacity-oblivious erasure coding
even if the coding overhead of these methods is adapted
to loss rate. If we were to tune the overhead to expected
loss rate, the overhead of the two erasure coding meth-
ods that we study must be suitable for some loss rate, but
we see that OEC is better in the entire range. The rea-
son is as explained earlier. Consider, for example, adding
100% redundancy. When less than half of the channel
capacity is being used by data packets, OEC adds more
than 100% redundancy and thus provides better protec-
tion, especially to the loss of many packets in a short time
window. When more than half the channel is being used,
OEC adds less than 100% redundancy. For the same
amount of (coded+data) traffic that successfully reaches
the receiver, the OEC traffic has more data than 100% re-
dundancy traffic. The combined effect is that OEC tends
to perform better than any capacity-oblivious redundancy
method across a broad range of loss rates.

6.3 UnderstandingPluriBus in detail
We have studied the behavior ofPluriBus in detail. In

this paper, we report on the extra data sent byPluriBus

due to coding and the accuracy of our delay and loss es-
timators. We defer to [27] other investigations such as
the impact of inaccuracies in loss and delay estimates on
performance, specific coding and decoding strategies we
use, and fine-tuning of their parameters.

6.3.1 Amount of coded packets transmitted

Given thatPluriBus is logically capacity filling, how
many coded packets does it actually generate? Using data
from the experiment in Figure 7(b), we find that the aver-
age percentage of coded packets is 54%. At scaling fac-
tors of 1, 2, 4 and 8, the percentage of coded packets is
67, 60, 57 and 35. Thus, as expected,PluriBus reduces the
fraction of coded packets as workload increases because
there are fewer opportunities to send coded packets.

We also find that whilePluriBus logically fills the pipe,
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Figure 11: Error in estimating path delay and loss in
PluriBus. [Deployment]

the actual amount of coded traffic is much lower because
it codes over only data packets that arrive in the last RTT.
At the scaling factor of 1, the average packet transmission
rate ofPluriBus is 258 Kbps, which is much lower than the
combined capacity of the two links.

6.3.2 Accuracy of path delay estimation

Various factors, including estimates of path capacity,
queue length, and propagation delay, impact the delay es-
timate ofPluriBus. For good performance, the accuracy
of this estimate is important. We evaluate accuracy by
comparing the estimated delivery time at the sender to
the actual delivery time at the receiver. This comparison
is possible even with asynchronous clocks because our
estimate of propagation delay includes the clock skew.

Figure 11(a) shows delay estimation error (i.e., esti-
mate minus actual) in our deployment. It includes all
load scaling factors; results are similar across all fac-
tors. The curve labeledPluriBus shows that our estimate is
highly accurate, with 80% of the packets arriving within
10 ms of the predicted time. This is encouraging, espe-
cially considering the inherent variability in the delay of
WWAN paths [22]. As a result of this accuracy, we find
that fewer than 5% of the packets arrive out of order at
the receiver and 95% of the out-of-order packet have to
wait less than 10 ms in the sequencing buffer.

The curve marked “Exp. avg.” shows the error if de-
lays were estimated simply as an exponential average of
observed delays, rather than our more precise account-
ing based on estimated capacity and queue length. Note
that it tends to significantly underestimate path delay. We
find that this underestimation significantly degrades per-
formance, to a level that is sometimes worse than not us-
ing any loss recovery.

6.3.3 Accuracy of loss rate estimation

PluriBus uses an estimate of loss rate to estimater, the
probability of a packet being at the receiver, which is used
in greedy encoding. Given the dynamics of the vehicu-
lar environment, loss rate maybe hard to estimate. Fig-
ure 11(b) shows that we obtain accurate estimates of loss

rate in our deployment. It plots the difference in the loss
rate for the next twenty packets minus the current running
average of the loss rate that we use to predict future loss
rate. Over 90% of the time, our estimate is within±0.1.

7. Additional related work
We now outline work that we build on, in addition to

the work on combating path losses that we summarized
earlier (§3).

Inverse multiplexing: Like PluriBus, many systems com-
bine multiple links or paths into a single, high-performance
communication channel.PluriBus differs primarily in its
context and the generality of the problem tackled—our
paths have disparate delays, capacities, and loss rates.
Most existing works assume identical links [11], identical
delays [39], or ignore losses [9, 34, 31].

A few systems, such as pTCP, R-MTP or MTCP, stripe
data between end hosts across arbitrary paths by using
TCP or a similar protocol along each path [15, 25, 5, 32].
Loss recovery is done via retransmissions. As we showed
in §6, because of high path delays, this approach performs
worse thanPluriBus.

Delay-based striping, which we use to generalize OEC
to multiple paths, was proposed by Chebrolu and Rao [9].
We combine it with loss recovery, which we find is im-
portant for it to be effective.

Improving connectivity for vehicles: Like us, MAR [34]
and Horde [31] combine multiple WWAN links to im-
prove vehicular Internet access. MAR showed the value
of using multiple links using simple connection-level strip-
ing. It left open the task of building higher-performance
algorithms.PluriBus employs one such algorithm (OEC).
Horde [31] specifies a QoS API and stripes data as per
policy. It requires that applications be re-written to use
the API, while we support existing applications. Neither
MAR nor Horde focus on loss recovery.

Some researchers have focused on improving WLAN
(WiFi) connectivity to moving vehicles using lower-layer
techniques such as rate adaptation and directional anten-
nae [6, 29]. In contrast, we focus on WWAN links and on
improving connectivity for applications by masking the
deficiencies of connectivity provided by lower layers.

Erasure code: Numerous erasure codes have been pro-
posed in the literature. The encoding used in OEC is a
generalization of Growth codes [19] that were designed
to transmit data in large sensor networks with failing sen-
sors. Our generalizations include an explicit considera-
tion of loss rate and data already at the receiver. The op-
timal degree of a coded packet (§4.2) is also derived by
Considine [10]. However, that work does not address any
of the systems issues (e.g., when to transmit packets).
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8. Conclusions
Opportunistic erasure coding (OEC) is a new erasure

coding scheme that varies the amount of coding overhead
to fit the instantaneous spare capacity along a path. We
built and deployedPluriBus, which applies OEC to a ve-
hicular context, and found that it reduces the mean flow
completion time by a factor of 4 for realistic workloads.

While we focused on the vehicular context, OEC is
a general technique that can be used in other lossy en-
vironments where timely feedback is not available, e.g.,
wireless multicast and satellite links. Further, the two
core mechanisms in OEC—opportunistic transmissions
and greedy encoding—may be independently useful. Op-
portunistic transmissions can be used to transfer other
kinds of low-priority data such that it uses only the ca-
pacity leftover by high-priority data. Greedy encoding
can be used in other dynamic environments (e.g., wire-
less meshes) where the number of packets that will be re-
ceived cannot be predicted in advance. We plan to study
these possibilities in the future.
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