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1 Introduction

The extraordinary growth in the demand for data center and cloud services, fueled by rapid changes in new
use cases, application architectures, and hardware technologies, poses substantial challenges to infrastructure
systems designers. It takes far too long to understand, integrate, and build the solutions needed to deliver on
the potential provided by the buildout of data center and cloud computing capacity. Consider, for instance,
how long it takes to exploit the strengths (and avoid the weaknesses) of new ML accelerators, or how long
to completely move a complex on-prem application or data flow into the cloud while meeting requirements
for availability, data security, and tail performance.

These are not unsolvable problems. Given enough time, and a large enough research and development
budget, the hyperscalers have demonstrated that it is possible to integrate new use cases and technologies
into existing systems. However, the rate at which we can do these tasks imposes a speed limit on how
effectively we can leverage the trillions of dollars of investment in data center infrastructure. The high level
of investment needed to optimize workloads also limits the types of workloads that can be supported well.

Our goal is over an order of magnitude improvement in the agility of infrastructure development, so that the
Time to Integrate (TTI) for new use cases and technology integration efforts take days or weeks, instead of
months and years. Our approach, Self Defining Systems (SDS) is Al native, aimed at leveraging the unique
abilities of LLMs to accelerate infrastructure agility, while compensating and masking their weaknesses. Al-
though the focus of the project is on infrastructure, we believe our approach can also dramatically accelerate
the rate of innovation by systems researchers and workforce training.

Agentic AI offers a different scaling law for systems development—what we call scalable agency. While
human engineering capacity grows sub-linearly with headcount [3], agentic workforces can in theory expand
nearly instantaneously with available compute. This elastic agentic capacity enables thousands of design
and integration hypotheses to be explored in parallel, provided we can also scalably compensate for their
weaknesses. Our research agenda is to enable scalable agency to match the pace of hardware and workload
evolution without being bottlenecked by human availability.

Consider what is needed to move a complex enterprise application into the cloud. One might start with a
high level English description of system components and objectives. These need to be mapped into a formal
specification, such as Terraform, and then translated into specific choices as to where and what specific cloud
resources to select to meet objectives. A level below, configuring the load balancer for some specific critical
element of the application requires understanding the workload, the configuration options of off-the-shelf
tools, and the option of introducing application-specific work assignment for greater efficiency or failure
resilience. At every level, expertise is needed to generate plausible options, to instrument application data
flows to gather evidence to sort through and evaluate those options, to model the likely effect of server
and network failures and the performance interference from multiplexed resources, to generate code to put
decisions into effect, and to add monitoring to ensure that the application continues to meet its goals after
deployment. Of course, this is just one example; similar challenges arise for LLM runtimes, microservices
orchestration, scientific applications that use custom accelerators, and data centers for specialized workloads.



LLM-powered agents are both a use case and a potential solution. LLMs offer cheap (relative to a human)
but buggy and approximate hypothesis and code generation, equivalent to having an army of inexpensive,
tireless, and somewhat clueless junior developers. Industry already knows how to reduce the error rate of
junior developers by limiting the scope and complexity of any assigned task. In places, existing systems
are already designed with limiting interfaces, such as the use of Linux eBPF or sidecars in microservice
architectures. In networking, we often rely on protocol encapsulation to avoid or isolate feature interactions,
despite the added overhead. In most technology integration efforts, however, we are forced to rely on expert
experience, judgment, and code reviews to bridge gaps and avoid corner case behavior, with the unintended
consequence of slowing down technology adaptation.

How do we build data center and shared cloud infrastructure for extreme rates of change? This means
designing systems from the ground up for composability, simplicity, and rapid change, while preserving the
key benefits of data center and cloud computing: security, reliability, manageability, and resource sharing
remain first order considerations. To make this vision a reality, we need advances on a number of fronts;
our approach is to deep dive into multiple case studies in parallel, abstracting back to common themes and
design patterns. We also plan to proceed from simpler to more complex tasks, with an intermediate goal
of producing useful tools for today’s practitioners, researchers, and students as we build towards the longer
term vision. Examples of needed infrastructure include specification languages for automatic validation of
LLM generated code, systems architectures that support the safe insertion of small amounts of measurement
and optimization code, simulation frameworks for offline hypothesis testing and anticipating edge behavior,
as well as multi-agent systems for automating the hypothesis, code, experiment, and analysis loop.

Recent work has shown that AI can help discover and implement better heuristics for core algorithmic
components of complex systems [21] 5] [§]. We take inspiration from these successes and argue for developing
entire systems, starting from their high-level specification, and also closing the loop with their deployment
and operations. We have recently developed some relevant prototypes, such as specification languages and
optimizing compilers for microservices and approximate performance models for tail latency and energy
consumption [41], [15] 22], but there is much more to be done. In our view, the only thing that can keep pace
with the rate of change of Al is Al itself—to make the integration and troubleshooting of new technologies
automatic, with human ingenuity only involved to set up an architecture capable of leveraging scalable and
automated exploration of the systems design space.

2 Example Use Case: Self-Defining LLM Runtime

To illustrate the challenges that Self-Defining Systems (SDS) aim to address, consider the problem of building
and maintaining an LLM inference runtime—the software layer that manages GPU memory, orchestrates
batching and caching, and coordinates requests across heterogeneous accelerators. This layer evolves at
a remarkable pace: every few weeks, new attention mechanisms, kernel fusion strategies, or distributed
inference methods emerge, each requiring deep manual integration into the runtime. The process of adapting
to these changes remains labor-intensive, brittle, and dependent on scarce expert knowledge.

The key difficulty is the growing mismatch between the rate of innovation in Al models and hardware, and
the capacity of humans to reengineer complex infrastructure in response. Modern runtimes must balance
multiple, often conflicting goals: maximizing throughput while respecting GPU memory limits, avoiding
contention across concurrent users, and ensuring reproducibility and correctness under changing models and
workloads. Even small design adjustments, such as modifying KV-cache layout or tuning the batch size,
can cascade into performance regressions or unpredictable interference across concurrent tenants. Humans
spend enormous effort exploring design options, debugging solutions, and validating improvements.

SDS reframes this challenge by treating the runtime as an adaptive system that proposes, evaluates, and
refines itself. Al agents hypothesize design variants, generate code, conduct experiments, and analyze results,
based on high-level goals. Using a mix of simulation, live evaluation, and A /B testing, they explore a broad
design space automatically, identifying tradeoffs and converging toward systems that meet specified goals.
Over time, the runtime learns how to evolve alongside changing models and hardware, compressing the TTI
for new ideas from months to days.



3 Overview
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SDS agents hypothesize refinements at each stage and evaluate the resulting artifacts. We discuss hypothesis
generation and evaluation in more detail later, but mention here a few facets of the evaluation process.
(1) evaluating the artifacts at upstream stages is more resource efficient but coarser (e.g., architecture
evaluation cannot benchmark performance, which depends on algorithmic choices and code as well)—the
goal of upstream evaluation is to rule out non-viable options early; and (2) evaluation at a refinement
stage informs future hypotheses at that stage as well as upstream stages (backtracking). These two facets
mirror how humans design systems in an iterative, feedback-driven manner. Architectures that are deemed
poor are not fleshed out; and if an architecture that appeared promising earlier in the process later turns
out to be too complex to implement, it is modified or discarded. (3) Because each refinement stage can
generate many independent hypotheses, SDS dynamically scales its population of reasoning agents to match
the complexity of the design space. During early exploration, agentic capacity expands to cover diverse
alternatives; during convergence, it contracts to focus resources on promising configurations. The result is
analogous to autoscaling in cloud systems, but applied to reasoning rather than compute.

SDS agents also close the loop on operations and maintenance. They observe how well the system is
performing in practice, compare against expectations developed as part of the evaluation, and look for
opportunities for improvement. They may realize, for instance, that most requests are short-lived and are



better served by a different algorithm. Based on such observation, it may update the spec and then regenerate
code. Spec updates (e.g., supporting a new accelerator) may come from the user as well.

The spec and intermediate artifacts are kept in sync with the running code, and all system updates start
with spec changes. This helps lower TTI for new components. Today, when adding a new component, the
bulk of the effort is not in writing new code for the component, but in ensuring that code changes do not
cause collateral damage. Starting from the spec and current artifacts and re-running the same evaluation
make it easy to make such judgments. It also makes it possible to generate small changes to those artifacts
that meet the new spec, which lowers risk and makes the changes reviewable by humans. Of course, there
is nothing stopping users from providing code changes to describe spec changes. In that case, the system
interprets the modified code as a proposed update to the specification and regenerates the intermediate
artifacts to maintain consistency.

The multi-stage refinement and closed-loop improvement sets SDS apart from prior Al-driven system design
efforts (whose insights we build upon). Prior efforts like AlphaEvolve and ADRS [21], 5] focus on generating
code for a particular module, given its interface and an evaluation function. Al is not provided the context
within which the module operates, which means that humans must still create and optimize the system
architecture and module interfaces. The SDS approach can be applied not just to new systems but to
existing ones as well. For applying it to existing systems, where only code may exist, we can use Al to infer
the intermediate artifacts and spec, and then handover system operation and updates to SDS agents.

4 A Path from Here to There

We envision a five-phase progression that transforms agents from passive optimizers into autonomous system
architects and operators. While we ground the roadmap below in LLM inference runtimes, the same pattern
generalizes to other systems. Each phase represents a deeper level of autonomy and reasoning capability,
progressing from low-level tuning to meta-level self-improvement. Together they form successive stages in
the evolution of a self-defining system.

Phase 1: Self-configuring. In this first phase, the agent is provided with the system model and must
tune parameters to meet objectives such as throughput or latency. It manipulates configuration values,
simulates and experiments, and reports optimal configurations. For the LLM runtime, this means adjusting
batch sizes, KV cache parameters, and memory pool sizes under varying workloads and GPU memory
limits. Evaluation metrics for this phase include reduction in human tuning effort, fraction of automatically
validated configurations, and performance parity or improvement versus expert baselines.

Phase 2: Self-assembling. After mastering configuration, the agent learns to compose architectures from
modular components. It receives a library of schedulers, cache strategies, and kernel designs and must select,
interconnect, and tune them to achieve a goal. For example, it may pair a specific KV cache design with a
priority-aware scheduler and test the design in simulation.

This phase expands the design space while retaining safety through modularity. The self-configuring capa-
bilities of Phase 1 are used to tune each chosen module. Evaluation metrics for this phase include breadth
of design-space coverage within a fixed compute budget, aggregate performance improvement, and cross-
component compatibility and reuse across runs.

Phase 3: Self-creating. In this phase, the agent gains creative autonomy: it may propose and implement
new runtime components or abstractions. Using evolutionary or reinforcement-learning approaches, the
agent generates and evaluates hypotheses. For example, it might invent a hybrid KV-cache that blends
prefix- and embedding-based reuse, synthesize the code, and benchmark its performance. Evaluation metrics
for this phase include novelty and diversity of validated designs, speed of convergence to Pareto-optimal
configurations, and improvement over prior human or agent-generated versions.



Phase 4: Self-designing. The previous phases can evolve existing systems. This phase allows starting
from scratch. Before an agent can design a new system, it must be able to describe it accurately. In this
phase, the agent analyzes the user-provided spec, potentially referring to related, existing runtimes (e.g.,
their codebase, execution traces, and configuration files) to infer a machine-readable model of the system:
components, dependencies, and data flows. For an LLM runtime, this includes identifying the relationships
between scheduling, memory allocation, kernel execution, and cache management.

This phase establishes the declarative foundation that earlier phases can use to build and deploy the system
description. The agent produces an internal representation that captures structure and constraints. Evalu-
ation metrics for this phase include fidelity of the extracted model compared to ground truth, completeness
of component graph, and correctness of dependency reasoning.

Phase 5: Self-managing. Here, the agents not only design new systems but also improve their own design
methodology. It meta-learns which prompts, scaffolds, and feedback signals accelerate convergence. This
phase closes the loop: design processes themselves become adaptive artifacts. In the LLM-runtime example,
the agent might discover that structured feedback from simulation traces yields faster improvements than
raw benchmark scores and update its workflow accordingly. Evaluation metrics for this phase include rate of
improvement in design iteration efficiency, stability of learned scaffolds across diverse runtime families, and
reduction in overall time to integrate (TTT) for new ideas.

5 Research Challenges

When creating practical self-defining systems, there are challenges at each of the stages in Figure [I] and at
each of the phases progressing to a self-managing system. We outline some of those issues here.

All: Agentic workflow. A key research challenge is determining the agentic workflow: which agents do
we need at each layer, and how do they fit together. This is similar to how we might construct a software
architecture to modularize and isolate concerns between cooperating developers and developer teams. The
workflow also has dependencies across layers, similar to how a product manager might call on the expertise in
the engineering team in order to conduct a cost-benefit analysis for feature prioritization. A unique research
challenge for SDS is scalability; unlike fixed human teams, the number of active agents can fluctuate rapidly as
exploration load changes. The workflow must support distributed context sharing, decentralized evaluation,
and consistent decision-making across an expanding and contracting agent population. We must architect
control loops that allow thousands of agents to explore, learn, and converge in parallel.

Likewise, we want the workflow to enable agents to improve over time. Both human engineers and com-
putational models can be much more accurate and effective if they calibrate themselves against real-world
experience versus run open loop. This learning could be from human expertise, when there is a human in
the loop, or as a result of later stages that validate and evaluate an approach. At any stage of the workflow,
we can ask each agent to produce both a strategy and an estimate or prediction for how well that strategy
will work when filtered through downstream stages of the pipeline. What is an effective architecture for
agent-to-agent cooperation and mutual learning?

Specification: Formalizing the objective. Al agents work best with a clearly articulated goal, but
systems development is inherently multifaceted. As David Patterson once said, ”Be careful what you choose
as a benchmark, as people [or AT agents| will optimize for it.” The systems research community has long had
an intense focus on performance to the exclusion of all other concerns; a recent study showed that a third
of systems research papers are solely concerned with performance [5]. Yet simple performance benchmarks
can be deceiving, as performance gains are only relevant if they do not jeopardize other, more important
concerns. Systems developers need to balance a large number of competing concerns: reliability, security,
manageability, observability, agility, cost, resource efficiency, energy usage, in addition to performance [31].
Much of the expertise that humans bring to system design is judgment as to how to make these tradeoffs.
How does one specify the goal such that agents can produce an artifact that balances real-world objectives?



Architecture: Hypothesis generation. Without taking a stand on the ongoing debate in the AI com-
munity as to whether LLMs are stochastic mimics or can create wholly new ideas, we observe that much of
the progress in systems research and practice is from some new combination of known techniques. This is
a strength, rather than a weakness, of the SDS approach. The sheer number of innovative systems research
ideas published each year is far beyond what a human could master, but it is far less than what an LLM can
master. The systematic, automated, and inexpensive exploration of combinations of ideas provides a prac-
tical way forward for the systems community. Of course, to be successful, we need to be able to encourage
or fine tune LLMs to identify and then operationalize combinations of ideas from the literature. Can we use
Al to automatically generate architecturally-sound combinations?

Architecture: Component interactions. The architecture defines what components to combine, and
what additional algorithms and code modules are needed to accomplish the specification. However, char-
acterizing the semantics or the performance of existing components is a black art. Of course, humans also
struggle when making changes that interact with existing code in subtle ways. A key step in using some
component will be to systematically experiment (or if the source code is available, systematically analyze) to
characterize its behavior in ways important to the target system that might use it. This is a labor intensive
step that could be automated. Can we use agents to learn to avoid pitfalls when assembling and configuring
existing components?

Algorithms: Use-case specialization. Human systems designers are taught to optimize for the common
case, but this can make systems fragile to changing workload assumptions. The speed of algorithm evolution
in AT makes this tendency particularly problematic for systems developers. By dramatically improving
software productivity, AT itself can help expand the scope of self-defining systems. We are moving into an
era where the life cycle cost of developing new software is much lower. Custom solutions for the long tail
of use cases are often ruled out today as being prohibitively expensive, and as a result, design constraints
on system evolution is often limited by the needs to balance costs and benefits of different users. Can
Al-generated specialization slice the Gordian knot of general-purpose systems software?

All: Efficient hypothesis rejection. To make self-defining systems a reality, we must be able to rapidly
generate, evaluate, and disqualify decisions at each stage. Al methods generate much of their power through
parallel search against defined metrics, rather than encapsulating well-earned expertise. As a result, most
hypotheses will be invalid, and those need to be rejected quickly and efficiently, without human intervention.
High fidelity evaluation of changes is the gold standard today, but that can both extremely expensive and
disruptive to users if it involves live deployment. We thus need an ability to evaluate hypotheses at multiple
levels of abstraction, as we progress from specification to architecture to algorithm selection and code.

In places, this might mean generating a rapid prototype for the purpose of aiding an initial evaluation; the
prototype code attempts to quantify or validate key assumptions while leaving optimization for later, if the
assumptions prove valid. In other words, the agentic loop can rely on the agentic loop itself for answering
questions needed at some stage. This is a common technique with human engineering teams, and we believe
it will become even more important as Al reduces the cost of software development.

As another example, recent work (by ourselves and others) has shown that Al-assisted models can provide
fast, approximate answers, calibrated by feedback from real deployments. While these methods can improve
human research productivity, we believe they can supercharge the effectiveness of self-defining systems. Can
we efficiently evaluate alternative approaches, along every evaluation dimension that matters in practice, so
that only the most promising approaches require live deployment on real workloads?

All: Security/robustness analysis and verification. For people to be comfortable with relying on a
self-defining system, the agentic workflow would need to analyze worst case behavior and provide a convincing
argument that the behavior of the system will be acceptable if deployed. How will the system perform if x%
of its replicas fail or an aggregation switch goes down? Can the system deadlock under adverse conditions?
Is its behavior stable under extreme overload conditions? Under what conditions will the system lose data?



These questions are even more difficult, and even more important, to answer for mission- and security-critical
systems—where an adversary is trying its best to disrupt operations, and any breach can be catastrophic.

Data center operators spend enormous effort at anticipating and addressing edge case behavior, failure
resilience, and security vulnerabilities, with remarkable success compared to the state of the art a decade
ago. Even so, human code review and edge case analysis can be error prone. This has driven an increasing
interest in the use of formal methods as a complement to more manual methods, to catch more of these types
of errors before deployment. Indeed, various projects of our own have pushed the state of the art in formal
methods for network configuration and distributed systems [4, B3]. Although fully automated verification
for concurrent multiprocessor or distributed networked systems remains a grand challenge, lighter weight
formal methods such as model checking have proven effective at reducing bugs and vulnerabilities in complex
systems code [2]. These involve developing digital twins to validate functional correctness, as well as advanced
model checking frameworks for locating Heisenbugs due to concurrency and device failures. (A concurrency
bug was the root cause for Amazon’s recent multi-hour outage.) Many of these techniques rely on complex
engineering artifacts. Can we use Al to help generate the infrastructure needed to reduce edge case errors?

Deployment: Incremental update. When specifications change, one approach is to re-derive a new
system that meets the revised specifications. Depending on how extensive the change is, a more efficient and
often more reliable approach is to reuse prior work whenever possible. In human engineering teams, the rate
at which we can make changes to existing systems is gated by how frequently those changes disrupt ongoing
operations [I]. Since our approach aims to accelerate the pace of technology adoption, an SDS should attempt
to leverage deployment experience as much as possible. As a simple example, in a self-configuring system, we
might limit ourselves to deltas from previously deployed settings. More broadly, changes must be carefully
staged and chosen with an eye to maintaining backward compatibility, performing incremental validation,
and the potential for future changes to requirements. If making some change improves some metric, but puts
the system into technical or operational debt, then it is almost certainly not worth it. Even if the objective
hasn’t changed, incremental changes may still be needed, e.g., in response to changes in workload, changes
in hardware availability or cost, or even changes in the knowledge base (e.g., if some research suggests a
better solution to some aspect of the system, it may change design tradeoffs and therefore outcomes).

All: Knowing when to move on. Human-engineered systems typically operate open loop—continue
to refine and improve the system in the most cost-effective manner possible, until higher level management
tells you to move on to some (now) more important task. Because a self-defining system will operate at a
pace much faster than a human development team, we will need the system to monitor its own progress—to
notice when it has reached the stage of diminishing returns, or has become stuck because the most effective
plan can’t be implemented. And by lowering the cost of development, we make it cheaper to keep going.
How do we build an agentic pipeline that can monitor itself?

6 Ongoing Work: Self-Defining LLM Runtime Case Study

As a case study, we are building the LLM inference runtime described in Section [2| from scratch, using Al
coding assistants for all design and implementation. Human involvement focuses on setting goals, struc-
turing tasks, and evaluating outputs. Our motivating question is: How effective are LLM-based agents at
realizing the SDS workflow when constructing and optimizing complex systems components? To this end, we
investigate solutions to the research challenges outlined in Section |5} In particular, we ask:

1. How should we structure the agentic workflow—roles, context sharing, and control loops—to scale explo-
ration while keeping human oversight small? How can the workflow detect diminishing returns, i.e., how
would it know when to move on? We measure time-to-first-correct-build, total iteration cost, and the
frequency and nature of required human interventions.

2. How does the form and completeness of the specification affect correctness, performance, and convergence
speed? We evaluate specifications ranging from high-level goals to structured prompts with explicit
constraints and regression tests.



3. How well do agents generate architecturally sound hypotheses, and how well do they anticipate subtle
component interactions that can induce regressions? We compare different systems organizations (e.g.,
modular versus monolithic) and assess system stability, development progress rate, and code reuse.

4. How can we optimize the workflow to reject bad hypotheses early, using multi-level evaluation (cheap early
signals vs. expensive, high-fidelity tests)? How robust are the resulting systems under failures and adver-
sarial conditions, and what verification/guardrails mitigate risk? Finally, when updating working systems,
how well can agents produce safe, incremental deployment deltas without destabilizing operations?

Methodology. Inspired by AlphaEvolve [21I], we build an iterative hypothesis-evaluate-refine loop over
the multi-stage SDS workflow outlined in Section[3] Starting from a user-facing specification, agents propose
candidate refinements at each stage and we evaluate the resulting artifacts with increasing fidelity as we
move downstream. Upstream evaluation is cheaper but necessarily coarser (aimed at rejecting non-viable
options early), while downstream evaluation can trigger backtracking when later results reveal earlier design
mistakes or infeasible choices. Our current methodology retains goal setting, architecture decomposition,
and evaluation design as human responsibilities, while agents take over much of the implementation and
optimization work. Further work will be required to realize the full SDS vision. The resulting workflow lets
us measure (i) how different specifications and workflow structures affect TTI and iteration cost and (ii) how
well agents generate and select architectural/algorithmic hypotheses.

Early results. So far, our case study has produced two working LLM runtimes, allmos_v2 and a
monolithic-1lm-runtime. Together, they let us quantify how far Al coding agents can go today. To do
so, we evaluate all systems on a throughput benchmark that runs a single Qwen3-0.6B LLM model on one
NVIDIA L4 GPU in a Google Cloud Platform (GCP) VM, using short prompts and low-concurrency work-
loads, reporting steady-state token throughput (tokens/s). As a performance baseline, we use nano-vLLM [6],
a simple but high performance LLM runtime that is compatible with and provides similar performance to the
popular vLLM [I3] runtime. Our throughput benchmark is what the nano-vLLM authors used to demon-
strate nano-vLLM’s performance parity with vLLM.

e To build allmos_v2, we instructed the agent to base its design on Allmos [7], a rudimentary (and slow)
LLM runtime that we built using ChatGPT. We further instructed the agent to construct allmos_v2
to reach the performance of nano-vLLM. allmos_v2 reaches roughly 1.7k tokens/s, effectively matching
nano-vLLM’s 1.76k tokens/s while delivering a 76x speedup over the original Allmos baseline.

e We built the monolithic-11m-runtime from scratch with a much shorter prompt sequence and less human
structure. We intentionally eschewed providing a reference to a baseline system and asked the agent to
keep the code simple. monolithic-1lm-runtime attains 1.2k tokens/s, a 53x speedup since inception.

These prototypes suggest that agents can assemble high-performance systems from scratch with little struc-
ture. For both runtimes, the development and optimization path was largely agent-driven: starting from a
naive PyTorch baseline (~150 tok/s), the agent implemented FlashAttention, CUDA graphs, KV-cache reuse,
continuous batching, and prefix caching and each contributed substantial incremental speedups, with CUDA
graphs and KV-cache reuse providing the largest gains. The agent also implemented PagedAttention-style
block management and hash-based prefix caching, and learned to profile bottlenecks and reason explicitly
about compute versus memory-bandwidth limits.

Over time, we evolved from “agent as code generator” to near-autonomous implement-deploy-benchmark
loops: Our agent now routinely performs Git operations, provisions and configures new GCP VMs, installs
drivers and dependencies, runs benchmarks, and summarizes results. A notable milestone was an agent-
authored “key solutions” document that distilled past deployment failures (GLIBC mismatches, missing
CUDA toolkits, driver issues) into a reusable playbook, cutting end-to-end deployment from ~90 minutes of
human-in-the-loop debugging to ~6 minutes with no human intervention on fresh VMs. This allowed us to
accelerate the development process from 35 days for allmos_v2 to just 2 days for monolithic-1lm-runtime.

However, so far, our agent failed to exceed nano-vLLM’s performance. It unsuccessfully attempted FP8
quantization, chunked prefill, torch.compile, and custom Triton kernels. In these cases our agent redis-
covered techniques already subsumed by CUDA graphs or ran into subtle incompatibilities and workload



mismatches, plateauing without proposing qualitatively new designs (e.g., speculative decoding or fundamen-
tally different kernel structures). We are currently experimenting if explicitly asking the agents to consider
the broader systems literature can overcome these humps.

7 Additional Use Cases

We now describe additional use cases where the SDS approach can substantially increase agility and per-
formance or unlock operational modalities that are not possible today. They share the traits that their
operational environment (workload, available hardware, new software capabilities, etc.) is fast-paced and
the TTT is high, which makes them difficult to develop or operate optimally using current methods. We plan
to pursue some of these use cases as we develop an SDS workflow that works for a broad range of systems.

Microservices management. Microservices are the dominant paradigm for developing and deploying dis-
tributed applications. Application functionality is decomposed into multiple services, each deployed inside an
independent container. Today, a container orchestrator such as Kubernetes deploys and scales microservices
and a service mesh such as Istio implements communication policy between microservices. Given the high
cost of developing and modifying such systems today, most developers are forced to use these general-purpose
systems without the ability to adapt them to their use cases (e.g., the same system is used for long-running
microservices and for serverless environments). This imposes a high runtime cost, sometimes as high as
2x [42], for applications. SDS has the potential to dramatically reduce the cost of creating microservices
management systems optimized for specific environments. We have in the past developed such systems using
the traditional approach [41], which provides a comparative benchmark for SDS.

Deploying complex applications in the cloud. The easiest way to consume computing today is using
public clouds which provide a rich array of first- and third-party virtualized services such as Web servers,
load balancers, firewalls, access control, cluster orchestrators, and so on. While infrastructure-as-code (IaC)
technologies such as Terraform [9] make it easy to consume these services, infrastructure engineers are left to
their own devices when it comes to combining these services into an infrastructure layer that can run their
collection of applications in a secure, reliable, and performant manner. Unlike physical infrastructure, which
evolves slowly once deployed, virtual infrastructure can be and needs to be updated frequently to take full
advantage of new services and to remove deprecated services. SDS can enable companies to quickly create
frameworks to optimally deploy and operate complex applications atop public cloud services.

Scientific computing. The performance of scientific computing relies on algorithms, hardware, and the
systems software (OS, compilers, task schedulers, file systems, network protocols, etc.). Recent advances
in AI are helping discover ever faster algorithms, and decreases in the development cost of custom silicon
has meant that a plethora of new accelerators are available or custom ones can be developed. What stands
in the way of rapid progress is systems software to manage and run scientific applications atop available
hardware. Unless optimized, the performance is fragile, so scientists spend enormous effort optimizing
for the cross product of specific applications, computer architectures, and network designs. Applications
are deeply parallel, with performance gated not just by single core performance but also by all the other
components in the system.

Many science teams do not have the necessary resources and expertise, which leaves a wide gap between
what is possible and what is achievable. Hyperscalers have the resources and expertise, but the level of
investment needed means that they are unable to optimize for workloads in the tail (from a return on
investment perspective) where most scientific computation lies. SDS can enable science teams to develop
and operate systems optimized for their applications, at a fraction of the previous effort.

Specialized data centers. The public cloud is often not the most cost-effective or best-optimized option
for mature workloads [32] (e.g., not every application that uses S3 needs its costly 11 nines of availability).
Companies still use the public cloud because they lack expertise to develop systems optimized for their



workload and to operate them with high reliability. SDS can help such companies build custom, cost-effective
data centers that seamlessly expand to the public cloud as needed for elasticity and specific services.

8 Related Work

Our work builds on a rapidly expanding body of research at the intersection of Al-assisted scientific discovery,
systems design, and agentic automation. These efforts reveal both the potential and the current limitations
of applying AI to open-ended design spaces.

AT for discovery and program search. Early milestones such as AlphaGo [25], AlphaGo Zero [26], and
AlphaFold [12] demonstrate that deep reinforcement learning can master domains long thought to require
human intuition. More recent work, including AlphaDev [I8], which discovered faster sorting algorithms,
and FunSearch [24], which uses LLMs to discover mathematical results, shows that AT can operate directly
on symbolic and programmatic substrates. AlphaEvolve [21] extends this paradigm to code evolution it-
self, using evolutionary loops over LLM-generated programs to improve scientific algorithms autonomously.
Collectively, these systems establish that self-improvement through iterative generation, evaluation, and
selection is feasible once a clear objective function and simulation environment are available.

A second thread of work explores Al as a participant in the research process. MLGym [20] and Code
Researcher [27] exemplify increasingly capable research agents that can generate hypotheses, design ex-
periments, and analyze results from large codebases. These systems demonstrate that LLMs can operate
as autonomous collaborators within bounded scientific and engineering tasks. SDS extends this idea to
system-level reasoning, where the architecture, algorithms, and code co-evolve.

Industry efforts such as GitHub’s Spec-Driven Development [30] highlight a movement toward declarative,
verifiable, Al-assisted engineering. SDS generalizes this philosophy beyond individual applications: rather
than using Al merely to fill in code from a specification, SDS treats the entire system as a self-evolving loop.

Formalization and specification. A key challenge, highlighted in work on autoformalization [34] and
formal engineering specifications [2§], is that most current AI systems lack precise formal targets. Efforts
such as Autonomous Code Evolution [36] and TextGrad [37] explore ways to make reasoning and optimiza-
tion differentiable through text, bridging natural-language prompts and formal objectives. SDS builds on
specification-driven AT in which system goals and constraints are explicit and machine-checkable.

Al-driven system design. Work on Al-native infrastructure automation and Al-driven systems provides
direct precursors to SDS. Chip Placement with Deep Reinforcement Learning [19], AlphaGo Moment for
Model Architecture Discovery [17], and Automated Design of Agentic Systems [I0] apply Al to optimize
or invent specific architectures under fixed objectives and human-defined design spaces. The Darwin Godel
Machine [38] pushes further toward self-improvement through recursive meta-learning, while Barbarians at
the Gate [5] surveys how such approaches are beginning to reshape systems research itself. Most relevant
to SDS, Glia [§] introduces a human-inspired, LLM-based multi-agent workflow that autonomously designs
mechanisms for LLM-serving clusters. Glia demonstrates that experiment-in-the-loop agentic systems can
generate interpretable scheduling and resource management algorithms that rival human designs. Within
infrastructure, iServe [I6] and AI Native Infrastructure Automation [II] explore intent-based and adaptive
control planes. Unlike these systems, which target specific mechanism-level design problems within fixed
architectures, SDS aims to enable end-to-end system self-definition. SDS generalizes beyond discovering
or tuning components to inferring specifications, generating and evaluating hypotheses across specification,
architecture, algorithms, and code, and evolving both design and methodology over time in response to
changing workloads, hardware, and objectives.

A foundational intellectual backdrop for SDS is Sutton’s Bitter Lesson [29], which argues that across decades
of AI research, methods that leverage general computation and learning ultimately surpass those that rely
on human insight and manual design. Sutton’s motivation was epistemic—the recognition that Al systems
will, in the long run, outperform humans at producing better solutions. The SDS vision, by contrast, is
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pragmatic: it arises from the growing mismatch between the speed of technological evolution and the rate at
which human engineers can integrate new capabilities into complex infrastructure. In effect, SDS takes the
bitter lesson to heart but redirects it toward the systems domain, seeking not merely to build better AI, but
to apply AT’s general learning capabilities to the continuous design and adaptation of infrastructure itself.

Simulation and evaluation frameworks. Because direct experimentation on production systems is
costly, simulation frameworks are critical for rapid iteration. Phantora [23] proposes a hybrid simulation
layer that maximizes code reuse for performance estimation. Recent work by a number of groups, including
ours, has examined using machine learning to produce fast, approximate estimates of simulated or emulated
system performance [39, 40} 35] 14, [15]. SDS leverages this work, relying on multi-fidelity reasoning, spanning
system descriptions, simulation, and live flighting, to guide agentic exploration at scale.

9 Summary

Self-Defining Systems (SDS) envision a future in which infrastructure can design, validate, and evolve itself
with minimal human intervention. By embedding Al agents directly into the systems design loop, SDS
transforms infrastructure development from a manual, expert-driven process into an iterative, self-improving
one. A key enabler of this vision is scalable agency—the ability of Al systems to expand their reasoning
and design throughput in proportion to the complexity or urgency of the task. Unlike human teams, which
are limited by organizational growth and training time, agentic collectives can instantaneously parallelize
exploration across compute resources. The result is a step-change in agility: shrinking the time to integrate
new ideas or technologies from months to days, while preserving the reliability, security, and performance
guarantees essential to datacenter-scale systems.

The SDS vision of fully automated system design is a north star for us, and we are cognizant of the fact that
we may not fully get there in the foreseeable future. But we are excited about exploring it and learning how
close we can get; even a partial realization has the potential to unlock massive economic and societal value
by making systems development more efficient and more accessible for many workloads.

We have started developing a self-defining LLM runtime, and our early experiments are promising. We plan
to start working in parallel on the other use cases from Section [7} allowing us to discover general agentic
workflows that work in a range of domains and find effective technical solutions to challenges in Section [5]

Acknowledgments. Vinamra Agarwal and Soham Bhosale contributed to the LLM runtime experi-
ments.
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