
Translating XSLT Programs to Efficient SQL Queries

Sushant Jain Ratul Mahajan Dan Suciu

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

ABSTRACT
We present an algorithm for translating XSLT programs into SQL.
Our context is that of virtual XML publishing, in which a single
XML view is defined from a relational database, and subsequently
queried with XSLT programs. Each XSLT program is translated
into a single SQL query and run entirely in the database engine.
Our translation works for a large fragment of XSLT, which we de-
fine, that includes descendant/ancestor axis, recursive templates,
modes, parameters, and aggregates. We put considerable effort in
generating correct and efficient SQL queries and describe several
optimization techniques to achieve this efficiency. We have tested
our system on all 22 SQL queries of the TPC-H database bench-
mark which we represented in XSLT and then translated back to
SQL using our translator.

Keywords
XSLT, SQL, XML, query optimization, virtual view

1. INTRODUCTION
XSLT is an increasingly popular language for processing XML

data. Based on a recursive paradigm, it is relatively easy to use
for programmers accustomed to a functional recursive style of pro-
gramming. While originally designed to serve as a stylesheet, to
map XML into HTML, it is increasingly used in other applications,
such as querying and transforming XML data.

Today most of the XML data used in enterprise applications
originates from relational databases, rather than being stored na-
tively. There are strong reasons why this will not change in the
near future. Relational database systems offer transactional guar-
antees, which make them irreplaceable in enterprise applications,
and come equipped with high-performance query processors and
optimizers. There exists considerable investment in today’s rela-
tional database systems as well as the applications implemented on
top of them. The language these systems understand is SQL.

Techniques for mapping relational data to XML are now well
understood. Research systems in XML publishing [2, 8, 10, 15]
have shown how to specify a mapping from the relational model to
XML and how to translate XML queries expressed in XML-QL [7]
or XQuery [3] into SQL.

In this paper we present an algorithm for translating XSLT pro-
grams into efficient SQL queries. We identify a certain subset of
XSLT for which the translation is possible and which is rich enough
to express databases-like queries over XML data. This includes
recursive templates, modes, parameters (with some restrictions),

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

aggregates, conditionals, and a large fragment of XPath. One im-
portant contribution of this paper is to identify a new class of op-
timizations that need to be done either by the translator, or by the
relational engine, in order to optimize the kind of SQL queries that
result from such a translation.

We argue that the XSLT fragment described here is sufficient
for expressing database-like queries in XSLT. As part of our ex-
perimental evaluation we have expressed all 22 SQL queries in the
TPC-H benchmark [6] in this fragment, and translated them into
SQL using our system. In all cases we could express these queries
in our fragment, but in some cases the query we generated from the
XSLT program turned out to be significantly more complex than
the original TPC-H counterpart.

Translations from XML languages to SQL have been consid-
ered before, but only for XML query languages, like XML-QL and
XQuery. The distinction is significant; since XSLT is not a query
language, its translation to SQL is significantly more complex. The
reason is the huge paradigm gap between XSLT’s functional, recur-
sive paradigm, and SQL’s declarative paradigm. An easy transla-
tion is not possible, and, in fact, it is easy to construct programs in
XSLT that have no SQL equivalent.

As an alternative to translation, it is always possible to inter-
pret any XSLT program outside the relational engine, and use the
RDBMS only as an object repository. For example, the XSLT in-
terpreter could construct XML elements on demand, by issuing one
SQL query for every XML element that it needs. We assume, that
we can formulate a SQL query to retrieve an XML element with a
given ID. Such an implementation would end up reading and ma-
terializing the entire XML document most of the time. Also, this
approach would need to issue multiple SQL queries for a single
XSLT program. This slows down the interpretation considerably
because of the ODBC or JDBC connection overhead. In contrast,
our approach generates a single SQL query for the entire XSLT
program, thus pushing the entire computation inside the relational
engine. This is the preferred solution, both because it makes a sin-
gle connection to the database server and because it enables the
relational engine to choose the best execution strategy for that par-
ticular program.

As an example, consider the XSLT program below:

<xsl:template match="*">
<xsl:apply-template/>

</xsl:template>

<xsl:template match="person[name==’Smith’]">
<xsl:value-of select="phone/text()"/>

</xsl:template>

The program makes a recursive traversal of the XML tree, look-
ing for a person called Smith and returning his phone. If we
interpret this program outside the relational engine we need to is-

Beers (name, price)

Drinkers (name, age)
Astrosign (drinkers, sign)
Frequents (drinker, bar)
Bars (name)
Serves (bar, beer)

Likes (drinker, beer)

Figure 1: Relational Schema for Beers/Drinkers/Bars.

doc

drinkers

astrosign beers

price barname name beernamename

barsnameage

Figure 2: XML View for Beers/Drinkers/Bars.

sue a SQL query to retrieve the root element, then one SQL query
for each child, until we find a person element, etc. This naive
approach to XSLT interpretation ends up materializing the entire
XML document.

Our approach is to convert the entire XSLT program into one
SQL query. The query depends on the particular mapping from the
relational data to XML; assuming such a mapping, the resulting
SQL query is:

SELECT person.phone
FROM person
WHERE person.name = "Smith"

This can be up to order of magnitudes faster than the naive ap-
proach. In addition, if there exists an index on name in the database,
then the relational engine can further improve performance.

The organization of the paper is as follows. In Section 2 we
provide some examples of XSLT to SQL translation to illustrate the
main issues. Section 3 describes the architecture of our translator,
and while Section 4 describes the various components in detail. We
discuss the optimizations done to produce efficient SQL queries in
Section 5. Section 6 presents the results of the experiments on TPC-
H benchmark queries. Sections 7 and 8 discuss related work and
conclusions.

2. EXAMPLES OF XSLT TO SQL TRANS-
LATIONS

We illustrate here some example of XSLT to SQL translations,
highlighting the main issues. As we go along, the fragment of
XSLT translated by us will become clear. Throughout this section
we illustrate our queries on the well-known beers/drinkers/
bars database schema adapted from [17], shown in Figure 1. We
will assume it is exported in XML as shown in Figure 2. Notice
that there is some redundancy in the exported XML data, for exam-
ple bars are accessible either directly from drinkers or under
beers.

We assume the XML document to be unordered, and do not sup-
port any XSLT expressions that check order in the input. For exam-
ple the beers under drinkers form an unordered collection. It
is possible to extend our techniques to ordered XML views, but this

���������	��
�
�������	����
�����
��������
� �����! #"� %$%&(')
�
��*,+ �	�-�.
/#021435'%
�
���
� �76 ���! #"� 8$%&9'%
�
���+ ������
/#02143;:2�*< ��=�
����>�"�< =�
��>7'%
�
���?A@B #0% 9:2��< ��=�
����+ �	�-�.
,CD"�< =�
��+ E���< �	=�
��BF%G8:"7< =�
�,+ ��
�
��*CH'%
�
��*,+ �	����

Figure 3: Find all beers liked by some drinker.

is beyond our scope here. Furthermore, we will consider only ele-
ment, attribute, and text nodes in the XML tree, and omit from our
discussion other kinds of nodes such as comments or processing
instructions.

2.1 XPath
XPath [5] is a component of XSLT, and the translation to SQL

must handle it. For example the XPath/doc/drinkers/name/
text() returns all drinkers. The equivalent SQL is:

SELECT drinkers.name FROM drinkers

For a less obvious example, consider the query in Figure 3 with
two SQL queries IKJ and IKJ4L . IKJ is not a correct translation ofM J , because it returns all beers, while

M J returns only beers liked
by some drinker. Indeed

M J and IKJ L have the same semantics. In
particular IKJ L preserves the multiplicities of the beers in the same
way as

M J .
IKJ�L is much more expensive than IKJ , since it performs two

joins, while IKJ is a simple projection. In some cases we can opti-
mize IKJ L and replace it with IKJ , namely when the following con-
ditions are satisfied: every beer is liked by at least one drinker, and
the user specifies that the duplicates in the answer have to be re-
moved. In this case

M J and IKJ have the same semantics, and our
system can optimize the translation and construct INJ instead of
IKJ�L . This is one of the optimizations we consider in Section 5.

The XPath fragment supported by our system includes the entire
language except constructs dealing with order and reference traver-
sals. For example a navigation axis like ancestor-or-self is
supported, while following-sibling is not.

2.2 XSLT Templates and Modes
A basic XSLT program is a collection of template rules. Each

template rule specifies a matching pattern and a mode. Presence of
modes allows different templates to be chosen when the computa-
tion arrives on the same node.

Figure 4 shows an XSLT program that returns for every drinker
with age less than 25, pairs of (drinker name, all beers havingOQP#R,S�TVUXWZY that she likes). The program has 3 modes. In the
first mode (the default mode is 0) all drinkers with age less than 25
are selected. In the second mode (mode =1), for those drinkers all
beers priced less than 10 are selected. In the third mode the result
elements are created.

In general templates and modes are also used to modularize the
program. The corresponding SQL query is also shown.

2.3 Recursion in XSLT
Both XSLT and XPath can traverse the XML tree recursively.

Consider the XPath expression //barname that retrieves all bar-
names. In absence of XML schema information it is impossible to
express this query in SQL, because we need to navigate arbitrarily
deep in the XML document1 . However, in the case of XML data[
Some SQL implementations support recursive queries and can

� ������ ��
������ ����
2� ��������C
	�E!�*< ��=�
��*�� ��!
 � ������	��
� ���� � ������� ������
������ ����
2����E�
 C�� ���

� ���
� ������ ��
������ ����
2� ��������C
	-��
�
����� ���*< ��
 � �����%� �!E!
 C!�"	#�
� �*
��$%� ���
� ���� � �����&� �����
��'��� ���
Q�
��
(�,��C)	-+ + ���	����
�	Q����E�
,CD�.���
� ���� � �����&� �����
��'��� ���
Q�
��
(�,��C)	 �	�-�.
�	 � �!E!
,CD�.���

� ����
��$*� ���
� ���
� ������ ��
������ ����
2� ��������C
	��	�-�.
�	 � �!E!
,CD�+�
� ���� � ,,�"� $�
��-��.#�
��
(�,�2C!	-+ 	 ���

� ���
�! #"� 8$%&HE!��< ��=�
����+ �	�-�.
�>&� < =�
��+ �	�-�.
/#02143 E!�*< ��=�
����>/� < =�
��>#��
�
���?A@B #0% HE!��< ��=�
����+ �(�
 � ����F%G8:E!��< ��=�
����+ �	�-�.
 C0� < =�
�,+ E!��< ��=�
��%F%G8:��
�
��*,+ ����< ��
 � �(��F%GB:��
�
��*,+ �	����
 C0� < =�
��+ ��
�
��

Figure 4: XSLT program using modes: For every drinker with
age less than 25, return all pairs (drinker name, beers having
price less than WZY that she likes)

� ������ ��
������ ����
2� ��������C
	�E!�*< ��=�
��*�� �	����
 C C 6 '%��< �-�#6 ��	��
� ���� � ������� ������
������ ����
2�
��
(�,��C
	���E!��< ��=�
����	.� �!E!
,C
���
� ���� � �7������� ������
,C 6 �< !�#6�*
��
(�,��C
	,���� ���-�< !�/	����

� ���
� ���
� ������ ��
������ ����
2� ��������C
	�E!�*< ��=�
��*(� �!E!
,C
���
� ���� � �7�-�*�-� �	����
,C 6 �< !�#6 ���
� ���� � ,,�-��< �!�"�
 �	����
,C 6 �($��*�*�!< ���6��
��
(�,��C
	,�-�������*< ��/	����
� ���� � < .���
����C
	(1��< !��C C21��($!���*��< !�/	"�
� ��
��$*� ���
� ������ ,���� $�
��-�".�*
��
(�,��C
	��	�-�.
�	����

� ����
��$*� ���
� ���

� ���
�! #"� 8$%&HE!��< ��=�
������+ �	�-�.
�>/#02143 E!�*< ��=�
��� �-QE!�*< ��=�
��*(��> E!�*< ��=�
��*2�-QE!�*< ��=�
��**�!>�-�������*< �� �� ���� ���-�< !�/��>#�-�� �����< !� �� �-�������*< ����?A@B #0% H���� ���-�< !�/��+ �< !��CV�-�������*< ����	+ �< !� F8G8:E!��< ��=�
�����-+ �	�-�.
 C 6 '%��< ���#6	F%G8:E!��< ��=�
�����-+ �	�-�.
 CV���� ���-�< !�/��+ E!�*< ��=�
�� F%G8:E!��< ��=�
������+ �	�-�.
 CV���� ���-�< !���	+ E!�*< ��=�
��

Figure 5: All drinkers with the same astrosign as Brian

generated from relational databases, the resulting XML document
has a non-recursive schema, and we can unfold recursive programs
into non-recursive ones. Using the schema in Fig. 2, the unfolded
XPath expression is /drinkers/beers/barname

Recursion can also be expressed in XSLT through templates.
Given a non-recursive XML schema, this recursion can also be
eliminated, by introducing additional XSLT templates and modes.
We describe the general technique in Section 4.1.

2.4 Variables and Parameters in XSLT
In XSLT one can bind some value to a parameter in one part of

the tree, then use it in some other part. In SQL this becomes a
join operation, correlating two tables. For example, consider the
query in Figure 5, which finds all drinkers with the same astrosign
as “Brian”. A parameter is used to pass the value of “Brian’s” as-
trosign, which is matched against every drinker’s astrosign.

In this example, the value stored in variable and parameters was
a single node. In general, they can store node-sets (specified us-

express such XSLT programs; we do not generate recursive SQL
queries in this work.

� ���� � ��
������ ����
 �����3���	C
	,E!��< ��=�
����	"�
� ��
��$*� ���
� ���� � ,,�"� $�
��-��. ���
� ���� � ,,�"� $�
��-��.#�
��
(�,��CD�.< �Z�*	-��
�
�����(�7��< ��
�	,�����

� �-�*
��$%� ���
� ���
�! �"� %$%&(E!�*< ��=�
�����	+ �	�-�.
�>���< �Z����
�
����4�+ ����< ��
,�/#021)3 E!�*< ��=�
��*Q�-QE���< �	=�
��**�!>/� < =�
�2�-5� < =�
��6�>��
�
��� �- ��
�
��*�4?A@B �0% (E!�*< ��=�
��**�	+ �	�-�.
 C0� < =�
��6�+ E���< �	=�
��BF%G8:��
�
����4�+ �	����
 C7� < =�
��6!+ ��
�
��
8 021�9#� '5:(E���< �	=�
��**�	+ ������

Figure 6: For every drinker find the minimum price of beer she
likes.

ing XPath, for instance), and also results of another template call
(analogous to temporary tables in SQL). Our translation of XSLT
to SQL supports all possible values taken on by variables.

2.5 Aggregation
Both XSLT and SQL support aggregates, but there is a a signifi-

cant difference: in XSLT aggregate operator is applied to a subtree
of in the input, while in SQL it is applied to a group using a Group
By clause. Consider the query in Figure 6, which finds for ev-
ery drinker the minimum price of all beers she likes. In XSLT we
simply apply min to a subtree. In SQL we have to Group By
drinkers.name.

For a glimpse at the difficulties involved in translating aggre-
gates, consider the query in Figure 7, which, for every age, returns
the cheapest price of all beers liked by people of that age. In XSLT
we first find all ages, and then for each age apply min to a node-
set, which in this case in not a sub-tree. The correct SQL transla-
tion for the XSLT program is shown next followed by an incorrect
translation. The difference is subtle. In XSLT we collect all ages,
with their multiplicities. That is, if three persons are 29 years old,
then there will be three results with 29. The wrong SQL query
contains a single such entry. The correct SQL query has an ad-
ditional GroupBy attribute (name) ensuring that each age occurs
the correct number of times in the output. See also our discussion
in Section 6.

2.6 Other XSLT Constructs
Apart from those already mentioned, our translation also sup-

ports if-[else], for-each, and case constructs. The for-each con-
struct is equivalent to iteration using separate template rules. The
case construct is equivalent to multiple if statements.

2.7 Challenges
The translation from this XSLT fragment into SQL poses some

major challenges. First, we need to map from a functional pro-
gramming style to a declarative style. Templates correspond to
functions, and their call graph needs to be converted into SQL state-
ments. Second, we need to cope with general recursion, both at the
XPath level and in XSLT templates. This is not possible in gen-
eral, but it is always possible when the XML document is gener-
ated from a relational database, which is our case. Third, param-
eters add another source of complexities, and they typically need
to be converted into joins between values from different parts of
the XML tree. Finally, XSLT-style aggregation needs to be con-
verted into SQL-style aggregation. This often involves introduc-
ing Group By clauses and, sometimes, complex conditions in the
Having clause.

Figure 8 illustrates a more complex example with aggregation

� ������ ��
������ ����
2� ��������C
	��(�
�	��
� ���� � ,,�-��< �!�"�
 �	����
,C
	��($!���*�(!
�	"�
� ���� � ,���� $�
��-��. ���

� ���
� �*
��$%� ���
� ���� � ,���� $�
��-��. ���
� ���� � ,���� $�
��-��.#�
��
(�,��CD��< �Z�*	���E%�%����E!�*< ��=�
��*�� ��!
�C C 1"�($�������!
�� �

��
�
��**������< ��
�	������
� ����
��$*� ���

� ���
$ �-�*��
(�,�Q� � "���! #"� 8$%&HE!��< ��=�
������+ ��!
�>Z��< �Z����
�
����+ ���*< ��
,�/#02143 E!�*< ��=�
����>/� < =�
��>#��
�
����>#E���< �	=�
��**�?A@B #0% � < =�
��+ E���< �	=�
��2C E!��< ��=�
����+ �	�-�.
QF%G8:��
�
��*,+ �	����
 C0� < =�
��+ ��
�
�� F%G8:E!��< ��=�
����	+ �(�
�C E!��< ��=�
����+ �(�

8 021 9#� '�:(E!�*< ��=�
�����	+ �(�
�>�E!��< ��=�
������+ �	�-�.

�����������*
(�,�2� � "���! #"� 8$%&HE!��< ��=�
����+ �(�
�> �.< �Z����
�
��*,+ ����< ��
,�/#02143 E!��< ��=�
����> � < =�
��>#��
�
���?A@B #0% � < =�
��+ E���< �	=�
��2C E!��< ��=�
����+ �	�-�.
QF%G8:��
�
����+ ������
.C7� < =�
��+ ��
�
��
8 021 9#� '�:(E!�*< ��=�
����+ �(!

Figure 7: For every age find the minimum price of beer liked
by some drinker of that age.

� ������ ��
������ ����
2� ��������C
	�E!�*< ��=�
��*(��
� ���� � ������� ������
������ ����
2�
��
(�,��C
	-��
�
�����(���*< ��
�	 � �!E!
,C
���
� ���� � �4< �-��� ��������� �	�-�.
,C
	����*< ��
,�!
���	.*
��
(�,��C
	���
�
����������< ��
�	����
� ���� � �4< �-��� ��������� �	�-�.
,C
	,E!�*< ��=�
���GQ����
Q�
��
(�,��C
	�������
�	"	��

� ���
� ���
� ������ ��
������ ����
2� ��������C
	����*< ��
�	 � �!E!
,C
���
� ���� � �7�-�*�-� �	����
,C
	��7��< ��
,��
���	 *
��
(�,��C
	,E!
�. ��$*� ����	����
� ���� � �7�-�*�-� �	����
,C
	�E���< �	=�
���G2�-�.
�	Q�
��
(�,��C
	�E�
�. �*$*� ����	����
� ���� � ,,�-��< �!�"�
 �	����
,C
	��($!��������< ��
�	"�
� ���� � ,���� $�
��-��. ���

� ���
� ���� � ,,�-��< �!�"�
 �	����
,C
	��($!����'%
�
��("�
� ���� � ,���� $�
��-��.#�
��
(�,��CN+ +7���

� ���
� ���� � < .���
����C 1��($!��������< ��
,C CD�.< � �"1����*< ��
,�!
��������
� ��
��$*� ���
� ������ ,���� $�
��-�".�*
��
(�,��C 1-E!��< ��=�
���G2�-�.
��

� ���� � ,,�"� $�
��-��.#�
��
(�,��C 1��($!����'%
�
��(�
� ���� � ,,�"� $�
��-��.#�
��
(�,��C $ �($��*������< ��
��
� ����
��$*� ���

� ���
� ���
�! #"� 8$%&HE!��< ��=�
����+ �	�-�.
�>&� < =�
��6!+ ��
�
���>)��
�
��*�4	+ ���*< ��
/#02143 E!��< ��=�
����>4��
�
��� ��.��
�
��*���> � < =�
�B�-�� < =�
����>��
�
��� �- ��
�
����4�> � < =�
�B���� < =�
��6?A@B #0% HE!��< ��=�
����+ �	�-�.
 C0� < =�
��6�+ ������
BF%G8:��
�
��*�4	+ �	�-�.
�C � < =�
��6!+ ��
�
��BF8G8:E!��< ��=�
����+ �	�-�.
 C0� < =�
����+ ������
BF%G8:��
�
��*��!+ �	�-�.
�C � < =�
���!+ ��
�
��
8 021 9#� '�: ��
�
��*�4	+ ������
�> E!�*< ��=�
�����	+ �	�-�.
�>/� < =�
��6!+ ��
�
���>��
�
����4�+ ����< ��
�> � < =�
��6!+ �	�-�.
@BF���� G 8 ��
�
��*�4	+ ���*< ��
 CV�.< � ����
�
�����!+ ���*< ��
,�

Figure 8: Cheapest beer and price for every drinker

and parameters. The query finds for every drinker the cheapest
beer she likes and it’s price. Notice the major stylistic difference
between XSLT and SQL. In XSLT we compute the minimum price,
bind it to a parameter, then search for the beer with that price and
retrieve its name. In SQL we use the Having clause.

Orthogonal to the translation challenge per se, we have to ad-
dress the quality of the generated SQL queries. Automatically
generated SQL queries tend to be redundant and have unneces-

QuerierTagger

RDB Schema

XML Schema

View Tree
Query
XSLT

IR QTree

R
D

B

SQLTuples

SQL
Generator

+
Optimizer

QTree
GeneratorParser

XML
View

Output
Tree

Figure 9: Architecture of the Translator

sary joins, typically self-joins [16]). An optimizer for eliminating
redundant joins is difficult to implement since the general prob-
lem, called query minimization, is NP-complete [4]. Commercial
databases systems do not do query minimization because it is ex-
pensive and because users do not write SQL queries that require
minimization. In the case of automatically generated SQL queries
however, it is all too easy to overshoot, and create too many joins.
Part of the challenge in any such system is to avoid generating re-
dundant joins.

3. ARCHITECTURE
Figure 9 shows the architecture of the translator. An XML view

is defined over the relational database using a View Tree [10]. The
XML view typically consists of the entire database, but can also
be a subset to export a subset view of the relational database. It
can also include redundant information. The view never computed,
but instead is kept virtual. Once the View Tree has been defined,
the system accepts XSLT programs over the virtual XML view, and
translates them to SQL in several steps.

First, the parser translates the XSLT program into an intermedi-
ate representation (IR). The IR is a DAG (directed acyclic graph) of
templates with a unique root template (default mode template that
matches ‘/’). Each leaf node contributes to the program’s result,
and each path from the root to a leaf node corresponds to a SQL
query: the final SQL query is a union of all such queries. Each
such path is translated first into a Query Tree (QTree) by the QTree
generator. A QTree represents multiple, possible overlapping nav-
igations through the XML document, together with selection, join,
and aggregate conditions at various nodes. It is explained in Sec-
tion 4.2.

The SQL generator plus optimizer takes a QTree as input, and
generates an equivalent SQL query using the XML schema, RDB
schema, and View Tree. The SQL generator is described in Section
4.4, and the optimizations are discussed in Section 5.

The querier has an easy task; it takes the generated SQL query
and gets the resulting tuples from the RDB. The result tuples are
passed onto the tagger, similar to [15], which produces the output
for the user in a format dictated by the original query. The func-
tionality of the querier and the tagger is straightforward and not our
focus, and hence is not discussed further.

� ������ ��
������ ����
2� ��������C
	�E!�*< ��=�
��*(��
� ���� � ,,�-��< �!�"�
 �	����
,C 6 �	�-�.
�,�����6 �
� ���� � ,���� $�
��-��.#�
��
(�,��C
	��	�-�.
�	����

� ���
� ���� � < .���
����C
	(1��	�-�.
�,�����C C 6 '%��< ���/	�6 �
� ���� � �(����� �����
��'��� ���
 �
��
(�,��C
	���E!��< ��=�
����	 ���!E!
,C
�"�
� ���� � ��������� ������
,C 6 ��
�
����!
��,6	*
��
(�,��C
	���
�
��*(����

� ���
� ���
� ������ ��
������ ����
2� ��������C
	�E!�*< ��=�
��*(� �!E!
,C
���
� ���� � �7�-�*�-� �	����
,C 6 ��
�
��*�!
���6	�
��
(�,��C
	�E!
�. �*$*� � ')
�
����!
���	����
� �*
��$%� ���
� ���� � ,,�"� $�
��-��.#�
��
(�,��C
	��	�-�.
�	����
� ���� � ,,�"� $�
��-��.#�
��
(�,��C ���*$��	������
�
��**�*� �	�-�.
 C C21���
�
��*�!
�� � �����

� ����
��$*� ���
� ���

� ���

Figure 10: Find (drinker, n) pairs, where n is the number of
beers that both Brian and drinker likes

4. TRANSLATION
We will use as a running example the program in Figure 10,

which retrieves the number of beers every drinker likes in com-
mon with Brian. We begin by describing how the XSLT program is
parsed into an internal representation (IR) that reflects the seman-
tics of the program in a functional style. We proceed to describe the
QTree, which is an abstract representation of the paths traversed by
the program on the View Tree. A QTree represents a single such
path traversal, and is a useful intermediate representation for pur-
poses of translating XML tree traversals into SQL. We describe our
representation of the XML view over relational data (the View Tree,
and finally show how we combine information from the QTree and
View Tree to generate an equivalent SQL Query.

4.1 Parser
The output of the parser is an Intermediate Representation (IR)

of the XSLT query. Besides the strictly syntactic parsing, this mod-
ule also performs a sequence of transformations to generate the IR.
First it converts the XSLT program into a functional representation,
in which each template mode is expressed as a function. Figure 11
(a) shows this for our running example. We add extra functions to
represent the built-in XSLT template rules (Figure 11(b)), then we
“match” the resulting program against the XML Schema (extracted
from the View Tree). During the match all wildcards (�) are in-
stantiated, all navigations other than parent/child are expanded into
simple parent/child navigation steps, and only valid navigations are
retained. This is shown in sequence in Figures 11 (c), (d) and (e). In
some cases there may be multiple matches: Figure 12 (a) illustrates
such an example, with the expansion in Figure 12 (b).

The end result for our running example is the IR shown in Fig-
ure 13. In this case the result is a single call graph. In some cases,
a template calls more than one template conditionally (if-then-else
or case constructs) or unconditionally (as shown in Figure 14). The
semantics of such queries is the union of all possible paths that lead
from the start template to a return node, as shown in Figure 14. .

At the end of the above procedure, we have one or more inde-
pendent, straight-line call graphs. In what follows, we will demon-
strate how to convert a straight-line call graph into a SQL query.
The SQL query for the whole XSLT program is the union of the
individual SQL queries.

4.2 QTree
The QTree is a simulation from the XML schema, and succinctly

describes the computation being done by the query. The QTree
abstraction captures the three components of an XML query: (a) the

.-� E���< �	=�
��*��"1-E!
�. ��$%� ��� CV< .8�"1-E!
�. ��$%� � ���	�-�.
.C C 6 ')�*< �-�#6 �
.����,��E!�*< ��=�
��*�> 	-��
�
����	����

.�� E���< �	=�
��*��"1-E!
�. ��$%� ��> 1���
�
��*�!
���� C �*
���$��*�Z�"1-E!
�. �*$*� � ���	����
�>
���%$��	������
�
����� �	�-�.
�C C01!��
�
����!
�� ���!���

� a � Simplified Functional Form

.-�!�"1-E!
�. ��$*� ����C .-���"1�E!
�. �*$*� ���������
.-� E���< �	=�
��*��"1-E!
�. ��$%� ��� CV< .8�"1-E!
�. ��$%� � ���	�-�.
.C C 6 ')�*< �-�#6 �

.����,��E!�*< ��=�
����> 	���
�
��*(,���
.����"1-E!
�. ��$*� ����C .����"1�E!
�. �*$*� ���������
.�� E���< �	=�
��*��"1-E!
�. ��$%� ��> 1���
�
��*�!
���� C �*
���$��*�Z�"1-E!
�. �*$*� � ���	����
�>

���%$��	������
�
����� �	�-�.
�C C01!��
�
����!
�� ���!���
� b � Extended with Built-in Templates

.-� ���*�����"1�E!
�. �*$*� ����C7.-�!�"1-E!
�. ��$*� � �������
.-� �����*��"1-E!
�. ��$*� ����C .-���"1�E!
�. �*$*� ���������
.-� ��
�
���-�"1�E�
�. �*$*� ����C7.-�!�"1-E!
�. ��$%� � �������
.-� �����*�	����
���"1-E!
�. ��$%� ��� C .-���"1�E!
�. �*$*� ���������
.-� ��
�
����	�-�.
�-�"1-E!
�. �*$*� ��� C7.-�!�"1-E!
�. ��$%� � �������
.-� E���< �	=�
��*��"1-E!
�. ��$%� ��� CV< .8�"1-E!
�. ��$%� � ���	�-�.
.C C 6 ')�*< �-�#6 �

.����,��E!�*< ��=�
����> 	���
�
��*(,���
.�� ���*�����"1�E!
�. �*$*� ����C7.����"1-E!
�. ��$*� � �������
.�� �����*��"1-E!
�. ��$*� ����C .����"1�E!
�. �*$*� ���������
.�� ��
�
���-�"1�E�
�. �*$*� ����C7.����"1-E!
�. ��$%� � �������
.�� �����*�	����
���"1-E!
�. ��$%� ��� C .����"1�E!
�. �*$*� ���������
.�� ��
�
����	�-�.
�-�"1-E!
�. �*$*� ��� C7.����"1-E!
�. ��$%� � �������
.�� E���< �	=�
��*��"1-E!
�. ��$%� ��> 1���
�
��*�!
���� C �*
���$��*�Z�"1-E!
�. �*$*� � ���	����
�>

���%$��	������
�
����� �	�-�.
�C C01!��
�
����!
�� ���!���
� c � Function Duplication

.-� ���*�����"1�E!
�. �*$*� ����C7.-�!�"1-E!
�. ��$*� � ��E!��< ��=�
�������
.-� �����*��"1-E!
�. ��$*� ����C .-���"1�E!
�. �*$*� ������
�
����	�-�.
�����
.-� ��
�
���-�"1�E�
�. �*$*� ����C7.-�!�"1-E!
�. ��$%� � �	���-���	�-�.
�����
.-� E���< �	=�
��*��"1-E!
�. ��$%� ��� CV< .8�"1-E!
�. ��$%� � ���	�-�.
.C C 6 ')�*< �-�#6 �

.����,��E!�*< ��=�
����> 	���
�
��*(,���
.�� ���*�����"1�E!
�. �*$*� ����C7.����"1-E!
�. ��$*� � ��E!��< ��=�
�������
.�� �����*��"1-E!
�. ��$*� ����C .����"1�E!
�. �*$*� ������
�
����	�-�.
�����
.�� ��
�
���-�"1�E�
�. �*$*� ����C7.����"1-E!
�. ��$%� � �	���-���	�-�.
�����
.�� E���< �	=�
��*��"1-E!
�. ��$%� ��> 1���
�
��*�!
���� C �*
���$��*�Z�"1-E!
�. �*$*� � ���	����
�>

���%$��	������
�
����� �	�-�.
�C C01!��
�
����!
�� ���!���
� d � XPATH Expansion

.-� ���*�����"1�E!
�. �*$*� ����C7.-� E���< �	=�
��*��"1-E!
�. ��$%� � ��E!�*< ��=�
�������
.-� �����*��"1-E!
�. ��$*� ����C .-� ��
�
��*�	����
���"1-E!
�. ��$%� � �	��
�
��*�	�-�.
�����
.-� ��
�
���-�"1�E�
�. �*$*� ����C7.-� �����*�	�-�.
�-�"1�E!
�. �*$*� �������-��������
�����
.-� E���< �	=�
��*��"1-E!
�. ��$%� ��� CV< .8�"1-E!
�. ��$%� � ���	�-�.
.C C 6 ')�*< �-�#6 �

.�� E!��< ��=�
���-�,��E!�*< ��=�
��*�> 	-��
�
����	����
.�� ���*�����"1�E!
�. �*$*� ����C7.�� E���< �	=�
��*��"1-E!
�. ��$%� � ��E!�*< ��=�
�������
.�� �����*��"1-E!
�. ��$*� ����C .�� ��
�
��*�	����
���"1-E!
�. ��$%� � �	��
�
��*�	�-�.
�����
.�� ��
�
���-�"1�E�
�. �*$*� ����C7.�� �����*�	�-�.
�-�"1�E!
�. �*$*� �������-��������
�����
.�� E���< �	=�
��*��"1-E!
�. ��$%� ��> 1���
�
��*�!
���� C �*
���$��*�Z�"1-E!
�. �*$*� � ���	����
�>

���%$��	������
�
����� �	�-�.
�C C01!��
�
����!
�� ���!���
� e � Function Call Matching

Figure 11: The various stages leading to IR generation for the
query in Figure 10.

path taken by the query in the XML document, (b) the conditions
placed on the nodes or data values along the path (c) the parameters
passed between function calls. Corresponding to the three elements
of the XML query above, a QTree has the following components.

. G E!��< ��=�
���-�"1�E!
�. �*$*� ���AC7. G �"1-E!
�. ��$%� � ���,> 	�1�E�
�. �*$*� ����������	,���
� a � Query Fragment

. G E!��< ��=�
���-�"1�E!
�. �*$*� ���AC7. G �����*��"1-E!
�. ��$%� � �	���-���>
	�1�E�
�. �*$*� ���	�������**�	��
�
��*�	����
��� ��
�
��**�	���-���	���.
����	,���

. G ��
�
���-�"1�E!
�. �*$*� ������
�
����>
	�1�E�
�. �*$*� ���	�������**�	��
�
��*�	����
��� ��
�
��**�	���-���	���.
����	,���

� b � After XPATH Expansion

Figure 12: A query fragment with complex XPATH expansion.

f0_root

f0_drinkers

f1_drinkers

return

select: ./drinkers

 condition: ./name == 'Brian'
select: /drinkers
params: beers

arguments: param1
select: ./name

params:
count(beers[name==$param1])

Figure 13: The IR for the query in Figure 10
.

f0

f1 f2

f3 f4

f0

f1

f3

f0

f2

f3

f0

f2

f4

Figure 14: Complex call graph decoupling

1. Tree: The tree representing the traversal of the select XPath
expressions (with which apply-template is used). Nodes in
this tree are labeled by the tag of the XPath component. Hence
each node in this tree is associated with a node in the XML
schema. Entities that are part of the output are marked with #.

2. Condition set: The collection of all conditions in the query.
It not only includes conditions specified explicitly using the
xsl:if construct, but also includes predicates in the XPath ex-
pressions.

3. Mapping for parameters: A parameter can be the result of
another XSLT query, a node-set given by an XPath expres-
sion, or a scalar value. A natural way of representing this
is by using nested QTrees, which is the approach we take.
Note that the conditions inside the nested QTree might refer
to entities (nodes or other parameters) in the outer QTree.

Figure 15 (a) shows a QTree for the call graph in Figure 10.
There are three QTrees in the figure. Q1 is the main QTree cor-

responding to the XSLT program. It has pointers to two other
QTrees Q2 and Q3, which correspond to the two node-set parame-
ters passed in the program.

The logic encapsulated by the XSLT program is as follows:

1. start at the “root” node.

2. traverse down to a “drinkers” named Brian; “./beers/beername”
is passed as a parameter at this point.

3. starting from the “root”, traverse down to “drinkers” again.

4. traverse one level down to “name”, and perform an aggrega-
tion on the node-set “beers[. . .]/”

These steps correspond to the main QTree for the query Q1. Note
that in step 3, when the query starts at the root to go to drinkers
again, a separate drinker node is instantiated since the query could
be referring to a drinker that is different from the current one (the
root has multiple instances of “drinker” child nodes). QTrees are
also created for every node-set. For example, the second parameter
of the return call (count(beer[name == $...])) is represented as the
QTree Q3. The predicate condition in the XPath for this parameter
is represented in the QTree and refers to P1, defined in Q1.

As an abstraction, QTree is general enough that it can also be
used for other XML query languages like XQuery and XML-QL.
QTree is a powerful and succinct representation of the query com-
putation independent of the language in which the query was ex-
pressed in. Moreover, the conversion from QTree to SQL is also
independent of the query language.

4.3 The View Tree
The View Tree defines a mapping from the XML schema to the

relational tables. Our choice of the View Tree representation has
been borrowed from SilkRoute [10]. The View Tree defines a SQL
query for each node in the XML schema. Figure 16 shows the View
Tree for the beers/drinkers/bars schema. The right hand side of
each rule should be interpreted as a SQL query. The rule heads
(e.g., Drinkers) denote the table name, and the arguments denote
the column name. Same argument in two tables represents a join
on that value.

The query for an XML schema node depends on all its ances-
tors. For example, in Figure 16 the SQL for beername depends
on drinkers and bars. Correspondingly, the SQL query for a child
node is always a superset of the SQL query of its parent. Put an-
other way, given the SQL query for a parent node, one can construct
the query for its child node by adding appropriate FROM tables
and WHERE constraints. As discussed later, such representation is
crucial to avoid redundant joins, and hence generate efficient SQL
queries.

4.4 SQL Generation
This section explains how we generate SQL from a QTree using

the View Tree. As explained before, a QTree represents a traversal
of nodes in the original query and constraints placed by query on
these nodes. The idea is to generate the SQL query clauses cor-
responding to those traversals and constraints. This is a three step
process. First, nodes of the QTree are bound to instances of rela-
tional tables. Second, the appropriate WHERE constraints are gen-
erated using the binding in the first step. Intuitively, the first step
generates the FROM part of the SQL query and join constraints due
to tree traversal. The second step generates all explicitly specified
constraints. Finally, the bindings for the return nodes are used to
generate the SELECT part. We next describe each of these steps.

name

Q1

(N2)

drinkers drinkers

beers

name
Q3

beers

name

Q2

root

#name

Condition:
N2 == ’Brian’

Q1:
SELECT drinkers.name, count(Q2)
FROM drinkers, drinkers2
WHERE drinker2.name = ’Brian’

Q2:
SELECT likes.beer
FROM likes
WHERE likes.drinker = drinker.name
 AND likes.beer in Q3

Q3:
SELECT likes.beer
FROM likes

#count(Q2)

(N6)

Condition:
N6 == Q3

WHERE likes.drinker = drinkers2.name

(N1)

Figure 15: QTree for the example query (left) and mappings to SQL (right)

�-+ZE!��< ��=�
���-�,�	�-�.
�>��(�
�>����� ���-�< !�	� C :Q��< �	=�
��*��,������
�>���!
,��>
F8�� ���-�< !�Z�,�	�-�.
�> ���� ���-�< !�	�

��+���
�
��*�����
�
���G2�-�.
�> ����< ��
�> E!�*< ��=�
���G2����
,� C :2��< ��=�
���-��E!��< ��=�
���G2�-�.
�> ��>
'%
�
��*�����
�
���G2�-�.
�>/����< ��
,��>
"�< =�
�-��E!�*< ��=�
���GQ����
�> ��
�
���G2�-�.
,�

6!+����-��-��������G2�-�.
�>ZE!�*< ��=�
���G2����
,� C :Q��< ��=�
���-��E!��< ��=�
���G2�-�.
�> ��>
'8�-��-��������G2�-�.
,��>
/7��
 � $�
��	�����E!�*< ��=�
���G2����
�>����-��G2�-�.
,�

4�+����-���	�-�.
������-��GQ����
�> ��
�
���G2�-�.
�> E���< �	=�
���G2�-�.
,� C :2��< ��=�
���-��E!��< ��=�
���G2�-�.
�> ��>
'%
�
���-����
�
���G2�-�.
�> > E!�*< ��=�
���GQ����
,��>
"�< =�
�-��E!�*< ��=�
���GQ����
�> ��
�
���G2�-�.
,��>
��
���,-
����������G2����
�> ��
�
���G2�-�.
,�

�!+	��
�
���������
�����
�
���GQ����
�>7���-��G2�-�.
�>�E���< �	=�
���G2�-�.
,�QC :Q��< ��=�
���-��E!��< ��=�
���G2�-�.
�> ��>
/���
 � $!
��	� -��E!��< ��=�
���G2�-�.
�>#���-��GQ����
,��>
'%�-��-����
�
���G2�-�.
�>�E!��< ��=�
���G2�-�.
,��>
�!
���,-
�-��������G2�-�.
�> ��
�
���G2�-�.
,�

Figure 16: View Tree for the beers/drinkers/bars schema in
Figure 2

4.4.1 Binding the QTree nodes
A binding associates a relational table, column pair to a QTree

node. This ��������� T
	�S�� �������� pair can be treated as its “value”. The
binding step updates the list of tables required in the FROM clause
and implicit tree traversal constraints in WHERE clause.

We carry out this binding in a top down manner to avoid re-
dundant joins. Before a node is bound, all its ancestors should be
bound. To bind a node, we instantiate new versions of each table
present in the View Tree SQL query for the child. Tables and con-
straints presented in the SQL of parent are not repeated again. The
node can now be bound to an appropriate table name (using table
renamings if required) and field using the SQL information from
the View Tree.

The end result of binding a node � is bindings for all nodes
that lie on the path from the root to � , a value association for �
of the form tablename.fieldname, a list of tables to be included in
the FROM clause, and the implicit constraints due to traversal.

4.4.2 Generating the WHERE clause
Recall that all explicit conditions encountered during query traver-

sal are stored in the QTree. In this step, these conditions are ANDed

�! �"� %$%&(E!�*< ��=�
����+ ������
�> ���*$!�	����! #"� %$%& � < =�
��+ ��
�
��/#02143 � < =�
�?A@B #0%
� < =�
�,+ E!��< ��=�
�� C E!��< ��=�
����+ �	�-�.
 F%GB:
� < =�
�,+ ��
�
�� � G ��! #"� %$%& � < =�
��+ ��
�
��/#02143 � < =�
�?A@B #0% � < =�
��+ E!�*< ��=�
��BCVE!�*< ��=�
��**�	+ �	�-�.
,�!�/#021)3 E!�*< ��=�
��*�>#E!��< ��=�
�����?A@B �0% (E!�*< ��=�
��**�	+ �	�-�.
 C 6 ')�*< �-�#6

Figure 17: SQL for the QTree Q1 in Figure 15

together along with the constraints generated in the binding step.
A condition is represented in the QTree as a boolean tree with ex-

pressions at leaves. These expressions are converted to constraints
by recursively traversing the expression, and at each step doing the
following:
1. Constant expression are used verbatim.
2. Pointer to a QTree node is replaced by its binding.
3. Pointer to a QTree (i.e., the expression is a node set) is replaced
by a nested SQL query which is generated by calling the conversion
process recursively on the pointed QTree.

4.4.3 Generating the SELECT clause
The values (columns of some table) bound to the return nodes

form the SELECT part of the SQL query. If the return node is a
pointer to a QTree, it is handled as mentioned above and the query
generated is used as a subquery.

Figure 15 shows the mapping of three QTrees in our example to
SQL after these steps. Figure 17 shows the SQL generated by our
algorithm for Q1 after these steps.

4.5 Eliminating Join Conditions on Intersect-
ing Paths

We now briefly explain how our choice of a View Tree representation
helps in eliminating join conditions. For any two paths in the QTree ,
nodes that lie on both paths must have the same value. One simple
approach would be two bind the two paths independently and then
for each common node add equality conditions to represent the fact
that values from both paths are the same. For example, consider
a very simple query that retrieves all all drinkers younger than 25.
Figure 18 shows the QTree for this query.

If we take the approach of binding the nodes independently, and
then adding the SQL constraints we will have the following SQL

drinkers

age #name

Condition:
age < 25

Figure 18: QTree for all drinkers with age less than 25

query:

SELECT drinkers3.name
FROM drinkers2, drinkers3
WHERE drinkers2.age < 25 AND

drinkers2.name = drinkers3.name

In our approach however we first iterate over the common node,
which is the � P#R ��� TZP�� node, and then add the conditions. This
leads to a better SQL query, shown below.

SELECT drinkers.name
FROM drinkers
WHERE drinkers.age < 25

This redundant join elimination becomes more important for com-
plex queries, when there are many nodes that lie on multiple paths
from the root to leaves.

5. OPTIMIZATIONS
Automated query generation is susceptible to generating ineffi-

cient queries with redundant joins and nested queries. Our opti-
mizations unnest subqueries and eliminate joins that are not nec-
essary. Most (but not all) of the optimizations described here are
general-purpose SQL query rewritings that could be done by an op-
timizer. There are three reasons why we address them here. First,
these optimizations are specific to the kind of SQL queries that re-
sult from our translations, and therefore may be missed by a general
purpose optimizer. Second, our experience with one popular, com-
mercial database system showed that, indeed, the optimizer did not
perform any of them. Finally, some of the optimizations described
here do not preserve semantics in general. The semantics are pre-
served only in the special context of the XSLT to SQL translation,
and hence cannot be done by a general-purpose optimizer.

5.1 Nested IN queries
This optimization applies to predicate expressions of the form a

in b, where b is a node-set (subquery). It can be applied only when
the expression is present as a conjunction with other conditions. By
default our SQL generation algorithm (Section 4.4) will generate a
SQL query for the node-set b. This optimization would unnest such
a subquery. Whether or not the query can be unnested depends on
the properties of the node-set � . There are three possibilities:

1. b is a singleton set

This is the simplest case. One can safely unnest the query as
it will not change the multiplicity of the whole query. Fig-
ure 19 illustrates this case. Note that astrosign in the XPath
expression is a node-set.

To determine if the node-set is a singleton set, we use the
following test. The View Tree has information regarding
whether a node can have multiple values relative to its parent
(by specifying a ‘*’). If no node in the QTree for the node-set
has a ‘*’ in the XML schema, then it must be a singleton set.

� $�
��-�Z�7/#< ��E �	����
 �".DE!��< ��=�
��� � ��< ��� �-��
A6 "7
���6
�B�����3���7��E!��< ��=�
������6 "7
���6	C CV�-�������*< ��*�
9#���(����< ��< �,
,E7��! �"7 8$%& E!��< ��=�
����+ �	�-�.
�>/#021)3 E!�*< ��=�
���?A@B �0% N6 "�
���6	< � ���! #"� 8$%&(���� ���-�< !��+ �< !�/#02143 ���� ���-�< !�?A@B #0% H���� ���-�< !��+ E!��< ��=�
��QCVE!�*< ��=�
����+ ������
,�
1 ��� < �.< �,
,E7��! �"7 8$%& E!��< ��=�
����+ �	�-�.
�>/#021)3 E!�*< ��=�
����>Z�-�������*< ��?A@B �0% N6 "�
���6�C �-�������*< ��Z+ �< !�AF%G8:�-�������*< ��Z+ E!�*< ��=�
�� C E!��< ��=�
����+ �	�-�.

Figure 19: Unnesting subquery representing singleton set

� $�
��-�Z��& ��
 �$7� � $�
��3� � ��< � /�< �$���
��(�
9#���(����< ��< �,
,E7��! �"7 8$%& � < =�
��+ ��
�
��/#021)3 � < =�
�?A@B �0% � < =�
�,+ E!��< ��=�
��BCVE!��< ��=�
����+ �	�-�.

� < =�
�,+ ��
�
�� � G ���! #"� %$%& � < =�
��+ ��
�
��/�0B1)3 � < =�
�?A@2 #0% � < =�
��+ E!�*< ��=�
���C E!�*< ��=�
��**�	+ �	�-�.
,�1 ��� < �.< �,
,E7��! �"7 8$%& � < =�
��+ ��
�
��/#021)3 � < =�
��>&� < =�
�*�?A@B �0% � < =�
�,+ E!��< ��=�
��BCVE!��< ��=�
����+ �	�-�.
 F%G8:
� < =�
�,+ ��
�
��QC � < =�
����+ ��
�
��KF8G8:
� < =�
�,+ E!��< ��=�
��8C E!��< ��=�
������+ �	�-�.

Figure 20: Unnesting subquery having no duplicates

2. b has no duplicates

If the subquery has no duplicates, the query will evaluate to
‘true’ at most once for all the values in the set b. Hence one
can unnest the query without changing multiplicity. Figure
20 illustrates this case, for the example query used in the
previous section.

To determine if the node-set has no duplicates, we use the
following test. If the QTree for the nodeset has no node with
a ‘*’ except at the leaf node, then it is a distinct set. The
intuition is that the siblings nodes (with the same parent) in
the document are unique. So if there is a ‘*’ at an edge other
than the leaf edge, uniqueness of the leaves returned by the
query is not guaranteed.

3. b can have duplicates

When a node-set can have duplicates for example, //beers, as
discussed in Section 2.1, unnesting the query might change
the semantics. This is because the multiplicity of the resul-
tant query will change if the condition a in b evaluates to true
more than once. We do not unnest such a query.

5.2 Unnesting Aggregate Operators Using
GROUP-BY

This optimization unnests a subquery that uses aggregation by
using GROUP-BY at the outer level. The optimization is applied
for expressions of the form op b, where b is a node-set, and op is
an aggregate operator like sum, min, max, count, avg. The obser-
vation is that the nested query is evaluated once for every iteration
of outer query. We get the same semantics if we unnest the query,
and GROUP-BY on all iterations of outer query. To GROUP-BY
on all iterations of outer query we add keys of all the tables in the

� $!
��-�Z� � �Q< � /#< �$��*
�����+� ���"$��
,E���
�� � �)� < �-��
 �(����< ��< �,
,E+,-
����< ���A���� �4� < � /#< �$���
.�*�
9#������� < �.< �,
,E � � " . �-� � �-��! #"� %$%&(E���< �	=�
��*,+ �	�-�.
�> ���%$��	��� � ���/#02143 E!��< ��=�
����> E!�*< ��=�
�����?A@B #0% HE!��< ��=�
������+ �	����
 C 6 '%��< ���#6
1 �Z� < ��< �,
,E � � " . ��� � ����! #"� %$%& E���< �	=�
��*,+ �	�-�.
�> ���%$��	���(� < =�
����+ E!��< ��=�
��*�/#02143 E!��< ��=�
����> E!�*< ��=�
�����!> � < =�
��>&� < =�
�*�?A@B #0% HE!��< ��=�
������+ �	����
 C 6 '%��< ���#6

� < =�
��+ E���< �	=�
��2C E���< �	=�
��*,+ �	�-�.
 F%G8:
� < =�
��+ ��
�
��2C0� < =�
�*�	+ ��
�
��BF%GB:
� < =�
��+ E���< �	=�
��2C E���< �	=�
��**�	+ ������

8 021 9#� '�: E!��< ��=�
����+ �	�-�.
�>�E���< �	=�
��**�	+ ������

Figure 21: Illustrating GROUP-BY Optimization

from clause of outer query to the GROUP-BY clause. The aggre-
gate condition is moved into the HAVING clause. In SQL, the
GROUP-BY clause must have all the fields which are selected by
the query. Hence all the fields in SELECT clause are also added to
the GROUP-BY clause.

If the outer query already uses GROUP-BY then the above opti-
mization can not be applied. This also implies that for a QTree this
optimization can be used only once. In our implementation we take
the simple choice of applying the optimization the very first time
we can.

Figure 21 illustrates this case, for the example query used in the
previous section.

5.3 QTree Reductions
In this optimization, we transform the QTree itself. Long paths

with unreferenced intermediate nodes are shortened, as shown in
Figure 22. This helps in eliminating some redundant joins. The
optimization is done during the binding phase. Before binding a
node, we checked to see if a short-cut path from root to that node
exists. A short-cut path is possible if no intermediate node in the
path is referred to by any other part of the QTree except the im-
mediate child and parent of that node on that path. If a condition
is referring to an intermediate node or if an intermediate node has
more than one child, it is incorrect to create a short-cut path. Also
the View Tree must specify that such a short-cut is possible, and
what rules to use to bind the node if a short-cut is taken. Once the
edge has been shortened and nodes bound, rest of the algorithm
proceeds as before.

We observed that this optimization also helps in making the fi-
nal SQL query less sensitive to input schema. For example, if
our beers/drinkers/bars schema had “beers” as a top level
node, instead of being as a child node of Drinkers, then the same
query would had been obtained without the reduction optimization.

6. EXPERIMENTS
In this section we try to understand how well our algorithm trans-

lates XSLT queries to SQL queries. We implemented our algorithm
in Java using the JavaCC parser [11]. Evaluation is done using the
TPC-H benchmark [6] queries. We manually translate the bench-
mark SQL queries to XSLT, and then generating SQL queries from
the XSLT queries using our algorithm. In the process we try to
gauge the strengths and limitations of our algorithm, study the im-
pact of optimizations described in Section 5, and observe the effects
of semantic differences between XSLT and SQL.

The TPC-H benchmark is established by the Transaction Pro-
cessing Council (TPC). It is an industry-standard Decision Support

QTree QTree after reduction

root

beers

drinkers

#name

root

beers

#name

Figure 22: QTree Reduction for query //beers/name.

test designed to measure systems capability to examine large vol-
umes of data and execute queries with a high degree of complex-
ity. It consists of 22 business oriented ad-hoc queries. The queries
heavily use aggregation and other sophisticated features of SQL.
The TPC-H specification points out that these queries are more
complex than typical queries.

Out of the 22 queries, 5 require creation of an intermediate table
followed by aggregation on its fields. The equivalent XSLT trans-
lation would require writing two XSLT programs, the second one
using the results of first. While this is possible in our framework as
described in Section 4, our current implementation only supports
parameters that are bound to fragments of the input tree, or to com-
puted atomic values. It does not support parameters bound to a
constructed tree. For such queries we translated the SQL query for
the intermediate table, which in most cases was the major part of
the overall query, to XSLT. Another modification we made was that
aggregates on multiple fields like sum(a*b) were taken as aggregate
on a single new field sum(c).

Overall, our algorithm generated efficient SQL queries in most
cases, some of which were quite complex. A detailed table de-
scribing the result of translation for individual queries is presented
in Appendix A. We present a summary of results here.

1. 10 Queries with at most single aggregation at any level and
non-leaf group-by were converted to TPC-H like (same nest-
ing structure, same number of joins) queries.

2. In 3 queries, the only reason for inefficiency was extra joins
because of the GROUP-BY semantic mismatch between XSLT
and SQL, as discussed below.

3. 1 query was inefficient because of GROUP-BY semantic mis-
match and presence of a nested IN query.

4. 1 query used CASE statement in SQL select. We generated
a UNION of two independent SQL queries.

5. 2 queries required aggregation on the XSLT output for trans-
lation, This is not fully supported by our current implemen-
tation but a hand generation led to similar SQL queries.

6. 5 queries required temporary tables as mentioned above. We
observed that we were able to convert the XSLT for the tem-
porary tables to efficient SQL.

Many queries that were not translated as efficiently as their orig-
inal SQL version required grouping by intermediate output. This is
not an artifact of our translation algorithm, but due to a language-
level mismatch between XSLT and SQL. An XSLT query with
identical result cannot be written for these queries. With appropri-
ate extensions to XSLT to support GROUP-BY, one can generate

queries with identical results. It is no coincidence that this issue is
mentioned in the future requirements draft for XSLT [12].

6.1 Utility of Optimizations
In this section, we describe the utility of each of the three opti-

mizations, mentioned in Section 5, in obtaining efficient queries.

1. Unnesting IN subqueries (Section 5.1): 4 queries benefitted
from this optimization. All of those were the case when the
node-set had multiple but distinct values.

2. Unnesting aggregations (Section 5.2): 21 queries had some
form of aggregation, for which this optimization was useful.

3. QTree reduction (Section 5.3): For 13 queries, QTree re-
duction was useful. This optimization was frequent because
many queries would be related to a node deep in the schema,
without placing a condition on the parent nodes. With QTree
reduction, efficient queries can be generated independent of
the XML schema.

7. RELATED WORK
SilkRoute [10, 8] is an XML publishing system that defines an

XML view over a relational database, then accepts XML-QL [7]
queries over the view and translates them into SQL. The XML
view is defined by a View Tree, an abstraction that we borrowed for
our translation. Both XML-QL and SQL are declarative languages,
which makes the translation somewhat simpler than for XSLT. A
translation from XQuery to SQL is described in [14] and uses a
different approach based on an intermediate representation of SQL.

A generic technique for processing structurally recursive queries
in bulk mode is described in [1]. Instead of using a generic tech-
nique, we leveraged the information present in the XML schema.
This elimination is related to the query pruning described in [9].
SQL query block unnesting for an intermediate language has been
discussed in [13] in the context of the Starburst system.

8. CONCLUSIONS
We have described an algorithm that translates XSLT into SQL.

By necessity our system only applies to a fragment of XSLT for
which the translation is possible. The full language can express
programs which have no SQL equivalent: in such cases the pro-
gram needs to be split into smaller pieces that can be translated
into SQL.

Our translation is based on a representation of the XSLT pro-
gram as a query tree, which encodes all possible navigations of the
program through the XML tree. We described a number of opti-
mization techniques that greatly improve the quality of the gener-
ated SQL queries. We also validated our system experimentally on
the TPC-H benchmark.

Acknowledgments
We are thankful to Jayant Madhavan and Pradeep Shenoy for help-
ful discussions and feedback on the paper.

Dan Suciu was partially supported by the NSF CAREER Grant
0092955, a gift from Microsoft, and an Alfred P. Sloan Research
Fellowship.

9. REFERENCES
[1] P. Buneman, M. Fernandez, and D. Suciu. Unql: A query

language and algebra for semistructured data based on
structural recursion. VLDB Journal, 9(1):76–110, 2000.

[2] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram,
E. Shekita, and S. subramanian. XPERANTO: publishing
object-relational data as XML. In Proceedings of WebDB,
Dallas, TX, May 2000.

[3] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Simon, and
M. Stefanescu. XQuery 1.0: An XML Query LanguageXML
Path Language (XPath). Technical report, W3C, June 2001.

[4] A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In Proceedings
of 9th ACM Symposium on Thoery of Computing, pages
77–90, Boulder, Colorado, May 1977.

[5] J. Clark and S. DeRose. XML Path Language (XPath).
Technical report, W3C, November 1999.

[6] T. P. Council. TPC Benchmark H (Decision Support).
Technical report, June 1999.

[7] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. A query language for XML. In 8th International
World Wide Web Conference (WWW), May 1999.

[8] M. Fernandez, A. Morishima, and D. Suciu. Efficient
evaluation of XML middle-ware queries. In Proceedings of
ACM SIGMOD Conference on Management of Data, Santa
Barbara, 2001.

[9] M. Fernandez and D. Suciu. Optimizing regular path
expressions using graph schemas. In Proceedings of the
International Conference on Data Engineering, pages
14–23, 1998.

[10] M. F. Fernandez, W. C. Tan, and D. Suciu. SilkRoute:
Trading Between Relations and XML. In 9th International
World Wide Web Conference (WWW), May 2000.

[11] Java Compiler Compiler (JavaCC) - The Java Parser
Generator.
http://www.webgain.com/products/java_cc/,
2002.

[12] S. Muench and M. Scardina. XSLT Requirements. Technical
report, W3C, February 2001.

[13] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible
rule-based query rewrite optimization in Starburst. SIGMOD
Record, 21(2):39–48, June 1992.

[14] J. Shanmugasundaram, , J. Kiernana, E. Shekita, C. Fan, and
J. Funderburk. Querying XML views of relational data. In
Proceedings of VLDB, pages 261–270, Rome, Italy,
September 2001.

[15] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently
publishing relational data as xml documents. In Proceedings
of VLDB, pages 65–76, Cairo, Egipt, September 2000.

[16] D. Suciu. On database theory and xml. SIGMOD Recrod,
30(3), 2001.

[17] J. Ullman and J. Widom. A First Course in Database
Systems. Prentice-Hall, 1997.

APPENDIX

A. DETAILED RESULTS FOR TPC-H QUERIES

Id Description Q From Ops Prbs Comments

Q1 Pricing summary report; computes ag-
gregates for many output fields

� (1,-) G, TR Gl, Ot One nested query is generated per ag-
gregation; we unnest only one

Q2 Minimum cost supplier; subquery with
min aggregate operator

�
(9,9) G IN - -

Q3 Shipping priority; aggregation
�

(3,3) G - -
Q4 Order priority checking; subquery withT�� R � � �

� (2,5) TR GL Extra joins due to GL

Q5 Local supplier volume; aggregation
�

(6,6) G IN - -
Q6 Forecasting revenue change; aggrega-

tion

�
(1,3) TR - -

Q7 Volume shipping; requires temporary
table

�
(6,6) G IN Ot Only the SQL query for temporary table

was translated
Q8 National market share; requires tempo-

rary table

�
(8,8) G Ot Only the SQL query for temporary table

was translated
Q9 Returned item reporting; requires tem-

porary table

�
(6,6) G Ot Only the SQL query for temporary table

was translated
Q11 Important stock identification; nested

subquery in � P � O�� ���
� (6,7) G Gl

Q12 Shipping modes and order priority; case
statement

� (2,5) GL TR Ot Wrote two XSLT programs which gen-
erated two queries

Q13 Customer distribution; temporary table.
�

(1,1) TR G Ot Complex aggregation on the temporary
table; only the SQL query for tempo-
rary table was translated

Q14 Promotion effect; aggregation and case
statement

� (2,5) G TR NI Ot

Q15 Top supplier query; temporary Table.
�

(1,1) TR Ot Results for temporary table
Q16 Parts-supplier relationship; aggregation

and � � � R � in the subquery.

� (2,6) G TR GL NI The generated SQL has different nest-
ing structure.

Q17 Small-quantity-order revenue; aggre-
gates the output of a complex query.

� (3,6) G Tr NI Ot Need aggregation on the output of an
XSLT prgoram

Q18 Large volume customers; nested query
has � P � O�� ���
	 ��� R � �

� (4,5) G IN TR Gl Generated query was similar in struc-
ture.

Q19 Discounted revenue
�

(2,2) G TR - -
Q20 Potential part promotion

�
(5,5) TR - Different nesting structure

Q21 Suppliers who kept orders waiting; two
nested subqueries and aggregation

�
(6,6) TR G -

Q22 Global sales opportunity; temporary ta-
ble

�
(3,3) G - -

Table 1: Analysis of TPC-H Queries. Id is the TPC-H query number. Description explains what the query does, and any special
requirement of query. Q is the quality of translation;

�
denotes that the generated query was optimal (similar to the TPC-H version)

and � indicates otherwise. From is the number of tables accessed by the TPC-H query, and the number of tables accessed by the
generated query. Ops lists the optimizations applied during translation. �� stands for unnesting IN, � for unnesting aggregate, and���

for QTree reduction. Prbs explains why the generated query was not optimal – �
� for semantic group-by mismatch as mentioned
in Section 6, �� when there is a nested IN query, � � for other reasons like use of SQL case statement and multiple aggregations.

