
Application Defined Networking

Ratul Mahajan
University of Washington

ACM India Winter School on “Full-Stack Networking” 2023

From monoliths to microservices

Payment Product

User Ad

Frontend

PaymentPayment

PaymentPayment

From monoliths to microservices

Payment Product

User Ad

Frontend

Payment Product

User Ad

Frontend

From monoliths to microservices

Microservices need application networks

Function calls RPCs

Payment Product

User Ad

Frontend

PaymentPayment

PaymentPaymentPayment Product

User Ad

Frontend

Microservices need application networks

Service
discovery

Load
balancing

Encryption

Access
control

Observability

Fault
tolerance

PaymentPayment

PaymentPaymentPayment Product

User Ad

Frontend

RPCs

Common service mesh datapath

Svc 1

TCP

IP

NIC

TCP

IP

HTTP
RPC

HTTP

Svc 2

TCP

IP

NIC

TCP

IP

HTTP
RPC

HTTP

Sidecar

Sidecar overhead

Latency and CPU overhead for the Hotel benchmark

Dissecting Overhead of Service Mesh Sidecars, SoCC 2023

Challenges with the current approach

High overhead

Non-portability

Poor extensibility

How should we design and implement application networks?

Characteristics of application networks

Need rich message processing, not just IP

Connect endpoints of an application, not everyone

Our Approach: Application Defined Networks (ADN)

Developers specify what they want network to do at a high level

❏ Application-relevant abstractions
❏ Easy to write, portable

Meets application-specific needs
without a burdened implementation that does it all

Compiler automatically generates an optimized implementation

❏ Determine where and how of processing happens (incl. offload)
❏ Determine message headers/protocols

Example

Compiler

S1→S2: RequestRouting→Logging→Compression→FaultInjection(0.1)

…

ADN Processors

Example

S1 S2

RR

Log

Zip

FI

Unzip

S1→S2: RequestRouting→Logging→Compression(zip)
→FaultInjection(0.1)

Example

S1 S2

FI

Log

Zip

RR

Unzip

S1→S2: RequestRouting→Logging→Compression(zip)
→FaultInjection(0.1)

Example

S1 S2FI

Log Zip RR
Unzip

S1→S2: RequestRouting→Logging→Compression(zip)
→FaultInjection(0.1)

Example

S1 S2FI

Zip RR

Log

Unzip

S1→S2: RequestRouting→Logging→Compression(zip)
→FaultInjection(0.1)

Example

S1 S2

FI Log

UnzipZip

RR

S1→S2: RequestRouting→Logging→Compression(zip)
→FaultInjection(0.1)

Programming abstractions

Graph specification

○ RPC processing as a graph of elements

○ Each element perform a single network function on RPCs

Request
Routing Logging CompressionFault

InjectionS1 S2

Programming abstractions

● Element specification
○ Idea 1: Dataflow SQL

■ RPC processing ~= stream processing

■ But not expressive enough

ElementInput
RPCs

Output
RPCs

Internal State

○ Idea 2 (currently pursuing): Match-action

■ Well-understood paradigm for layer 4 processing but layer 7 processing is richer

■ Possible to express common Envoy filters and gRPC middleware

Example

FaultInjection(prob):

match{random(0,1) < prob}

true => drop

 false => forward

Request
Routing Logging CompressionFault

InjectionS1 S2

RequestRouting:

match{Look(rpc.user,RouteTable)}

Some(d) => rpc.dst = d

None => DROP

Summary

Application networks today have high overhead and are inflexible

Generality is the root cause of inefficiencies

Our approach: Application Defined Networking

○ Specify desired network functionality in a high-level language

○ Auto-generate optimized, application-specific implementation

