
A decade of network verification: 
Lessons learned and open challenges

Ratul Mahajan



“At least 41% of all calls that 
attempted to use T-Mobile’s network 
during the outage failed, including at 
least 23,621 failed calls to 911.”

“[An old woman] who has dementia, 
could not reach [her son] after her car 
would not start and her roadside-
assistance provider could not call her 
to clarify her location; she was 
stranded for seven hours”



Anatomy of the outage (illustration)

8

3

1 6

Los Angeles

Seattle New York

Miami



Anatomy of the outage (illustration)

8

3

1 6

Los Angeles

Seattle New York

Miami

Denver
2 2

6



Anatomy of the outage (illustration)

8

3

1 6

Los Angeles

Seattle New York

Miami

2 2

X 6Denver
What if T-Mobile could 
guarantee that no traffic 
will transit Denver?

What if T-Mobile 
could predict the 
impact of link failure?





Network verification to the rescue

Guarantee network behavior *
* Some behaviors under some assumptions



How network verification slices the problem

Hardware

Software (OS, protocols)

Configuration, state

Trust

Verify



Distributed routing
Protocol redistribution

Rich route filtering

Complex interactionsLarge scale
O(103) devices
O(106) routes

O(109) packets

The “haystack” of network behaviors is HUGE



Open source, with 2000 users on Slack
Used at 50+ companies
The basis for Oracle Cloud’s Network Path Analyzer
Foundation for 25+ publications

Batfish: A production-grade network verifier

2012 2015 2017 2022

https://github.com/batfish/batfish



Open source, with 1700+ users on Slack
Used at 50+ companies
The basis for Oracle Cloud’s Network Path Analyzer
Foundation for 20+ publications

Batfish: A production-grade network verifier

2012 2015 2017 2022

https://github.com/batfish/batfish

(NSDI 2015)



Batfish validates configuration changes 
before they affect the network



Batfish’s original 4-stage pipeline 

❌

Parsing Routing simulation Verification Explanation

Configuration Bug reportDevice model Data plane Violating flow



Batfish’s original 4-stage pipeline 

Parsing Routing simulation Verification Explanation

1500x faster, 400x larger networks

Fidelity

❌

Device model Data plane Violating flowConfiguration Bug report



(SIGCOMM 2023)



Lesson 1: Datalog was great for prototyping,
but not for production use
Three key challenges:
1. Expressiveness
2. Performance 
3. Deterministic convergence

Solution: replace Datalog with imperative code

Parsing Routing simulation Verification Explanation



Lesson 2: Model fidelity is hard, but not why 
you think
Concern: “Every software version will have different semantics!”
Reality: The real challenge is undocumented semantics

Solution: New stage to benchmark Batfish against an emulator

Fidelity Parsing Routing simulation Verification Explanation



Lesson 3: Usability is hard for reasons you think,
and then some

Ambiguity: “Hosts A can reach hosts B”

• ALL applications can reach SOME DNS server (e.g., in the same AZ)
• SOME SNMP collector can reach infrastructure elements
• ALL service frontends can reach ALL backend VIPs

Solution: custom assertions for each use case.



Where do I sign?!

I will make you 
go faster

Lesson 4: Config validation aids networks 
agility too

I prevent 
config errors

Umm..does that 
slow you down?

What can you 
do for me?

I don’t need 
you. I am 

super careful.

Yes!



Lesson 5: Most networks are nothing like 
hyperscalers’ network

Limited network automation

Limited software expertise



Current state of network verification

Core technology is ready

q Used by many hyperscale, mission-critical networks

q Several startups



Open challenge: Make network 
verification a universal practice

Enable effective use by network engineers

Rapid support for new capabilities

Handle network evolution



Network change Test suite

Untested 
network 

behaviors

Network verification is only as good as its usage



Network verification is only as good as its usage



Inspiration from code coverage



https://github.com/UWNetworksLab/netcov

NetCov: Coverage for network configurations



NetCov maps tested data plane state to covered config lines

20.0.0.0/8 -> R1 (BGP)

RIB entry @R2

BGP announcement
R1 → R2, 20.0.0./8

match tag 74
permit

Import policy @R2
BGP session

R1 ↔ R2

20.0.0.0/8 -> ISP (BGP)

RIB entry @R1
bgp peer R2

BGP peer config @R1

bgp peer R1

BGP peer config @R2

…



NetCov maps tested data plane state to covered config lines

20.0.0.0/8 -> R1 (BGP)

RIB entry @R2

BGP announcement
R1 → R2, 20.0.0./8

match tag 74
permit

Import policy @R2
BGP session

R1 ↔ R2

20.0.0.0/8 -> ISP (BGP)

RIB entry @R1
bgp peer R2

BGP peer config @R1

bgp peer R1

BGP peer config @R2

…

(NSDI 2023)



Rapid support for new capabilities

When does NAT happen?
Where does firewalling happen?

Which fields can firewalling refer to?

Configurations 
or FIBs ⃗

Custom 
model

Inbound ACL FIB lookup Outbound ACL

Behavior 
explorer⃗

“Vertically integrated” tools

Solver⃗



Modeling networks using Zen



Modeling networks using Zen

(HotNets 2020)



Handling network evolution

No one has full view of network behavior

Precise specifications can be HUGE



Evolution-friendly verification

[SIGCOMM 2024]

New! 



Summary

Network verification is key to high availability

First generation tools have taught us a lot about what 
(does not) work

Next generation tools must focus on making network 
verification a universal practice


