A decade of network verification: Lessons learned and open challenges

Ratul Mahajan

"At least 41% of all calls that attempted to use T-Mobile's network during the outage failed, including at least 23,621 failed calls to 911."

"[An old woman] who has dementia, could not reach [her son] after her car would not start and her roadsideassistance provider could not call her to clarify her location; she was stranded for seven hours"

Anatomy of the outage (illustration)

Anatomy of the outage (illustration)

Anatomy of the outage (illustration)

What if T-Mobile could guarantee that no traffic will transit Denver?

What if T-Mobile could predict the impact of link failure?

Microsoft Says Config. Change Caused Azure Outage

Standard protocol for applying changes was not followed

Microsoft: Misconfigured

Google cloud is down, affecting numerous applications and services

Google Cloud outage appears to be outside of North America too, according to DownDetector.com - reports in UK, France, Austria,

Network Device Cal With Confidence In AWS Shaken, Who Could Benefit? Outage Amazon.com, Inc. (NASDAQ: AMZN) faced a setback Tuesday due to an outage at its cloud computing platform — Amazon Web Services, or AWS.... benzinga com

Microsoft suffers intermittent Azure outage over DNS resolution issues

Microsoft 365 and Teams, Dynamics, SharePoint Online, OneDrive and Xbox Live among those affected

Google details 'catastrophic' cloud outage events: Promises to do better next time

Data-center automation software was behind what Google describes as a "catastrophic failure" last Sunday.

May 03, 2019 By: Sebastian Moss

Amazon's massive AWS outage was caused by human error

One incorrect command and the whole internet suffers.

By Jason Del Rey | @DelRey | Mar 2, 2017, 2:20pm EST

Network verification to the rescue

Guarantee network behavior*

* Some behaviors under some assumptions

How network verification slices the problem

The "haystack" of network behaviors is HUGE

Large scale

 $O(10^3)$ devices $O(10^6)$ routes $O(10^9)$ packets

Complex interactions

Distributed routing Protocol redistribution Rich route filtering

Batfish: A production-grade network verifier

Open source, with **2000** users on Slack Used at **50+ companies** The basis for **Oracle Cloud's Network Path Analyzer** Foundation for **25+ publications**

Batfish: A production-grade network verifier

Batfish validates configuration changes **before** they affect the network

Batfish's original 4-stage pipeline

1500x faster, 400x larger networks

Lessons from the evolution of the Batfish configuration analysis tool

Matt Brown Intentionet

Victor Heorhiadi Intentionet Ari Fogel Intentionet

Ratul Mahajan Intentionet University of Washington Daniel Halperin Intentionet

Todd Millstein Intentionet UCLA

Lesson 1: Datalog was great for prototyping, but not for production use

Three key challenges:

- 1. Expressiveness
- 2. Performance
- 3. Deterministic convergence

Solution: replace Datalog with imperative code

Lesson 2: Model fidelity is hard, but not why you think

Concern: "Every software version will have different semantics!" **Reality:** The real challenge is **undocumented semantics**

Solution: New stage to benchmark Batfish against an emulator

Lesson 3: Usability is hard for reasons you think, and then some

Ambiguity: "Hosts A can reach hosts B"

- ALL **applications** can reach SOME **DNS server** (e.g., in the same AZ)
- SOME **SNMP collector** can reach **infrastructure elements**
- ALL service frontends can reach ALL backend VIPs

Solution: custom assertions for each use case.

Lesson 4: Config validation aids networks agility too

Lesson 5: Most networks are nothing like hyperscalers' network

Limited network automation

Limited software expertise

Current state of network verification

Core technology is ready

□ Used by many hyperscale, mission-critical networks

□ Several startups

Open challenge: Make network verification a universal practice

Enable effective use by network engineers

Rapid support for **new capabilities**

Handle network evolution

Network verification is only as good as its usage

Network verification is only as good as its usage

This article was published on: 10/4/21

A Home / Featured / Facebook outage triggered by BGP configuration issue as services fail for 6 billion

Featured Read This

Facebook outage triggered by BGP configuration issue as services fail for 6 billion

WAN router IP address change blamed for global Microsoft 365 outage

Command line not vetted using full qualification process, says Redmond. We think it involved chewing gum somewhere

ᄰ Paul Kunert

Mon 30 Jan 2023 // 13:35 UTC

Inspiration from code coverage

sherged progwriter						73.03% < 8	1.81% > (-	64.88%	(-0.02%)
Overview 🗈 Diff		Coverage Changes 3			3	Files		- ← Commits	
/ projects									
Files		=	•		•	Complexity		Coverage	
allinone/src/main/java/org/batfish/allinone		ø	ø	ø	ø		52.38%		62.91%
batfish-client/src/main/java/org/batfish/client		ø	ø	ø	ø		61.10%		64.57%
batfish-common-protocol/src/main/java/org/batfish		+17	+8	+12	-3	+1	^{2.00%} 70.02%		^{0.02%} 78.02%
batfish/src/main/java/org/batfish		+6	+3	+2	+1	+	^{4.00%} 62.26%		^{0.01%} 70.63%
coordinator/src/main/java/org/batfish/coordinator		ø	ø	ø	ø		63.00%		65.27%
minesweeper/src/main/java/org/batfish/minesweeper		ø	ø	ø	ø		61.71%		72.96%
question/src/main/iava/org/batfish/question		Ø	Ø	ø	Ø		71.06%		81 47%

NetCov: Coverage for network configurations

	12105	/* reject routes we snould never accept */ policy-statement SANITY-IN {				
Current view: <u>top level</u> - co Test: internet2.initi 12107 12107 12107 12107 12107 12107 12107		<pre>/* Reject any BGP prefix if a private AS is in the path */ term block-private-asn {</pre>		Total	Coverage	
		from as-path PRIVATE; then reject;	2	64886	26.1 %	
Date: 2022-09-20 14		<pre>} /* Reject any BGP NLRI=Unicast prefix if a commercial ISP's AS is in the path */ term block-commercial-asn { from as-path COMMERCIAL;</pre>	/			
	12115 12116	to rib inet.0; then reject;				
Filena	12117 12118 12119 12120	} term block-nlr-transit { from as-path NLR; then reject;	÷			
atla.conf	12121 12122	<pre>} /* Reject BGP prefixes that should never appear in the routing table */</pre>		1211 / 501	9	
chic.conf	12123 12124	term block-martians { from {		4376 / 1080	0	
clev.conf	12125 12126	<pre>/* default */ route-filter 0.0.0.0/0 exact; /* rfs 100 */</pre>		1156 / 351	2	
hous.conf	12127 12128 12129	/* FTC 1918 */ route-filter 10.0.0.0/8 orlonger; /* fc 3330 - loopback */		1196 / 480)1	
kans.conf	12130 12131	route-filter 127.0.0.0/8 orlonger; /* rfc 3330 - link-local */		1235 / 617	78	
<u>losa.conf</u>	12132 12133	route-filter 169.254.0.0/16 orlonger; /* rfc 1918 */		1832 / 896	<u>SO</u>	
newy32aoa.conf	12134 12135 12136	route-filter 1/2.16.0.0/12 orlonger; /* iana reserved */ route-filter 192.0.2.0/24 orlonger:		770 / 654	5	
salt.conf	12137 12138	/* 6to4 relay */ route-filter 192.88.99.1/32 exact;		568 / 306	3	
seat.conf	12139 12140	/* rfc 1918 */ route-filter 192.168.0.0/16 orlonger;		1845 / 603	30	
wash.conf	12141 12142 12143	/* rfc 2544 - network device benchmarking */ route-filter 198.18.0.0/15 orlonger; /* rfc 3171 - multicast group addresses */		2723 / 997	78	
	12144 12145 12146 12147 12148 12149	route-filter 224.0.0.0/4 orlonger; /* rfc 3330 */ route-filter 240.0.0/4 orlonger; } then reject; }		https://githut	.com/UWNetworks	
	12150	/* Peiect BCP prefixes which Abilene originates */				

NetCov maps tested data plane state to covered config lines

NetCov maps tested data plane state to covered config lines

Rapid support for new capabilities

"Vertically integrated" tools

When does NAT happen? Where does firewalling happen? Which fields can firewalling refer to?

Modeling networks using Zen

Modeling networks using Zen

Handling network evolution

No one has full view of network behavior

Precise specifications can be HUGE

Evolution-friendly verification

[SIGCOMM 2024]

Network verification is key to high availability

First generation tools have taught us a lot about what (does not) work

Next generation tools must focus on making network verification a universal practice